
Coded
Character Sets,

History and
Development

Coded
Character Sets,

History and
Development

CHARLES E. MACKENZIE
IBM Corporation

Wy ADDISON-WESLEY PUBLISHING COMPANY

Reading, Massachusetts * Menlo Park, California

London « Amsterdam « Don Mills, Ontario * Sydney

Library of Congress Cataloging in Publication Data

Mackenzie, Charles E
Coded-character sets.

Includes index,
1. Coding theory. I. Title.

QA268 M27 519.4 77-90165
ISBN 0-201-144.60-3

Copyright © 1980 by Addison-Wesley Publishing Company, Inc. Philippines copyright
1980 by Addison-Wesley Publishing Company, Inc.
All rights reserved. No part of this publication may be reproduced, stored in a retrieval
system, or transmitted, in any form or by any means, electronic, mechanical, photocopying,
recording, or otherwise, without the prior written permission of the publisher. Printed in
the United States of America. Published simultaneously in Canada. Library of Congress
Catalog Card No. 77-90165.

ISBN 0-201-14460-3

ABCDE FGHIJ-HA-89876543210

Dedicated to Dr. Louis Robinson

without whose insistence and persistence

this book would not have been written.

THE SYSTEMS PROGRAMMING SERIES

*The Program Development Process

Part I—The Individual Programmer

The Program Development Process
Part II—The Programming Team

*The Structure and Design of Program-

ming Languages

*Mathematical Foundations of
Programming

Structured Programming: Theory

and Practice

*The Environment for Systems Programs

*Coded Character Sets: History and

Development

*An Introduction To Database Systems,

Second Edition

Interactive Computer Graphics

*Sorting and Sort Systems

*Compiler Design Theory

*Communications Architecture for

Distributed Systems

*Recursive Programming Techniques

Conceptual Structures: Information

Processing in Mind and Machines

*Modeling and Analysis: An Introduc-

tion to System Performance Evalua-
tion Methodology

*Published

IBM EDITORIAL BOARD

Joel D. Aron

Richard P. Case, Chairman

Gerhard Chroust

Robert H. Glaser

Charles L. Gold

James P. Morrissey

George Radin

David Sayre

Heinz Zemanek

Paul S. Herwitz

Joel D. Aron

Joel D. Aron

John E. Nicholls

Frank Beckman

Richard C. Linger

Harlan D. Mills

Bernard I. Witt

Frederic G. Withington

Charles E. Mackenzie

C. J. Date

James Foley
Andries Van Dam

Harold Lorin

Philip M. Lewis II

Daniel J. Rosenkrantz

Richard E. Stearns

R. J. Cypser

William Burge

John F. Sowa

Hisashi Kobayashi

William B. Gruener (Addison-Wesley)

Foreword

The field. of systems programming primarily grew out of the efforts of

many programmers and managers whose creative energy went into pro-
ducing practical, utilitarian systems programs needed by the rapidly grow-

ing computer industry. Programming was practiced as an art where each

programmer invented his own solutions to problems with little guidance

beyond that provided by his immediate associates. In 1968, the late

Ascher Opler, then at IBM, recognized that it was’ ‘necessary to bring

programming knowledge together in a form that would be accessible to all

systems programmers. Surveying the state of the art, he decided that

enough useful material existed to justify a significant publication effort.

On his recommendation, IBM decided to sponsor The Systems Pro-

gramming Series as a long term project to collect, organize, and publish

principles and techniques that would have lasting value throughout the

industry.

The Series consists of an open-ended collection of text-reference

books. The contents of each book represent the individual author’s view

of the subject area and do not necessarily reflect the views of the IBM

Corporation. Each is organized for course use but is detailed enough for

reference. Further, the Series is organized in three levels: broad introduc-

tory material in the foundation volumes, more specialized material in the

software volumes, and very specialized theory in the computer science

volumes. As such, the Series meets the needs of the novice,.the experi-

enced programmer, and the computer scientist.

The Editorial Board

Preface

The word ‘‘code’’ is a word of broad meaning and application. Legal

codes, fire safety codes, building construction codes, a code of ethics,

and so on, exemplify the use of the word in some of its dictionary
meanings, ‘‘a system of rules or regulations on any subject.’’ A dictionary

meaning that comes closer to the context of this book is ‘‘a system of

signals.”’

From early beginnings, humans have used many methods to convey

information over a distance. Indians (of North America) used a set of

smoke signals for sending messages. A semaphore, a vertical post with

one or more arms moving in a vertical plane, was and is used to send

messages over line-of-sight distances.

The method that comes close to the meaning used in this book is the

Morse Code, an alphabet in which the letters are expressed as dots and

dashes. This method can be used visibly with short and long flashes of

light, audibly with short and long bursts of sound, electrically with short

and long pulses of current, and so on. The interesting aspect of the Morse

Code is that it is based on two possible states—dot or dash, short or

long, and so on—that is to say, it is binary in nature. Standing aside from

the spaces between dots and dashes, and between letters, the Morse

Code may be regarded as a binary code.

Analogously to the Morse Code, the set of alphabetic, numeric and

special (such as period, comma, plus sign, minus sign) symbols processed

by a computer are associated with a set of particular binary representa-

tions. Such a set of graphic symbols and binary representations is called

a coded character set, or, more familiarly, a code.

x Preface

The binary aspect of a coded character set stems naturally from the

binary, or two-state, nature of many mechanisms, components, or proc-

esses of a computer. A switch is on or off, a relay is normal or transferred,

a vacuum tube is or is not passing current, a condenser is or is not

charged, a magnetic pole is north or south, a voltage is positive or

negative or is equal to or less than a reference voltage, and so on. Relays,

vacuum tubes, transistors, magnetic cores, diodes, as used in computer

circuits, are binary in nature.

In the decimal number system, there are ten digits—0, 1, 2, 3, 4, 5,

6, 7, 8, 9. In the binary number system, there are two digits—0 and 1.

Very early in the history of computing, the words “‘binary digit’? were

contracted to the word ‘‘bit’’; ‘‘a bit may be 0, or 1,’’ means *‘a binary

digit may be 0 or 1.’’ A discrete grouping of contiguous bits, 1001011 for

example, is called a bit pattern.

A coded character set, or code, is a set of meanings associated with

a set of bit patterns. For a particular code, the number of bits is generally

a fixed number; all bit patterns in a particular code have five bits, or all

bit patterns in a particular code have six bits, and so on. This aspect of

a fixed number of bits in the bit patterns of a particular code is frequently

used to characterize a code as a 5-bit code, or as a 6-bit code, and so on.

In this respect, the Morse Code, which has different numbers of bits for

different letters, although it continues to be used for sending messages,

was deemed not to be satisfactory for computing purposes.

The number of different possible bit patterns in a particular code

depends on the fixed number of bits of that code. In consequence, the

number of different possible meanings that may be associated on a one-

to-one basis with the different bit patterns of a code depends on the

number of bits of a code. Reasoning in the opposite direction suggests

that the number of different meanings required in the code of a computer

may be a determining factor in the number of bits in a code.

Perhaps the most famous code in the history of computing was that

invented by Dr. Herman Hollerith of the United States Census Bureau

in the late nineteenth century. His code was a decimal code based on the

position of a punched hole across a paper card—ten digits, ten punching

positions. His code was actually a twelve-position code—ten positions

for digits, two positions for other purposes (positive or negative, for

example). Today, more than seven decades later, Dr. Hollerith’s twelve-

position code is fundamental in the punched card code used by

many/most computers.
A number of different codes have evolved in the computing and data

communication fields: different codes evolved because different require-

ments emerged as computing and data communication evolved. Many

Preface xi

factors shaped the different codes. This book describes those factors and

how they either led to or mandated decisions in the development of some

codes. This book is not a definitive book on all computer or data com-

munication codes. Discussion is limited to those codes which have
evolved, have been developed, or have been used in the author’s personal

experience.
Mainly, the factors discussed are of a technical nature, but some of

the factors are of an economic or cost nature. For example, in computers,

bit patterns are stored in registers. In early computers, registers were

implemented in vacuum-tube technology. The number of bits to be stored

in a register bore a relation to the number of tubes needed in the register—

8-bit registers required more tubes than 6-bit registers. The manufacturing

cost of a register was related to the number of tubes in the register. In

this sense, a 6-bit code was considered to be more ‘‘economical’’ than

an 8-bit code.

Two processes have shaped the evolution and development of codes.

One process is the process of developing computing and communication

products and systems, a process of individual manufacturers. The other

process is the developing of standards for the data processing industry,

a process of both manufacturers and users, in concert.

With respect to the first process, during the 1960s, two great tech-

nological evolutions were occurring in the data processing field. On one

hand, computing systems were evolving from an architecture of six bits

to an architecture of eight bits. (Many people consider this to have been

more of a revolution than an evolution.) On the other hand, communi-

cations systems were evolving from five-bit codes to six-, seven-, and

eight-bit codes.

With respect to the second process, during the 1960s, there was a

quite remarkable development of standards in the field of data processing.

One particular area of standardization was the area of coded character

sets and their representation on physical media—magnetic tape, paper

tape, punched cards, data transmission, tape cassettes, and so on. This

standardization effort was exerted on both the national and international

level. In the United States alone during the 1960s, some twenty standards

in this area were started, and most were completed.

As might be supposed, the interaction between these two processes

was considerable. One characteristic of codes is very interesting. In the

data processing industry over the last twenty years, older computing and

communications products and systems have not infrequently been re-

placed with newer, more economically efficient products and systems.

But old codes do not die, nor do they fade away. A 5-bit telegraph

communications code standardized in 1931 is still in wide use although

xii Preface

a 7-bit communications code was standardized in 1963, and many prod-
ucts implementing the 7-bit code are available. A 6-bit computer code
developed in 1962 continues in wide use, although 8-bit computers with

an 8-bit computing code have largely replaced the 6-bit computers. Codes

have the characteristic of continuity and long-life expectancy due to

user’s application demands.

A problem that has to be faced in a technical book such as this is

the existence of the specialized jargon used by professionals in the sub-

ject. Words or terms that make up the jargon came from two sources.

The first source is words with a general meaning or meanings in the

English language that are given a very specialized meaning in the jargon.

Such specialized meanings are not in common use and will not be found
in common dictionaries. An example is the word ‘‘track.”’ In railroading,

‘*track’’ means one thing; in fur trapping, it means something else; and

in horse racing, it means yet something else. These meanings will likely

be found in common dictionaries. But in the field of magnetic tape en-

gineering, ‘‘track’’ has a meaning most unlikely to be found in common

dictionaries, although it is likely to be found in technical dictionaries for
the field of data processing. The second source of jargon is new words

or terms invented by the professionals. An example here is ‘‘bit.’’ The

meaning ‘‘binary digit,’’ from which ‘‘bit’’ was contracted, is not likely

to be found in common dictionaries, although its meaning is well known

in the data processing field.
Technical jargon must be used in a book on a technical subject.

Early in this book some terms and concepts very necessary to an under-

standing of the field of coded character sets are defined and explained;

the glossary of this book is devoted to a comprehensive set of definitions

of terms.
Just as letters, digits, and special symbols make up a language in

which humans intercommunicate, the letters, digits, and special symbols

with associated bit patterns of a coded character set make up the language

in which information is passed, interchanged, and processed by com-

puters. A complete knowledge of the art of computing, which includes

both the manufacture and use of computers, requires a knowledge of the

art of coded character sets. This book describes some of that art.

The author would like to express his appreciation to Mrs. Helena

Russo, Mrs. Janet Palome, and Mrs. Betty Birdsall, who did the lengthy
and frequently very difficult typing of the manuscript of this book.

Poughkeepsie, New York C.E.M.

January 1980

1.1

1.2

1.3

1.4

1.5

2.1
2.2
2.3
2.4
2.5
2.6
2.7
2.8
2.9
2.10
2.11
2.12
2.13

Contents

CHAPTER 1
THE STANDARDS PROCESS

The Public Committee Process 1.0... 0... cece eee ee eee eens

The Company ProcesS ccc cece ee eee eee eee eee e nee

Decision ProcesseS ccc cece ec ete ee teen en nee ete n anes

Economic Considerations 0.0: cece cece eee teen eens

Names of Standards ccc ccc cece cece eee eee nee eeeee

CHAPTER 2
TERMS AND CONCEPTS

1)

BYt€ oo ccc ee ee eee te eee eee eee ee ene ee eee ees

Binary Variable 0... cece cece cece eee e eee eee n een eee

Bit Numbering and Bit Naming eee cece ee cee ees

Bit String ec ccc cee ee ete tence eee nee neee

Card Hole Patterns ccc cece eee eee eee eens

Zone Row, Zone Punch cece ce ee eee teen e ees

Digit Row, Digit Punch ccc cee eee ee ee eee eens

Graphic oo... eee ee eee ee ee ee eee e en eens

Control Meaning ccc ccc cree eee e een eeees

Character ccc ccc ccc eee eee eee eee eee eee eee eens

Data Stream ow. cece ee te ene ete teen nee

xiv

2.14
2.15
2.16
2.17
2.18
2.19
2.20
2.21
2.22
2.23
2.24
2.25
2.26
2.27
2.28
2.29

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8

4.1

4.2

4.3

5.1

5.2

5.3

5.4

Contents

Coded Character Set—Code ccc cece cece eee eee ees 18

Representation 1.0... cece cece ee eee eee eee ete ne neeenes 20

Code Table i... ccc ccc cc eee eee eee e eee e eee eereeeeee 21

Code Name€S 2... ccc ccc cece cee cee ere eee teen eee ence ee eenaes 27

Shifted Code ccc ccc cect eee eee tee eee n eee ene eees 28

Binary Coded Decimal (BCD) 0... 2. cee eee eee eee eens 30

Sequences of Bit Patterns cee eee cee nee 32

Signed Numerics-06- deena ere eee nee ene eeee 35

Space Character has ‘‘No Punches’’ Card Code 38

Duals 2... ccc ccc cc ee ee ee eee e tent ee eee nee eee neees 38

Collating Sequence Matches Bit Sequence00055 40

Summary of Code Characteristics cece ce cee eee eee 43

Compatability... 0... cece cc cece cette eee nent e nee 50

Graphics for Controls 2... 0.0... cc cece eee eee e ene nees 51

Collapse Logic 2... cece ec eee eee eet e teen ee eneane 52

Boolean EquationS 0.0... cece cece eee eee ee een eee en eens 56

CHAPTER 3

EARLY CODES

CCITT #2 woo ccc ccc cece cere centre cence ete eenennnnee 62

FIELDATA 2... ccc ccc ccc een n eee e nen eens 64

BCDIC ooo ce cc etna ence teen eee e nee tneetaee 66

Stretch COd€ wo... cece cece cee eee eee eb eee nee eee ee teenies 67

TPC Lice cc cece cette ence rere eee teen eee n eee nee eaee 75

An Early 64-Character Code Proposal 0.00. cece e eee eaee 81

An Early 256-Character Card Code Proposal00005 82

4-out-of-8 Code ... ccc ccc ccc et eter teen ee eee ten eeees 85

CHAPTER 4

THE DUALS OF BCDIC

BCDIC, Version 1 ccc ccc eect eet eee eter ee eeaee 87

BCDIC, Version 2 0... .. cc ccc cc eee ete tenet eens eeeees 88

BCDIC, Version 3 20... . ccc eee ee ence tenn en nenee 92

CHAPTER 5

THE SIZE OF BCDIC

Size of Character Set 2.0... ccc ccc cee ee eee teen e eee eeeee 95

BCDIC, Version 3 oo... ccc ce ce terete eee eter e eens 97

BCDIC, Version 4 ccc ccc ee eee nee e eee eeeees 99

BCDIC, Final Version 0. cc cece cee teen eee ee eeens 102

6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8

7.1

7.2

7.3

7.4

8.1
8.2
8.3
8.4

9.1
9.2
9.3
9.4
9.5
9.6
9.7
9.8
9.9
9.10
9.11

10.1

10.2

Contents XV

CHAPTER 6

THE SIZE AND STRUCTURE OF PTTC

Initial Considerations 0. ccc cece cee eee teen eee ene eeees 105

Size of Character Set 20... cece ccc ee eee eee eben eens 106

PTTC, Version 1 vc. ccc ccc cee ee eee eer eters teen eeens 107

PTTC, Version 2 oo... ccc cc etre cet e etc eeeteernceree 110

PTTC, Version 3 oo... ccc ce eee eee eee cece et enaees 112

PTTC, Version 4 ccc cece eee eee een e een eeees 115

PTTC, Version 5... . ccc ccc een eee eee een eens 117

PTTC, Final Version 0.0... cc cece ce cece tent n ene e nee 119

CHAPTER 7

THE STRUCTURE OF EBCDIC

Initial Considerations 1... ... 0 ccc cc ce nett eee eee nenes 121

Technical Decisions 0... ce cece eee cece e nent eee eeees 123

SUMMASLY 2... cece eee ee ee eee eee eee eee eens 126

CYILCViA oe ccc ccc ce ee cere ten eben ene et ene enees 126

CHAPTER 8

THE SEQUENCE OF EBCDIC

BCDIC Collating Sequence 0... ccc eee ee eee eee eee 129

Embedment of BCDIC Collating Sequence6. 133
BCDIC Card Code Relationship ccc cece ee eee eens 136

Technical Decisions 0... ccc ect ee eee eee teenenees 138

CHAPTER 9

THE DUALS OF EBCDIC

A- and H-Duals ... cece cere eee teen teen eenenes 143

Implications of Reassigning Duals 0. cece ee ee eee ees 143

First Decision cc cece cee cece eee nee ete neneneneaee 148

Further Decisions 0... ccc cece cece ee eee eee ete eee eeeas 148

PL/I Considerations 0.0... ccc cece eee cece eee e ete eeeenees 150

“88 — 26 = 627 Lecce cece cece cee te tee eee terete ne ntetenenes 151

ASCII Considerations 2... 0.0... ccc ccc cece eee nett e tenn eeaes 152

BCDIC Control Characters 1... 0... ccc ccc ce eee eee e teen ene 152

Lower-Case Alphabetic Extenders 0... cece cece tener eens 153

Final Assignment of Specials cece cece een eens 154
Consequences of Reassignment 0c cee cece rece ne eeees 154

CHAPTER 10

THE GRAPHIC SUBSETS OF EBCDIC

88-Graphic SetS 2.0... ccc cee ee eee tenet teen eens 159

62-Graphic Subset 0... ccc cee ee eee eee eee eee nena enes 160

xvi

10.3
10.4
10.5
10.6
10.7
10.8

11.1

11.2

11.3

11.4

11.5

12.1

12.2

12.3

12.4

12.5

12.6

12.7

12.8

12.9

12.10

12.11

12.12

12.13

12.14

13.1

13.2

13.3
13.4

13.5

13.6

13.7

13.8

Contents

94-Graphic Subsets cc ccc cece cece eee nee e enn eens 166
Chain/Train Printer Sets 0.0... 0.0... c ccc cece ee eee ete e en teeeee 168

**Preferred’’ GraphicS 0. ccc cece cee e nen e ene e en eeeas 169

48-Graphic SetS ccc ccc cece nee eben een teen’ 170

PL/I Subsets 1.0.0... ccc ccc cee eee nena teens et eens 170

Katakana Subsets 0.0.0 ccc cece ec cnet ee ene e teen neneee 171

CHAPTER 11

THE CARD CODE OF EBCDIC

PTTC Considerations 0. cece cece cece ener eee eentenes 175

Translation ConsiderationS .. 0.0... ccc cece cece eee e eee te eens 179

8-1 VEFSUS Do LLL ccc tee ee eee een ee et eb bene eeens 183

Exception Translations 0... 00. cece cece teen enn eneneeee 185

A Different Blocking 0.0... ccc ccc cence teen een ee eneee 186

CHAPTER 12

THE NEW PTTC

A New 1050 0... ccc ccc cece nent een teen eee ene ne nenenes 189

Ca Co ut: 190

Typewriter Arithmetic 2.0... cece cc cece eee e nent nees 191

PTTC/EBCD Arithmetic 12... 0... 0c c ccc ccc ce eee etn eenes 191

Monocase and Duocase SetS 00: cece eee e eee ee nenee 191

Basic Set and Extended Sets ccc cece eet eet e eens 193

Initial DecisionS 2.0... ccc ce tee eee e nett ene neenees 193

Further Decisions 0... ccc eee cee eect e nent eee nenes 196

Alphabetic Extenders 0.0... ccc cece cece e ee tee ene ee etnenes 199

Differences with PTTC/BCD 0... ccc ccc ce teen ene 201

‘“Musical-Chairs’’ Phenomenon cece ecu eee eenees 201

Interaction, Basic and Extended Sets 0... cee eee erence 205

PTTC and EBCDIC on. cc ee een n eee ennes 208

Differences, PTTC/BCD and PTTC/EBCD05. 210

CHAPTER 13

THE SIZE AND STRUCTURE OF ASCII

Name of the Code ccc ccc ccc eect tee e nen eenenes 211

Graphic Requirements 0... cece ee ce teen een nent tenes 212

Control Function RequirementS ccc cece e teen ee ee eee 213

More than 64 Characters! .. 0.0... ccc ccc cece ee eee eee nees 214

Shifted Codes... 0... ccc ccc ccc cece cece tte tena ne eee enees 214

7 Bits or 8 Bits? .. 0... ccc ce ec ence eee nen e eet nnees 215

A 7-Bit Code 2... ccc ccc eee ee ete c eee e bene een ne bennes 216

Structure of the Code 1... . cc. ccc cece eee cece ee eenan 218

14.1
14.2
14.3
14.4
14.5
14.6
14.7
14.8
14.9
14.10

15.1
15.2
15.3
15.4
15.5
15.6

16.1
16.2
16.3
16.4
16.5
16.6
16.7
16.8
16.9
16.10
16.11
16.12
16.13
16.14
16.15
16.16
16.17
16.18
16.19
16.20

Contents xvii

CHAPTER 14

THE SEQUENCE OF ASCII

Separate or Interleaved Alphabets? 0.0... cae e eee ences 227

Three Columns for Alphabetics? 0... ccc ec ec ee eee eeeees 230

Existing Collating Sequence ccc cece eee eeenees 232

CHIteTIA 2. ccc ee ene eee eee teen etn ee ennnnas 234

Decisions from Criteria 0. cece eee eect eee e enna 236

National Use Positions 0. ccc cece ce eee een e eee eeenees 238

Positioning Of NumericS cece eee etree eet ee eee 239

Assignments of Special Characters 0... cece cece eee eee 240
Control Characters 0.0... 0. ccc cece cece eee nent een n ee eenes 243

ASCII], 1967 0... ccc cect ttn ee ence nen n eee e ene e eens 246

CHAPTER 15

WHICH BIT FIRST?

Specific Criteria 2... cece ee teen ene ee te een nee enone 249

Hardware Efficiency 1.0... .. ccc cece cece eee cnet eee n eens 251

Ease of Maintenance ccc cece eee eet e eee eee enees 251

Contraction to ASCII Subsets 0... 0.0... . ccc cece eens 252

Expansion to ASCII Supersets 0... 0. ccc cece eee eee eee 252

Reliability 2.0... ccc ccc cece eee ene e ene eee e eee en ee eneee 252

CHAPTER 16

DECIMAL ASCII

Perforated Tape 0. cece cece cece ete ee cece tenet eee 255

Magnetic Tape ccc cece ccc cece tenn e teen e tenn eennnes 255

Punched Cards 0 ccc cece eee eee eee eet eee teen eee 256

Binary Representation 0... cc cee cece tee cnet e net aeeee 257

Number of Holes ccc cece cece cette nen teen eee eeee 258

Lacing 2... ccc cc cee cette en eee ene ne eee en ee eneeene 261

Modified Binary Representations 0c eee e ee ee ee ee neeee 263

Null/Space/Blank Problem 0.0.0 cc cece cece ete tee ee nes 265

Plus and Minus Zero Problem 0... ccc ccc e cece eee ne noes 268

Translation Simplicity 0.0... 0... ccc ccc ce eee ee en ene e eens 271

Bendix Prime ccc ccc cece eee e nee e eee nenees 273

EBCDIC Prime 0. ccc cece cece eee ee ee teeta teen ee netns 276

Comparison of Bendix Prime and EBCDIC Prime 277

The Plomondon Proposal cc cee cece cece eee e eee eens 278

Decimal ASCII, Versions 1 and 2) oo... cece cece eee eee eee 281

The Null/Space/Blank Problem (again)00ceeeeceeeaee 283

European Card Codes 0... cece eee cece cece ete n een eeee 284

The Plus and Minus Zero Problem (again) 0.0.0 c eee eees 285

Decimal ASCII, Versions 3 and 4 ww... cece ce eee teens 286

Decimal ASCIT Prime 0... ccc cece cece eee nent eee enenes 288

XViii

16.21
16.22
16.23

17.1

17.2

17.3

18.1
18.2
18.3
18.4
18.5
18.6
18.7
18.8
18.9
18.10
18.11
18.12
18.13
18.14
18.15
18.16
18.17

19.1

19.2

19.3

19.4

19.5

19.6

19.7

19.8

19.9

19.10

19.11

19.12

Contents

Translation Equations 0... ce eect tee eee etnies 290

Anomaly of Boolean Equations 0... cece eee teen es 295

Sic Transit Gloria Decimal ASCII] 00... e cee eee eee eee 297

CHAPTER 17

WHICH HOLLERITH?

Technical Criteria... 0... cece ect teen teeta teens 300

Problems of Decision 1.0... 0... ccc cece cece cette eee teens 304

ProposalS 02... cece cee eee tee ee eee eee ete eee 308

CHAPTER 18

KATAKANA AND THE HOLLERITH CARD CODE

Katakana Symbols ccc cee cece ere eee eee eee eens 341

Katakana in PTTC 2... ccc cc cee tee ene n tenes 341

Katakana in EBCDIC ccc eee eens 343

JISCHL oo cece cece cece cent eee tee eee ee een en eee 345

JISCH, Hollerith, and EBCDIC eee eee eee 346

Objectives for the Hollerith Card Code cc eee eee eee 347

Assumptions for the Hollerith Card Code5040. 347

Development of the Hollerith Card Code 0.0004. 350

The 64th Hole Pattern 0... cece cee ee eee eee teens 353

Examples of Folding 0... cece cece eee eee ee tee eens 354

Katakana Collating Sequence cece cece eee erences 359

Cyrillic in EBCDIC oo. ec cent nenee 362

The U.S.A. Proposal 0... c cece cece cee etree tte en eenes 364

The French Proposal 00. cece eee ee ee eee teen ee ee eee 364

Folding versus Collating 0... cee cece cece cere eee n eens 365

The Hollerith Card Code, Final Version00 cece eee 365

Revised Katakana in EBCDIC oe ee eee 366

CHAPTER 19

WHAT IS A CPU CODE?

Introduction 0... 0... ccc ec eee eee eee teen teen teeee 369

Magnetic Tape ccc cee cee cece eee ete ence teen eens 369
Data Transmission Device Code 0. cece een e ee eres 370

Punched Card Code 0. c cece eect eee e ee teen en ee en eeeee 370

CPU Code 2... ccc ccc cc tne ene eee nee n eee ntaes 371

Control Characters for Associated Products0e ee eee 373

Graphic Character Capability cece cece eee eee 380

Numeric Capability 2.0.0.0... ccc cece een enn enone nnnee 381

Collating Sequence... . eee ccc cece eee teen eee nes 387

Translation Simplicity 2.0... 0... 0.0 cece cee eee teen eee 389

Compatability 2.0... 0... cece ce cnet e eee eet 393

Summary of Functional Requirements of CPU Code 396

20.1
20.2
20.3
20.4
20.5
20.6
20.7
20.8
20.9
20.10

21.1
21.2
21.3
21.4
21.5
21.6

22.1
22.2
22.3
22.4

23.1
23.2
23.3
23.4
23.5
23.6
23.7
23.8
23.9
23.10
23.11

Contents xix

CHAPTER 20

ASCII IN AN 8-BIT INTERCHANGE ENVIRONMENT

Engineering Considerations 0.00 cece cee e eee ne ee eaees 397

8-Bit Environment 1.0... . 0... ccc cee teeter ene eeneaee 399

Embedment of 7 Bits in 8 Bits cece cence eee eees 400

Embedment Constraints 0c c ccc cece eee e tet ene e enone 402

Embedment Notation cc ccc cece ete eee eee nee ee eens 403

Embedment Schemes 0. cece cece erence tenet eeeneeas 404

Transformation Algorithm 0c cece cece eee e cn ne ee eaes 404

Embedment Criteria 1.0... . cece ce ene tee teen enaee 407

Analysis of Embedments 0.0: cece cee nee e ence ene enees 409

Committee Decision ccc ccc eee cee tenet e teen nenes 410

CHAPTER 21

THE ALPHABETIC EXTENDER PROBLEM

The ISO 7-Bit Code... ccc ccc ccc cece ene eee ene eteeeees 412

EBCDIC and the 7-Bit Code 0... cc ce cece eee teen e eens 413

EBCDIC and the Hollerith Card Code04. bee eeeee 413

The German 7-Bit Code ccc cece cece ee eee t eens eenes 414

Significance of Mismatches cc cee cee ence eee eeeeenee 415

The French Solution 0... cece cee cece ee tet e tee eeenee 416

CHAPTER 22

GRAPHIC SUBSETS FOR THE GOVERNMENT

A and H SubsetS ccc ccc ccc eee teen teen nee eetenes 419

Department of Defense Solution 0... ccc cece cece teens 420

FIPS PUB 15 Solution 0.0.0.0... ccc cece eee cette etn e tenes 420

FIPS PUB 15 Trade-Off 0... 0... ccc ccc cee ee eet eeeees 422

CHAPTER 23

WHICH ASCII?

ASCII-1963 oo. ccc cc ccc cece eee renee eee eeneeneeens 423

ASCHI-1965 wo. ccc ccc cc cece ee te eee eee eee een tenas 423

Economic ImpactS 0.0 cece cece teen et eet e eee eeneteees 425

The 2260 Display Station 0.0... cc cece cece tee tee enna 426

The 1053 Printer 0.0... ccc ccc cece ete reset eenees 428

ASCHI-1967 occ ccc cece ete eee eee etn en eee eeas 428

ASCII-1965 versus ASCII-1967 oo... ccc ccc cee cee eens 428

The 2265 Display Station 1.0.0... . cc ccc ce cee ete eee e ee nneneees 428

System/360 Decimal Arithmetic 0c. cce cece eee e eevee 429

Packed Decimal 0... ccc ccc cee cece tenn ee een en eveneuns 431

USASCII-8 eee cere terre tenner ene eens 431

XX

23.12
23.13

24.1
24.2
24.3
24.4
24.5
24.6
24.7
24.8

25.1
25.2
25.3

26.1
26.2
26.3
26.4
26.5

27.1

27.2

27.3

27.4

27.5

27.6

27.7

27.8

27.9

27.10

27.11

27.12

Contents

Decimal ASCII] 0.0... ccc cece ccc cee ence eee eee ne nen

Compilers 0.0... 0. ccc ccc cece eee tenner eee nee n eens

CHAPTER 24
LOGICAL OR, LOGICAL NOT

ASCTI-1963 oo... ccc ccc ce cece ee nent ee teen ene eens

ASCIHI-1965 ooo ccc ccc cee cece teen e tenet e eee ne eeees

PL/T .o ce ccc cc cc cee ce ee ee nee eee eee ene b eee e en eeees

The Problem ccc cece eee teen eet e nee enneees

Ground Rules ccc cece eee tee eee e eee eens

Revised ASCIL 2.0... cece cece eee eee nee eee eee

The Solution for ASCID 2.0... .. cece eee eee ene eens

The Solution for the ISO 7-Bit Code 0. eee ee eee eee

CHAPTER 25

A COMPARISON OF CONTIGUOUS, NONCONTIGUOUS,
AND INTERLEAVED ALPHABETS

The Compiler 0... ccc cece cece ee ee ee eee e tenn eens

ASCII and EBCDIC 20... cee ccc eee ene eens

Interleaved Alphabets 0... cee eee eee tence ee eens

CHAPTER 26
CODE EXTENSION AND EXAMPLES

Substitution . 2.0... cee ccc eee ete e een etn eens

Precedence CodeS cece cece cece tee te ence teen eens

Escape Sequences ccc cece ce eee terete beeen eet

Text/360 .. ccc ccc cece cee eee cere tenet ene nee e teenie ees

SUMMALY 2... ee ce eee renee ence teen teen ennee

CHAPTER 27
THE 96-COLUMN CARD CODE

The Small Card oo... 0c ccc eee eee tenet e een eeee

aS) or:

Three TierS 2.0... ccc cece ete eee eee ne eee e eee ee neeees

Interpretation on the Card cece cee ee ete eee eee

The Character Set ccc ccc cece cece ee eee nee ene eee neens

Application of Criterion 7.0... 0... cece eee eee eee eee eens

Application of Criteria 5 and 6 1.0... ccc eect eens

Hole Patterns for Minus, Zero, and Minus Zero

MinuS ZerO 2... ccc ccc eee n eee cnet tenet ne eeees

Criterion 8, Translation Simplicity 0.0... cece eee eee eee

The Musical-Chairs Effect 0... cece ccc ee ee eect e enone

The Final 6-Bit Set 0.0... ccc cc cece eee eect e neers

27.13
27.14
27.15
27.16
27.17
27.18

Contents xxi

Completion of the Card Code cece eee eee nee n ene neee 483

Further Criteria 0... cece cc cece ence ence nen e ne neees 485

Exception Translations 0. cece cee e eee e nee nnn eens 486

Reduction of Translation Complexity 0. cece een eee 489

Simplification of Translation Complexity 0.0. ee 492

SUMMALY 2... cece eee ee ee eee eee ee teen nee n eee eee 492

GLOSSARY 0c c ccc cece e eee eet e een e eee eeeans 495

ABOUT THE AUTHOR cece cee eect e eee teenies 507

The
Standards
Process

Most of the codes discussed in this book have been developed in the

context of developing data processing standards of one kind or another.
These standards may be categorized as being either public or company

standards. Public standards are those developed by governmental,

national, or international organizations. Company standards are those de-
veloped by a company. Many company standards are well known outside
the developing company, and in many instances are used by companies or
organizations other than the developing company. Although the discus-
sion of company standards is intended to be of a general nature, it does
draw primarily on the author’s experience in the IBM Corporation.”
Also, most of the national standards discussed in this book are those

developed in the United States of America, again by reason of the
author’s familiarity. Equivalent national standards have been developed

in many other countries.

1.1 THE PUBLIC COMMITTEE PROCESS

The suggestion to standardize in a particular subject area may originate

anywhere; an individual, a company, a government agency/department, a

society/association, a standards committee, and so on.

Public standards are developed by committees—committees estab-

lished specifically for the process of developing the standard, or stan-

dards, and staffed with professionals from the field. of the subject.

* The views expressed in this book are those of the author and not necessarily
those of the IBM Corporation.

2 The Standards Process

Generally speaking, the organization is as follows. At the top will be an
administrative body, whose functions are to establish the procedural rules
for developing standards, to monitor adherence to these rules, to deter-

mine that any particular standard is not in technical conflict with other
standards, and to publish and distribute the standards. In the case of

national standards, the administrative body will generally be the national

standards institute or association of the country.

Reporting to the administrative body will be one or more managerial
committees, each dedicated to a particular subject area of standardiza-
tion. The area of standardization assigned to the managerial committee is
generally divided into subareas. Technical subcommittees are established
to develop standards for the subareas. One main function of such mana-

gerial committees is to direct and coordinate the activities of technical
subcommittees who do the actual work of developing and drafting the
standards. The other main function is to assess the economic (and

sometimes social) implications of draft standards.

Usually some organization will serve as secretariat for the committee

and subcommittees. The secretariat distributes to the members, and keeps
on file, the minutes, papers, and other correspondence of the committee

and subcommittees.
The committees and subcommittees function very similarly. There

will be a chairman, usually a vice-chairman (sometimes called chairperson

and vice-chairperson today), and a secretary. Minutes of the meetings are
kept. Members submit papers of a technical, economic, or social nature.
The papers, and the subject matter of the standard(s), are discussed at
meetings. Decisions on points of issue and points of agreement are taken

by votes or ballots, under various rules of majority, consensus, or unanim-
ity. The meetings are conducted under parliamentary rules of procedure.

Draft standards are (generally) subjected to some form of public review
before final approval.

In the case of national managerial committees, members are com-
panies, governmental units, and professional societies or associations, In
the case of national technical subcommittees, members are professionals
knowledgeable in the subject area of the standard(s). In the case of
international committees and subcommittees, members are countries,

with actual attendees at meetings being delegations selected by the

countries. Not unexpectedly, the individuals on country delegations are
usually selected from the members of national committees and subcom-
mittees.

1.2 THE COMPANY PROCESS

Company standards are generally developed by the same procedures and

methods the company uses to manage itself and to develop its products.

1.3 Decision Processes 3

1.3. DECISION PROCESSES

Usually, national and international standards are derived from and based
on well-established industrial practices or techniques. The task of a
standards committee developing a standard in such instances is to de-
scribe completely, consistently, and unambiguously what already exists,
removing or smoothing any incompletenesses, inconsistencies, and am-
biguities.

In some cases, standards committees foresee the need to develop a
standard where practices or techniques are not well established, or do not
exist at all. Such standards are called anticipatory standards. The main
problem for standards committees in such instances is to try to guess or
anticipate what the needs of users will be. These guesses are always
speculative and judgmental, and frequently controversial. Sometimes, the
most controversial aspect of such guesses is whether a standard is actually
needed before users build up experience, practices, and techniques over a

period of time and a range of applications.
The development processes for public and company standards are in

some respects the same. A group of professionals knowledgeable in the

subject area is called together, a chairman or coordinator is appointed,

and the group is charged with the responsibility to develop a standard for
the subject area. The group reviews the subject area, reviews relevant
technical facts, and drafts the standard.

Inevitably, on one or more aspects of the standard, technical alterna-
tives will emerge, and decisions for one of the alternatives must be made.

If, after review of the alternatives, the group is unanimous in selection of
a particular one, the matter is resolved. But if the group is not unanimous
in Opinion, a decision must be made. It is in respect of such technical
decisions that the process in a company is quite different from the process

of a standards committee.
In the company, if the group is not unanimous, a management

decision must be made. It may be made by the group coordinator. Or it
may be referred to a higher level of management or to a series of

management levels. But in all cases, the decision will be made by a single

person. It is made after that person reviews the alternatives, and the pros

and cons, and makes a decision based on personal judgment.

In a public standards committee, the decision is not made by a single
person. It is made by taking a vote or ballot, the outcome of the voting

process being determined by pre-established rules of majority or consen-
sus for the particular committee. That is to say, the decision is a reflection
of the combined personal judgments of all committee members, each
committee member’s judgment being given an equal weight. In theory, it
should be possible to follow the company approach of letting the most

4 The Standards Process

knowledgeable person on the committee make the decision. In practice, it
is not possible to determine who of the committee members is the most

knowledgeable. The equal-weight voting approach is the only practical

and workable one for a committee.
In a particular situation when the pros and cons of alternatives are

based purely on technical aspects, the committee is not likely to have

difficulty in arriving at a decision. The decision can be made purely on
technical merit, and it is simply a question of determining the relative

technical merits of the alternatives. The professionals on the committee

are very well qualified to make such determinations. .
An interesting situation that sometimes arises, (more likely in the

development of an anticipatory standard than in the standardization of an
established industry practice) is that two technical alternatives face the
committee, and each alternative would be equally satisfactory. In such
situations, the act of making the decision is more important than the
technical matter of the decision. For example, standardization in the area
of data communications eventually faced the question of order of trans-
mission of the bits of a byte—should transmission be low-order bit first or

high-order bit first? A priori, there were arguments in favor of each of the

alternatives, and the arguments were clearly of equal technical weight. It

did not matter, a priori, which choice was made, but it was necessary to
make the choice.

A posteriori, once the choice was made, and implementations
emerged, it did matter, because then the fact of implementation for the

particular choice was a weighty argument.

Intuitively, it would seem that, for a particular subject area, one
standard, which is to say one technique or one practice, best serves the

interests of the data processing industry. Thus, if a card code is to be

standardized, only one card code (whatever it may be) should be standard-

ized. Two card codes would result in conflicts and confusions. Many

standards associations, as a cardinal principle, forbid the approval of

conflicting standards in any area.
But there are situations where more than one standard, a family of

standards, is a viable solution, each member of the family serving a

particular purpose in the general subject area. For example, in the area of

data transmission, standards specifying different speeds or rates of trans-

mission have been developed. In the area of magnetic tape, standards
specifying different densities of recording have been developed. Such
families of standards reflect the practical economics that exist. Thus, in
general, the lower the density of recording, the lower the cost of the
magnetic tape drive. A low density of recording may be quite satisfactory

in some data processing applications, and then the user will appreciate the

1.4 Economic Considerations 5

lower cost of tape drives. Other data processing applications may require
a higher density of recording, and for such situations, the user accepts the
higher cost of tape drives.

1.4 ECONOMIC CONSIDERATIONS

Frequently, factors other than technical, such as economic and sometimes
social, are involved, and then the committee’s decision process becomes

much more difficult. A standard committee, when developing standards in
a particular subject area, may face a number of possible situations.

Situation 1. There is a single, uniform practice in the subject area.

Situation 2. There is essentially a single practice in the subject area, but
with slight individual variations.

Situation 3. There are a number of different practices in the area, with
much in common but with appreciable differences.

Situation 4. There are a number of different practices in the subject area,
with little if anything in common.

Situation 1 is the simplest for the committee. All that is needed is to
draft a standard which accurately describes the established practice. Of
course, there may be some question on the accuracy of the description,
but the committee members are well qualified to resolve just such
questions.

Situations 2, 3, and 4 become increasingly more difficult for the
committee members to resolve. The difficulty is the same kind for these
three situations, but different in degree. The difficulty is that the practices

under review are in use in the industry, and the final decision of the
standard will make some current practices standard, while making other
current practices nonstandard. Then, if those who are using the just-

defined nonstandard practice want to use the just-defined standard prac-
tice, they will have to change what they are doing, or the way they are
doing it. Such changes will generally involve cost to the user.

In such situations, then, economic as well as technical factors affect

the decision process. Indeed, there are situations where the economic

factors are more, sometimes much more, significant than the technical
factors. And, while the technical factors can be determined with some

degree of precision, it will generally be difficult or impossible to deter-
mine the economic factors with any degree of precision.

6 The Standards Process

1.5 NAMES OF STANDARDS

National and international standards take their titles (which lead to their

names) from the organizations under which they were developed, and to
some extent, from the purpose for which the standard was developed.
Company standards often take their titles from the purpose for which the
code was developed (the Paper Tape and Transmission Code, for

example).
The international organization responsible for standards in the data

processing field (as well as in many other fields) is the International
Organization for Standardization (ISO). Until recently, “‘standards”’ de-

veloped under ISO were not called “‘standards,”’ but were called ““Recom-
mendations.” The intent of such documents was vested in the name,

“Recommendation.” It was recommended when national standards
bodies developed their own national standards that such standards be
based on the ISO Recommendations. Recently, ISO decided to call their
documents ISO Standards in name as well as in fact. Another interna-
tional organization, responsible for all matters pertaining to worldwide
telegraph and telephone communications, is the International Telegraph
and Telephone Consultative Committee. Its acronym, CCITT, comes
from the equivalent French name for the organization (Commité Consul-
tatif International Telegraphique et Telephonique). A European organi-
zation that develops data processing standards is the European Computer

Manufacturers Association (ECMA).

In the United States, the national standards organization has gone
through a number of changes of name. Organized in 1918 as the
American Engineering Standards Committee, it became the American
Standards Association (ASA) in 1928. In 1966, it was re-named the

United States of America Standards Institute (USASI) and in 1969 it

took its present name, the American National Standards Institute (ANSD.

A 5-bit code was standardized in 1931 by CCITT for telegraph
communications purposes. It is designated CCITT #2, and is still in

worldwide use.
The U.S. Army developed a 7-bit code for data communications that

became a U.S. Military Standard in 1960. Its developers coined for it the
name FIELDATA.

A 7-bit code described in this book has been standardized by a
number of national and international standards organizations:

a) In 1963, under ASA, it became the American Standard Code for

Information Interchange, acronym ASCII (pronounced 'ass-key).
When ASA became USASI in 1966, the code was called the United

States of America Standard Code for Information Interchange, with

1.5

b)

d)

e)

Names of Standards 7

acronym USASCII (pronounced you-’sass-key). However, the previ-
ous acronym ASCII, prominent in the literature, was officially desig-

nated as an acceptable alternative acronym. When USASI became
ANSI in 1969, the code was called the American National Standard

for Information Interchange. Needless to say ANSCII was proposed

as a new acronym, but the standards committee rejected further
name changes, and ANSCII as an acronym was rejected. ASCII was

then designated as the preferable acronym. (USASCII is an accepta-
ble alternative acronym, but has fallen into disuse.)

In 1967, it was incorporated into the ECMA Standard for a 7-Bit
Input/Output Character Code, ECMA-6.

In 1967, it was incorporated into an ISO Recommendation, the 6

and 7-Bit Coded Character Set for Information Processing Inter-

change. In that context, it is referred to as the ISO 7-bit code.

In 1969, it was incorporated into the Japanese Industrial Standard
Code for Information Interchange (JISCI).

In 1968, it was incorporated into a CCITT standard designated
CCITT #5.

These 7-bit codes are essentially the same. They differ in graphic symbols
which reflect different national requirements. This similarity is not coinci-
dental; it is intentional—the result of professionals in different countries

working together to achieve that result.

The original twelve character (ten numerics and two special symbols)
code invented by Dr. Herman Hollerith in the late nineteenth century

grew to include alphabetics and special symbols. It also was incorporated
into national and international standards, specifying either 128 or 256
characters:

a)

b)

d)

In 1969, 128 characters were incorporated into the American Na-
tional Standard Hollerith Punched Card Code. This standard took its

name from the original inventor of the card code. It is now referred

to as the Hollerith Card Code.

In 1970, 128 characters were incorporated into an ISO Recommen-
dation, Representation of ISO 7-Bit Coded Character Set on 12-Row

Punched Cards. It is referred to as the ISO 12-Row Card Code.

In 1970, the American Standard was extended to incorporate 256

characters, retaining the same name.

In 1971, another ISO Recommendation incorporated 256 characters,

Representation of 8-Bit Patterns on 12-Row Punched Card. It also is

referred to as the ISO 12-Row Card code.

8 The Standards Process

Items (a) and (b) are identical; items (c) and (d) are identical. The 128

characters of (a) and (b) are a subset of the 256 characters of (c) and (d).

As with the 7-bit code standards, this is intentional, not coincidental.

Four codes developed in IBM are discussed in this book. Two of
these codes (described in more detail in Chapter 2) were named in
consequence of a particular aspect of codes; namely, that the decimal
numbers 0 through 9, when represented in a binary code, have particular
binary bit-patterns which are called binary coded decimal in the litera-
ture. The acronym, BCD, is well understood in the data processing
industry to characterize a code whose decimal numbers are in the binary
coded decimal representation.

The first code developed in IBM, formalized in 1962, is a 6-bit code

called the BCD Interchange Code, with acronym BCDIC (pronounced
bee-see-dick). An 8-bit code adopted within IBM in 1964 is called the
Extended BCD Interchange Code with acronym EBCDIC (pronounced
ebb-see-dick).

Two other IBM standard codes were developed for use in perforated

tape and transmission products. These 6-bit codes were originally named
Perforated Tape and Transmission Code for use in 6-Bit BCD Environ-
ments, with acronym PTTC/6, and Perforated Tape and Transmission
Code for use in 8-Bit BCD Environments, with acronym PTTC/8. These
names turned out to be confusing. People thought that PTTC/6 meant
that it was a 6-bit code, and PTTC/8 meant it was an 8-bit code. The

former was correct, the latter was incorrect. Therefore, PTTC/6 was

renamed the Perforated Tape and Transmission Code for use in BCDIC

Environments, with acronym PTTC/BCD, and PTTC/8 was renamed the

Perforated Tape and Transmission Code for use in EBCD Environments,

with acronym PTTC/EBCD. Whether the confusion was reduced is moot,

but the second set of names has remained.

Reference is made in this book to various American National Standards
and ISO Recommendations:

1. The American National Standard Code for Information Interchange,

X3.4-1968, referred to in this book as ASCII.

2. ISO Recommendation, 6 and 7-Bit Coded Character Sets for Infor-

mation Processing Interchange, ISO/R646-1967, referred to in this
book as the ISO 7-Bit code.

3. The American National Standard Bit Sequencing of the American

National Standard Code for Information Interchange in Serial-by-Bit
Data Transmission, X3.15-1966.

4. The American National Standard Hollerith Punched Card Code

X3.26-1970, referred to in this book as the Hollerith Card Code.

1.5 Names of Standards 9

5. ISO Recommendation, ISO 7-Bit Coded Character Set on 12-Row

Punched Cards, ISO/R1679-1970, referred to in this book as the

ISO 12-Row Card code.

6. ISO Recommendation, Representation of 8-Bit Patterns on 12-Row
Punched cards, ISO/R2021-1971, referred to in this book as the ISO

12-Row Card Code.

Copies of these American National Standards and ISO Recommendations
are available from the American National Standards Institute, 1430

Broadway, New York, New York 10018.

The 7-bit bit codes of items (1) and (2) above are similar. When

there is no need to distinguish between them, they are referred to
generically as the 7-Bit Code in this book. When distinction is necessary,
one is referred to as ASCII, the other as the ISO 7-Bit Code.

The 256-character card codes of items (2) and (5) above are equival-

ent. When it is necessary to distinguish between them, one is referred to
as the Hollerith Card Code, the other as the ISO 12-Row Card Code.

Terms
and

Concepts

There are some basic terms which should be understood at the onset of
reading this book. These are grouped in this chapter for convenience. (A
lengthy set of terms and definitions is found in the Glossary.)

A fundamental concept involved in data processing products is the
binary, or two-state, nature of many mechanisms, devices, and processes:

A relay is transferred or normal.

A switch is on or off.

A condenser is charged or discharged.

A light is on or off.

A diode is, or is not, conducting current.

A vacuum tube is, or is not, conducting current.

A magnetic pole is North or South.

A punching position on a paper card or on paper tape is punched or

unpunched; which is to say, in a punching position, a hole is present
or absent.

At a point in an electrical circuit, the voltage is positive or negative,

or is zero or negative, or is zero or positive, or is high or low, and so

on.

The decimal number system has the familiar ten digits 0, 1, 2, 3, 4, 5,

6, 7, 8, 9. The binary number system has two digits, 0 and 1. The

representation of physical, electrical, or magnetic two-state situations
such as those above by binary digits is the analytic process of representing

11

12 Terms and Concepts

a physical situation by a mathematical model. In the literature, the term
“binary digit’? soon came to be contracted to “bit.”

2.1 BIT

A bit is a binary digit, either 0 or 1.

2.2 BIT PATTERN

A bit pattern is an ordered set of bits, usually of a fixed length.

Example 1 101011, a bit pattern of 6 bits

Example 2 1100011, a bit pattern of 7 bits

Example 3 10011100, a bit pattern of 8 bits

A bit pattern of n bits is called an n-bit bit pattern. Thus we speak of
6-bit bit patterns, 7-bit bit patterns, 8-bit bit patterns, and so on.

2.3 BYTE

A byte is a bit pattern of fixed length. Thus we speak of 8-bit bytes, 6-bit
bytes, and so on.

2.4 BINARY VARIABLE

A binary variable is a variable which can take two possible values or
represent two possible states.

Three major conventions for representing bit patterns of binary
variables have developed.

= The first convention is the obvious one, a string of Os and 1s; thus

10100, 1001111, 10010101, and so on.

=" The second convention is based on the realization that, for a binary
variable, call it A, we have either A or the inverse of A; we have

either A or “not A.” The convention is to represent “not A’”’ (or the

inverse of A) as A (A overlined). Thus for a set of three binary

variables, A, B, C, we may have eight possible states:

Example 4

2.4

ABC

ABC
ABC
ABC
ABC
ABC

Binary Variable 13

" The third convention is based on a presence/absence concept and the

naming of the specific bit positions within a bit pattern.

Example 5

The four bit positions of a 4-bit bit pattern are named 8, 4, 2, 1; these are
the decimal equivalents of 23, 27, 2', 2°, respectively. Then the sixteen
4-bit bit patterns are represented as in Fig. 2.1, sometimes in a columnar
form as at the left and sometimes in a compact form as at the right.

W
N

Re
©

N
I
N
A
N
A
 HS

8
9

10
11

12

13

14

15

Fig. 2.1 8421 notation

8 |/4 [2/1

No bits

1 1

2 2

2/11 21

4 4

4 1 41

4/2 42

4;2; 1 421

8 8

8 1 81

8 2 82

8 2/1 821

8 | 4 84

8 | 4 1 841

8/4 /2 842

8|4:1:2)1 8421
Under the second convention, A and A are equated to 1 and 0,

respectively. Under the third convention, presence and absence are
equated to 1 and 0, respectively.

14 Terms and Concepts

Example 6

Figure 2.2 shows the sixteen possible states of a 4-bit bit pattern rep-

resented under the three conventions, using A, B, C, D as variables for

the second convention.

Convention 1 Convention 2 Convention 3

0000 ABCD No bits
0001 ABCD 1
0010 ABCD 2
0011 ABCD 21

0100 ABCD 4
0101 ABCD 41
0110 ABCD 42
0111 ABCD 421

1000 ABCD 8
1001 ABCD 81
1010 ABCD 82
1011 ABCD 821

1100 ABCD 84
1101 ABCD 841
1110 ABCD 842
1111 ABCD 8421

Fig. 2.2 Conventions for binary notation

The first and second conventions lead to a uniform, fixed-length represen-

tation. The third convention leads to a compact, variable-length represen-

tation.

2.5 BIT NUMBERING AND BIT NAMING

For purposes of reference, the bit positions of the bit patterns of a code

are numbered, or named:

=" For a 7-bit code (Fig. 2.26) the seven bits are numbered b7, b6, b5,

b4, b3, b2, b1, from high- to low-order significance.

=" For an 8-bit representation based on that 7-bit code (Fig. 2.27) the
eight bits are numbered a8, a7, a6, a5, a4, a3, a2, al, from high- to

low-order significance.

=" For the code table of Fig. 2.28, which is an 8-bit code (structured

differently from the 8-bit representation in Fig. 2.27), the eight bits

2.7 Card Hole Patterns 15

are numbered 0, 1, 2, 3, 4, 5, 6, 7, from high- to low-order

significance.

« For 6-bit codes (Fig. 2.29), the six bits are named B, A, 8, 4, 2, 1,

from high- to low-order significance. This bit-naming convention for
the four low-order bits is based on the 8421 convention previously
described.

2.6 BIT STRING

A bit string is a contiguous sequence of bits, usually not a fixed length. In
data processing applications, bit patterns of variable length are generally

called bit strings.

2.7 CARD HOLE PATTERNS

The twelve vertical punching rows of a punched card are called the
12-row, the 11-row, the 0-row, the 1l-row,..., the 9-row (see Fig. 2.3).

The vertical punching rows of a card give their names to hole punches in
those rows. Thus a hole punch in the 12-row is called a 12-punch, a hole

punch in the 11-row is called an 11-punch, a hole punch in the 0-row is
called a O0-punch, and so on. (The numeric designators may also be

spelled out, twelve-row, eleven-row, twelve-punch, eleven-punch, etc.)

Lo ews Card) rows (horizontal) —_—__-

12-row “]

11-row

0-row

j-row

2-row

3-row , Card columns (vertical)
4-row

5-row

6-row

7-TOW

8-row

9-row J O
o
O
M
m
m
A
m
n
o
O
n
o
A
n
o
o
o
o

Fig. 2.3. Punched card

2.7.1 Hole Pattern

A hole pattern is a set of punched holes within a single vertical punching

column of a card.
In documents, a hole pattern is given as the punches separated by

hyphens. Thus 12-8-2, 12-11-3, 12-11-0-8-7 and so on.

16 Terms and Concepts

2.8 ZONE ROW, ZONE PUNCH

The 12-row and 11-row are called zone rows. The 12-punch and 11-
punch are called zone punches. The 9-row and O-row are sometimes

called zone rows, sometimes digit rows (Section 2.9 below). The 9-punch
and Q-punch are sometimes called zone punches, sometimes digit punches

(Section 2.9 below).

2.9 DIGIT ROW, DIGIT PUNCH

The 1-row, 2-row, 3-row, 4-row, 5-row, 6-row, 7-row, 8-row are called

digit rows. The 1-punch, 2-punch, 3-punch, 4-punch, 5-punch, 6-punch,

7-punch, 8-punch are called digit punches. The 9-row and 0-row are

sometimes called digit rows, sometimes zone rows (Section 2.8 above).

The 9-punch and 0-punch are sometimes called digit punches, sometimes
row punches (Section 2.8 above).

2.10 GRAPHIC

A graphic is a particular shape, printed, typed, or displayed, that repre-

sents an alphabetic, numeric, or special symbol.

In documents, books, magazines, newspapers, for example, we find

three kinds of symbols; letters, numbers, and special symbols used for

punctuation, mathematical operations, editorial inserts, and the like.

These symbols are called graphic symbols; more commonly, simply

graphics.

2.10.1 Alphabetic

An alphabetic is a letter in the alphabet of a country. Generally taken to
mean a letter of the Latin alphabet but sometimes particularized as, for
example, Latin alphabetic, Cyrillic alphabetic, Greek alphabetic, Hebraic

alphabetic.

2.10.2 Numeric

A numeric is one of the ten decimal digits 0, 1, 2, 3, 4, 5, 6, 7, 8, 9.

2.10.3 Special

A special is a graphic symbol indicating a specific purpose.
Special symbols are frequently multi-purpose. Thus ‘.” may be a

period or a decimal point; ‘“‘-” may be a hyphen or a minus sign, or a

dash.

12 Character 17

Example 7

some specials commonly found on data processing products are

53217 ()< >4+-/*

=|"—-@#%&S$Et{}T]

2.11 CONTROL MEANING

Control meaning refers to a particular function or operation that controls
hardware or software products of systems. Control functions come in
many categories. Some of the categories are as follows:

Format effectors. Functions to control the formatting of data on a printed

page, or on a display.

Information separators. Functions to separate and block data.

Device controls. Functions to control a device (as “On” or “Off’’) or to

control actions within a device.

Transmission controls. Functions to control intercommunications on data

transmission lines.

Mode change. Functions to set or change some particular mode of

operation.

Miscellaneous. Functions which do not fall into the above categories.

2.12 CHARACTER

A character is a specific bit pattern and an assigned meaning.

2.12.1 Graphic Character

A graphic character is a specific bit pattern and an assigned graphic

meaning.

In order that data processing equipment may process graphic infor-

mation, specific bit patterns must be assigned to specific graphic mean-
ings. Thus if 100 0001 is assigned to graphic meaning of the alphabetic A,
for example, the electrical circuits of a printer will analyze bit patterns, and

when it detects 100 0001, the letter A will be printed.

2.12.2 Control Character

A control character is a specific bit pattern and an assigned control
meaning.

18 Terms and Concepts

Data processing products perform certain control functions. For
example, a typewriter performs the operations of spacing, backspacing,

up shifting, down shifting, tabulation, carriage return. If the typewriter is

to operate as a printer, certain bit patterns must be assigned the meaning

of control functions.

2.13 DATA STREAM

A data stream is a variable-length string of bit patterns, representing the

data of a data processing application.

2.14 CODED CHARACTER SET—CODE

A coded character set is a specific set of bit patterns or hole patterns to
which both specific graphic and control meanings have been assigned.

2.14.1 Bit Code

A bit code is a set of bit patterns to which either graphic or control

meanings have been assigned.
A code byte in general can be of variable length. The Morse code,

for example, has variable-length code bytes. However, codes used in data

processing systems invariably have fixed-length bytes.

The code byte prescribes the number of different possible bit pat-
terns in a code—the code byte is generally used to characterize a code.

Thus we speak of a 5-bit code, or a 6-bit code, or a 7-bit code, and so on.

A n-bit code has 2" possible different bit patterns. A 4-bit code has
2*=16 possible different bit patterns. A 5-bit code has 2° = 32 possible
different bit patterns. A 6-bit code has 2°=64 possible different bit
patterns. And so on.

Generally, the number of different possible bit patterns of a code
prescribes also the number of possible characters in a code. Thus, a 6-bit
code has 64 characters, and an 8-bit code has 256 characters. A 6-bit

code used in the early days of data processing is shown in Fig. 2.4. It is to
be noted that graphic meanings only are assigned and that not all bit

patterns have an assigned meaning. This early 6-bit code consisted of 48

characters (64 would be possible)—the Space character, 10 numerics, 26

alphabetics, and 11 specials.

Three concepts (to be explained)—duals, character sequences, and

shifted codes—allow the assignment of more meanings to a code than the

total possible number of different bit patterns.

2.14.22 Card Code

A card code is a set of hole patterns to which graphic or control meanings
have been assigned.

2.14 Coded Character Set—Code 19

Bit pattern Graphic Bit pattern Graphic

No bits Space B - Hyphen, minus

1 1 Bl J
2 2 B2 K
21 3 B21 L

4 4 B4 M
Al 5 B41 N
42 6 B42 O
421 7 B421 P

8 8 B8 Q
81 9 B81 R
82 0 B82
821 ## Number sign B821 $ Dollar sign

84 @ At sign B84 * Asterisk
841 B841
842 B842
8421 B8421

A BA & Ampersand

Al / Slash BAI A

A2 S BA2 B
A21 T BA21 Cc

A4 U BA4 D
A41 Vv BA41 E
A42 WwW BA42 F
A421 x BA421 F

A8 Y BA8& H
A81 Z BA81 I
A82 BA82
A821 , Comma BA821 . Period

A84 % Percent sign BA84 H Lozenge
A841 BA841
A842 BA842
A8421 BA8421

Fig. 2.4 Early code

20 Terms and Concepts

2.15 REPRESENTATION

Representation refers to the form or manner in which the characters of a

coded character set are recorded or transmitted on some medium, such as

magnetic tape, magnetic disk, magnetic card, magnetic tape

cassette/cartridge, magnetic core, paper tape, punched cards, data trans-

mission lines, etc.

For such media representations, it is necessary to specify a precise

relationship between the format characteristics of the medium (rows,

columns, tracks, etc.) and the bits of the bit pattern of a character.

Characters may also be represented by graphic shapes either printed

on paper or displayed on cathode ray tubes. Such graphic shapes may

have a conventional font for human reading or a stylized font for machine

reading (optical character recognition, OCR, or magnetic ink character

recognition, MICR).

Pattern A B BA

SP - &

1 1 / J A

2 2 s K B

21 3 T L Cc

4 4 U M D

41 5 Vv N E

42 6 W 0 F

421 7 x P G

8 8 x Q i

8 1 9 Zz R I

8 2 0

8 21 # ; g

84 @ x * mt

84 14

842

8421
Fig. 2.5 6-bit code table, 8421 convention

2.16 Code Table 21

A more subtle form of representation is where a sequence of
characters is used, as an entity, to represent some single graphic or
control meaning (see, for example, Chapter 26, Code Extension).

2.16 CODE TABLE

A code table is a compact matrix form of rows and columns for exhibiting
the bit patterns and assigned meanings of a code. The 6-bit code,
previously listed in Fig. 2.4, is exhibited in a code table using the 8421
convention (Fig. 2.5). It is also exhibited using the binary convention for

representing bit patterns (Fig. 2.6).
The rule for reading these code tables is that the two high-order bits

of the 6-bit bit pattern are shown as column headings, and the four
low-order bits are shown as row sidings.

Pattern > 65 00 01 10 11

4321

0000 SP -~ &

0001 1 / J A

0010 2 s K B

0011 3 T L c

0100 4 U M D

0101 5 Vv N E

0110 6 W 0 F

0111 7 x p G

1000 8 Y Q H

1001 9 z R I

1010 0

1011 # > $

1100 @ x x xn

1101

1110

1411
Fig. 2.6 6-bit code table, binary convention

22 Terms and Concepts

Example 8

From the code tables of Figs. 2.5 and 2.6 we derive the following:

Graphic Bit pattern Bit pattern
meaning Fig. 2.5 Fig. 2.6

7 421 000111

R B81 10 1001

E BA41 110101

Space No bits 00 0000

It is common practice to represent codes in code tables of 16 rows. Thus,
a 6-bit code has a code table of 4 columns and 16 rows, a 7-bit code has a

code table of 8 columns and 16 rows, an 8-bit code has a code table of 16

columns and 16 rows, and so on.

It is common practice to exhibit control meanings in code tables by

either abbreviations or acronyms of the name of the control meaning.

Example 9

Control meaning Abbreviation or acronym

Space SP

Segment mark SM

Record mark RM

End of Transmission EOT

Acknowledge ACK
Negative Acknowledge NAK

Null NUL

Bell BEL

A card code may be exhibited in a code table in the same way that a
bit code is exhibited in a code table. The conventions for bit-code code
tables are also used for card-code code tables. Zone punch hole patterns
are shown as column headings. Digit punch hole patterns are shown as

row sidings. The hole pattern for a particular character is made up of the
column heading and row siding. A 64-character card code is shown in Fig.
2.7. The Hollerith Card Code is shown in Fig. 2.8.

Example 10

From Fig. 2.7 we derive the following:

Graphic Hole pattern

Space No holes

Z 0-9

< 12-8-6

2.16 Code Table 23

Note. In card-code code tables, there may be exceptions to the general

rule of column headings and row siding. These will be designated with
small footnote numbers, with the actual hole patterns for such code
positions (shown below) appearing in the table.

Hole

Pattern—* 0 11 12

1
SP SB L] - &

1 1 / J A

2 2 s K B

3 3 T L Cc

4 4 U M D

5 5 V N E

6 6 W 0 F

7 7 x P G

8 8 Y Q H

8 9 Zz R I

0 0 RM 2 ! 2

8-3 # ; $

8-4 @ % * XH

es : Ws] C

8-6 > \ : <

8-7 ™ SM MC GM

Hole Patterns: Control Characters

[7] 8-2 SP - Space
{2] 0-8~2 IM - Tape Mark

SB - Substitute Blank

RM - Record Mark

WS - Word Separator

SM - Segment Mark

MC ~ Mode Change

GM - Group Mark

Fig. 2.7. Card-code code table

It is possible to exhibit, in one code table, both bit patterns and hole
patterns, with zone bits and zone punches as column headings and digit
bits and digit punches as row sidings. See, for example, Fig. 2.9. In more
complex code tables, such as Figs. 2.8 and 2.10, zone punches for

24 Terms and Concepts

Fig. 2.8 Hollerith Card Code

LF

BS ETB

ESC } EOT

pC4

ENQ| NAK

ACK

BEL | SUB

Block | Hole Patterns at:

1 Top and Left

2 Bottom and Left

3 Top and Right

4 Bottom and Right

2.16 Code Table 25

Paetern A B BA

Hole

Pattern—> 0 WW 12

SP SB * - &

1 1 1 / J A

2 2 2 s K B

21 3 3 T L Cc

4 4 4 U M D

41 5 5 Vv N E

42 6 6 Ww 0 F

421 7 7 X Pp G

8 8 8 x Q H

8 1 9 9 Z R 1

8 2 0 0 BM L2| \ 2

8 21 8-3 # 3 §

84 8-4 @ % * X

84 1 8-5 ws] c

842 8-6 > \ ; <

8421 8-7 T™ SM MC GM

Hole Patterns:

[7] 8-2

[2] 0-8-2

Fig. 2.9 Code table, bit patterns and hole patterns

characters in the top rows of the table are different than they are for

characters in the bottom rows of the table, and digit punches for charac-

ters in the left columns of the table are different than they are for

characters in the right columns of the table. In such a case, zone punches

are shown as column headings and column footings and digit punches are

shown as left and right row sidings.

A rule for reading hole patterns for such a table must be stated. The

table of Fig. 2.10, is blocked into four blocks, as shown below, with the

rule for reading as follows:

26 Terms and Concepts

Column 9

00

12

Hole

Pat.
Hole Patterns:

[4] 9-12~0-8-1 11 [13] 0-1

[2] 9-12-11-8-1 12-11-0 9-11-0-1 Block | Hole Patterns at:

[3] 9-11-0-8-1 = [a] 12-0 12-11 l 3 1 | Top and Lett

{4] 9-12~-11-0-8-1 11-0 2 | Bottom and Left
[5] No Pch [ii] 0-8-2 2 4 3 | Top and Right
[e] 12 {iz] 9 4 | Bottom and Right

Fig. 2.10 256-character code table

Block 1: Zone punches at top of table, digit punches at left.

Block 2: Zone punches at bottom of table, digit punches at left.

Block 3: Zone punches at top of table, digit punches at right.

Block 4: Zone punches at bottom of table, digit punches at right.

2.17 Code Names 27

2.16.1 Column Number, Row Number

For purposes of easy reference, the columns and rows of a code table are

numbered and named. For the code table of Fig. 2.26, the 8 columns are

numbered 0, 1, 2, 3, 4, 5, 6, 7, and the 16 rows are numbered 0, 1, 2,

3,..., 14, 15.
For the code table of Fig. 2.10, both the 16 columns and 16 rows are

numbered (or named) 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F. This

notation is called the hexadecimal notation.

2.16.2 Code Table Character Position,

Code Table Characters Location

The position or location of a character in a code table is stated according

to its column and row number. For the tables of Figs. 2.26 and 2.27, the

convention is to give the position as x/y, where x is the code table column

number and y is the code table row number. For the code table of Fig.

2.10, the hexadecimal convention mn is used, where m is the hexadeci-

mal column number and n is the hexadecimal row number.

Example 11

In the code table of Fig. 2.26, the letter R is in position 5/2.

Example 12

In the code table of Fig. 2.10, the letter R is in position D9.

2.17, CODE NAMES

The following codes, to be discussed in detail later in this book, are used

in this chapter to illustrate certain basic characteristics of codes. Their

names, the derivation of which will be described later in this book, are

used in this chapter. (The term shifted, used below, is explained later in

this chapter.)

a) CCITT #2 A 58-character, shifted 5-bit code.

b) FIELDATA A 128-character, 7-bit code.

c) ASCII A 128-character, 7-bit code.

d) PTTC A 111-character, shifted 6-bit code.

e) BCDIC A 64-character, 6-bit code and 12-row card code.

f) EBCDIC A 256-character, 8-bit code and 12-row card code.

g) Hollerith A 256-character, 12-row card code.

28 Terms and Concepts

BASIC CHARACTERISTICS

There are some basic characteristics of coded character sets. Not all of

these characteristics will be exhibited by any particular code.

2.18 SHIFTED CODE

Recall that the total number of possible different bit patterns of a code is

prescribed by the number of bits in the code byte: a code byte of 5 bits

gives rise to 2° = 32 different bit patterns; a code byte of 6 bits gives rise

to 2° = 64 different bit patterns; a code byte of 7 bits gives rise to 2’ = 128

different bit patterns; etc.

Ordinarily, the number of possible different characters (a character is

a bit pattern with an assigned meaning) in a code equals the number of

possible different bit patterns. But, by the use of a technique called

shifting, the number of characters in a code may be increased beyond the

number of bit patterns. Under this technique, the meaning of a bit pattern

depends not only on the bit pattern itself, but also on the fact that it has

been preceded in the data stream by some other particular bit pattern,

which is called a precedence character or a shift character.

In CCITT #2 (Fig. 2.11), for example, there are two characters,

Figure Shift (11011) and Letter Shift (11111). The meaning of a bit

pattern in a data stream is determined not only by the bit pattern itself

but also by which of the two precedence bit patterns has preceded it. By

preceded, we do not necessarily mean “immediately” preceded. For exam-

ple, if the bit pattern 01010 has been preceded by the bit pattern 11011

(Figure Shift), it would mean ‘4’’, but if it had been preceded by the bit

pattern 11111 (Letter Shift), it would mean “‘R’’. A precedence character,

when detected in the data stream, establishes a mode which remains in

effect until another precedence character is detected, which then disestab-

lishes the previous mode and establishes its own mode, which in its turn

remains in effect until the subsequent detection of another precedence

character.

The precedence characters are generally called shift characters be-

cause they are associated with the mechanism in a serial printer such as a

typewriter which shifts from one case to the other.

In the serial printers that implement CCITT #2, the shift keys ‘lock

in’ the shift mode of the printing mechanism. Thus when the key or keys

are depressed to generate the Figure Shift character, the Figure Shift

Case is set for the printing mechanism and it remains set until the key or

keys are depressed to generate the Letter Shift character. At that time,

the Letter Shift case of the printing mechanism is set and it remains set

until the key or keys are depressed to generate the Figure Shift character.

2.18 Basic Characteristics 29

Bit Letter Figure Bit Letter Figure

pattern case case pattern case case

00000 Not used Not used 10000 E 3

00001 T 5 10001 Zz +or”

00010 CR CR 10010 D (2)

00011 0 9 10011 B ?

00100 SP SP 10100 S °

00101 H (1) 10101 Y 6

00110 N , 10110 F (1)

OO111 M 10111 xX /

01000 LF LF 11000 A -

01001 L) 11001 WwW 2

01010 R 4 11010 J Bell

01011 G (1) 11014 FS FS

01100 I 8 11100 U 7

01101 P 0 11101 Q 1

01111 C 11110 K (
O1111 V = Or; 11111 (3)LS LS

(1) For National Use

(2) Used for Answer Back

(3) Also used for Delete

Fig. 2.11 CCITT #2

CR Carriage Return
SP Space
LF Line Feed
FS Figure Shift
LS Letter Shift

In precedence codes, certain bit patterns, usually those associated
with control meanings, are independent of shift. That is to say, the bit
pattern of a shift-independent character has the same meaning, regardless
of which precedence bit pattern has preceded it in the data stream. In

CCITT #2, the control characters Carriage Return, Space, Line Feed,

Figure Shift, and Letter Shift are shift-independent. There is a human-
factors reason for this. Assume the following:

a) The Space bit pattern operates only in Letter Shift, not in Figure
Shift.

b) An operator is transmitting data using a keyboard.

30 Terms and Concepts

c) The data consists of blocks of numerics, the blocks separated by a
Space.

Each time the operator comes to the end of a numeric block and wishes

to key the Space, he would first have to depress the Letter Shift key, then

the Space key, then the Figure Shift key (to reestablish the Figure Shift

mode for the next block of numerics). In short, to generate the Space

character he would have to have depressed three keys. Similarly, if we had
assumed that the Space bit pattern operated only in Figure Shift (not in
Letter Shift) and if the operator was transmitting text (alphabet blocks,
separated by a Space), he would have to depress three keys in order to
generate the Space character.

In both instances, if the Space key operated in both Letter Shift and

Figure Shift, he would have had to depress only one key, the Space key.

In short, making the Space character shift-independent increases operator

productivity by decreasing the number of key strokes needed. Analysis
shows that the other control characters—Carriage Return, Form Feed,

Letter Shift, and Figure Shift—should be shift-independent for similar
reasons.

If the number of bits in a code byte is x and if the number of

shift-independent characters in a code is Y, then

"number of shift-dependent characters = 2*''-2Y;

«= total number of different characters shift-dependent and

shift-independent = 2**'— Y.

CCITT #2 is a 5-bit shifted code, with 6 shift-independent charac-

ters. The number of shift-dependent characters is 52, and the total

number of different characters is 58. PTTC (Fig. 2.30) is a 6-bit shifted

code and has 17 shift-independent characters. The number of shift-

dependent characters is 84; the total number of different characters is 111.

2.19 BINARY CODED DECIMAL (BCD)

The binary bit patterns for the ten decimal digits, shown in Fig. 2.12
under both the 8421 convention and the binary convention, are called

Binary Coded Decimal bit patterns, with acronym BCD.

2.19.1 BCD for Numerics

For a code to have the characteristic of BCD bit patterns for numerics,

the low-order four bits of the bit patterns for the numerics must be as

shown in Fig. 2.12, and the high-order bits must be the same for all

numerics. Figure 2.13 shows excerpts from two codes, ASCII and EBC-

DIC, with BCD for the numerics.

2.19 Binary Code Decimal (BCD) 31

Binary Coded Decimal bit patterns
Decimal

digits 8421 convention Binary convention

0 0000

1 1 0001

2 2 0010

3 21 0011

4 4 0100

5 4 1 0101

6 42 0110

7 421 0111

8 8 1000

9 8 1 1001
Fig. 2.12 BCD bit patterns

cum) o[+[2{[e«]l«lelel7] |. || Telelel=
Bit. WW 2

Row Pay 000} 001] 010] 011] 100 101 | 140) 191 oo | 01 1o {14

0 |0000 0 P 0

1 |o001 1 A Q A J 1

2 |0010 2 B R B K s 2

3 |0011 3 c 5 Cc L T 3 |

4 |0100 4 D T D M U 4

5 10701 5 E U E N Vv 5

6 {0110 6 F Vv F 0 W 6

7 10111 7 G W G P xX 7

8 j 1000 8 HY] Xx H}| Q]/ ¥ 8

9 11001 9 I Y I R Z 9

10 11010 J Z

ww 140114 K

12 [1100 L

13 +1104 M |

1411110 N |

15 44111 0 .

ASCII . EBCDIC

Fig. 2.13 BCD for numerics and alphabetics

32 Terms and Concepts

2.19.2 BCD for Alphabetics

For some codes, the alphabetics have bit patterns where the low-order

four bits for A to I, for J to R, and for S to Z have BCD bit patterns. In

Fig. 2.13 EBCDIC exhibits this characteristic while ASCII does not.

2.20 SEQUENCES OF BIT PATTERNS

2.20.1 Numerics in Numeric Sequence

The natural sequence of numerics is 0, 1, 2, 3, 4, 5, 6, 7, 8, 9. The binary

bit patterns of the numerics may be in numeric sequence for a code. In

Fig. 2.14, ASCII and EBCDIC exhibit this characteristic, CCITT #2 and

BCDIC do not. (BCDIC almost does, since its numerics are in the

sequence 1, 2, 3, 4, 5, 6, 7, 8, 9, 0.)

coum] eo [1[2]ef | lll telelel-
Br | 11

Pat.
Row 000/001] 010|0114% oo | 01 to | 11 oo | 01 10 | 11 f oo | 01 10] 11

0 |ooo00 0 3 0

1 |ooo1 1 5 1 t

2 |0010 2 2 2

3 |oo11 3 9 3 3

4 |o100 4 4 4

5 |0101 5 6 5 3

6 |o110 6 6 6

7 |o111 7 7 7

8 |1000 8 8 8

9 {1001 9 2 9 9

10 11010 0

4 1041

12 |1100 8 7

13. 11104 0 1

14 f1110

16 [1414

ASCIT CCITT#2 BCDIC EBCDIC
Fig. 2.14 Numerics, numeric sequence, contiguous sequence

2.20 Sequences of Bit Patterns 33

2.20.2 Numerics in Contiguous Sequence

For some codes, the binary bit patterns of the numerics are in contiguous
sequence, that is, the sequence of bit patterns is continuous and uninter-

rupted. In Fig. 2.14, ASCII, BCDIC, and EBCDIC exhibit this charac-

teristic; CCITT #2 does not.

2.20.3 Alphabetics in Alphabetic Sequence

The natural sequence of alphabetics is A, B, C,...,X, Y, Z. For some

codes, the binary bit patterns of the alphabetics are in the same relative
sequence as the alphabetics. Figure 2.15 shows the alphabetics of ASCII,
FIELDATA, BCDIC, and EBCDIC. Figure 2.16 shows that the alphabe-
tics of EBCDIC, although not contiguous in the sequence of bit patterns,
are nevertheless in relative sequence. By contrast, Fig. 2.17 shows that

the alphabetics of BCDIC are not in relative sequence. Figure 2.18 shows
that the alphabetics of ASCII are in relative sequence and in contiguous

sequence. The alphabetics of FIELDATA can be seen from Fig. 2.15 to

be in relative sequence and in contiguous sequence.

cum] «Te lel7.felelel7)e]’1lz]e]el°l«|-=
Bit. "1

Row Pat 100/107] 110/117 $100] 101/110]111 4% 00 | 01 10 | 11 J oo | 01 10 | 14

0 |o000 P K

y foootk aA Q L J A A J

2 joo1o; 8B R M 8 K B B K s

3 jo0TT) ¢ S N T L c c L T

4 10100 D T 0 U M D D M U

5 {0101 E U P Vv N E E N Vv

6 |0110F F Vv A Q W 0 F F 0 W

7 10121 G W B R xX P G G P xX

8 | 1000 H xX Cc 8 Y Q H H Q Y

9)1001 L Y D T Z R I I R Z

10 71010 J Z E U
—

11 1011 K F Vv

12 {1100} x G W

13 |11017 H X

14 11110 N I XY

16 j11117 Oo J Zz

ASCII FIELDATA BCDIC EBCDIC
Fig. 2.15 Contiguous and noncontiguous alphabetics

1100 0000 01 0000 100 0000
0001 A 0001 0001 =A
ooO10 =—-:B 0010 —=—sS 0010 +B
ooll = C 0011. «iT 0011 #C
0100 =D 0100 =U 0100 D
0101. £E 0101 Vv 0101 +E
0110 F 0110 Ww 0110 F

0111 G 0111 xX 0111 G

11001000 «=H 011000 =Y 1001000 4H
1001 =I 1001 Z 1001s
1010 1010 1010 J
1011 1011 1011. Ko
1100 1100 1100 =L
1101 1101 1101 M
1110 1110 1110 N
1111 1111 1111 O

1101 0000 10 0000 1010000 P
0001 J 0001s J 0001 Q4
0010 XK 0010 K 0010 =R
0011. =L 0011 L 0011 =S
0100 M 0100 M 0100 «=T
0101 N 0101 N 0101 U
0110 O 0110 O 0110 V
0111 P 0111 P 0111 WwW

11011000 OQ 101000 Q 1011000 Xx
1001 R 1001 R 1001 =Y
1010 1010 1010 -Z
1011 1011 1011
1100 1100 1100
1101 1101 1101
1110 1110 1110
1111 1111 1111

1110 0000 11 0000 110 0000
0001 0001 A 0001
0010 =§ 0010 +B 0010
0011. «iT 0011 C 0011
0100 U 0100 D 0100
0101 Vv 0101 #-£E 0101
0110 W 0110 =F 0110
0111 =X 0111 G 0111

11101000 Y 111000 H 110 1000
1001 Z 1001 «I 1001
1010 1010 1010
1011 1011 1011
1100 1100 1100
1101 1101 1101
1110 1110 1110
1111 1111 1111

Fig. 2.16 EBCDIC Fig. 2.17. BCDIC Fig. 2.18 ASCII
alphabetics in relative alphabetics not in alphabetics in relative
sequence and in non- _ relative sequence and sequence and in

contiguous sequence —_ in noncontiguous contiguous sequence

sequence

2.21 Signed Numerics 35

2.20.4 Alphabetics in Contiguous Sequence

For some codes, the bit patterns of the alphabetics are in contiguous
sequence. In Fig. 2.15, ASCH and FIELDATA exhibit this characteristic
(ASCII is also shown in Fig. 2.18). BCDIC and EBCDIC do not, as can

be seen in Figs. 2.17 and 2.16.

2.20.5 Alphabetics in Noncontiguous Sequence

For some codes, the bit patterns of the alphabetics are not in contiguous

sequence. In Figs. 2.17 and 2.16, BCDIC and EBCDIC exhibit this

characteristic. ASCII (Fig. 2.18) and FIELDATA (Fig. 2.15) do not.

Note 1. Characteristics described in Sections 2.20.4 and 2.20.5 are, of

course, opposite. A full discussion of the significance of contiguity and

noncontiguity of the alphabetics is given later in this book.

Note 2. Some codes (for example, that of the IBM 7030 (Stretch)

computer) exhibit the characteristic of “interleaved alphabets;” that is,
the upper- and lower-case alphabetics are interleaved. This is discussed
more fully in Chapter 3.

2.21 SIGNED NUMERICS

It is a common practice in punched card applications to punch the

11-punch in the same card column as a numeric to indicate a negative
numeric. Thus 11-0, 11-1,...,11-9 represent —0, —1,..., —9, respec-

tively. It is a recognized though little-used practice to punch the 12-punch

in the same card column as a numeric to indicate a positive numeric. Thus
12-0, 12-1,...., 12-9 represent +0, +1,..., +9, respectively. And, of

course, 0, 1,...,9 punches are used to represent absolute numerics 0,

1,...,9, respectively. This is shown in Sections 1 and 2 of Fig. 2.19.
In the Hollerith card code, the hole patterns 12-0, 12-1, 12-

2,..., 12-9 are assigned to {, A, B,...,1; the hole patterns 11-0, 11-1,

11-2,...,11-9 are assigned to }, J, K,...,R; the hole patterns 0-2, 0-

3,...,0-9 are assigned to S, T,...,Z; and the hole patterns 0, 1,

2,...,9 are assigned to 0, 1, 2,...,9 as shown in Section 1 of Fig. 2.20.

For ASCII and EBCDIC, the graphics { and }, the alphabetics A through

Z, and numerics O through 9 have bit patterns as shown in Sections 2 and 3

of Fig. 2.20.

It is to be noted, therefore, that such over-punched numerics in the
card code have a duality of meaning. For example, the hole pattern 12-1
might mean A, or it might mean +1. There is nothing intrinsic to the hole

pattern itself that determines which meaning is to be applied. The actual

meaning would be determined within the context of a data processing
application.

36 Terms and Concepts

cum) | 1 |) Lele le lel? lele lil
Bit

11

hom Pon 014) 100|101|110,1179 oo | 01 | 10 | 44

o |0000]12~0:11-0) 0 +0 | -0 0 -7 +0) -0 0

1 ;0001712-1/ 11-1) 1 +1] +1 1 1}] +1] -8 +1] -1 1

2 jo010)12~2/11-2| 2 +2 | -2 2) +2 | -9 +2 | 2 2

3 |o0011) 12-3) 11-3) 3 +3) =3 3 | +3 +3 | -3 3

a jo1o0}22-4) 11-4) 4 +4 | -4 4 4 | +4 +4) -4 4

5 (0107912-5/11-5; 5 +5 | -5 5 5 {| +5 +5 4 -5 5

6 |01710712-6/11-6) 6 +6) -6 6 | +6 +6} ~6 6

7 $0111912-7)11-7) 7 +7 «| +7 7 | +7 +7 | -7 7

8 |1000/12~8/11-8] 8 +8 | -8 8 8 | +8 +8 | -8 8

9 |1001/12-9}11-9] 9 +9) -9 9 9 | +9 +9 | -9 9

10 |1010 -1

14 11011 ~2 +0

12 11100 ~3

13, 11701 ~4 -0

1441110 =5

15 [1117 ~6

Hole Equivalent ASCIT EBCDIC

Patterns Signed Signed Signed

Numerics Numerics Numerics

Section 1 Section 2 Section 3 Section 4

Fig. 2.19 Signed numerics

In consequence of the relationship between positive, negative, and

absolute numerics and hole patterns (Sections 1 and 2, Fig. 2.19) and in

consequence of the relationship between hole patterns and ASCII and

EBCDIC bit patterns (Sections 1, 2, and 3, Fig. 2.20), the positive,

negative, and absolute numerics take bit patterns for ASCII and EBC-

DIC as shown in Sections 3 and 4 of Fig. 2.19.

The signed and absolute numerics for EBCDIC (Section 4, Fig. 2.19)

exhibit the following characteristics:

a) For all numerics, signed or absolute, the numerics 0 to 9 have the

low-order four bits as BCD bit patterns.

b) For all positive numerics 0 through 9, the four high-order bits are

the same.

2.21 Signed Numerics 37

HOLLERITH ASCII EBCDIC
HOLE PATTERNS BIT PATTERNS BIT PATTERNS

SECTION 1 SECTION 2 SECTION 3
Fig. 2.20 Alphabetics and numerics

c) For all negative numerics 0 through 9, the four high-order bits are
the same.

d) For all absolute numerics 0 through 9, the four high-order bits are
the same.

Note. In characteristics (b), (c), and (d) above, the actual four high-order
bits are not important. What is important is that for each category—(b),
(c), (d)—the four high-order bits are the same.

It is clear that when the arithmetic circuits of a CPU are built around
the EBCDIC signed and absolute numerics advantage can be taken of
characteristics (a), (b), (c), and (d). It is equally clear, that for ASCII,
arithmetic circuits would have to be more complex, since characteristics
(a), (b), and (c) are not present. A full discussion of this is given later.

38 Terms and Concepts

2.22 SPACE CHARACTER HAS “NO PUNCHES” CARD CODE

It is an established card practice for the Space character to generate a
“no punches,” or “blank column,” card code. This characteristic is essen-

tial in data processing card applications where fields are left blank on
punched cards in the initial keypunching operation—blank fields to be
filled with punched data in subsequent card operations.

The Hollerith Card Code, also called the Twelve-Row Card Code,

and the EBCDIC Card Code (see Chapters 11, 16, and 17) have this

characteristic. The 96-Column Card (see Chapter 27) has this characteris-

tic. During the technical debates in standards committees on binary card
codes and on the Decimal ASCII Card Code (Chapter 16, Decimal

ASCII), there was a technical controversy as to whether the “no punches”’

card hole pattern should be assigned to the Space character or to the Null
character. This controversy was finally resolved with respect to Decimal
ASCII by assigning the “‘no punches” to the Space character, in accord

with de facto practice. It was not resolved for binary card codes, because
the standards committee ceased to study binary card codes.

2.23 DUALS

The practice of mapping more than one graphic meaning to a single bit
pattern or hole pattern is quite common. The different graphics with the
same bit pattern or hole pattern are called duals. Sometimes, more than

two graphics are mapped to a single bit pattern or hole pattern.

The duals of BCDIC are shown in Fig. 2.21.

Graphics | Hole pattern | Bit pattern

@ or’ 8-4 84
or = 8-3 8 21

& or + 12 BA

% or (0-8-4 A84

Hor) 12-8-4 BA84

Fig. 2.21 BCDIC duals

Some European languages require 29 letters, three more than the 26

letters of the English language. The additional three letters, which occur
in both lower- and upper-case alphabetics, are called diacritics. Some
codes, EBCDIC and the ISO 7-Bit Code, for example, accommodate this

aspect by assigning six code positions for alphabetic extenders (or Na-
tional Use graphics, as they are sometimes called). The EBCDIC scheme
is shown in Fig. 2.22, followed by the ISO scheme in Fig. 2.23.

2.23 Duals 39

GRAPHICS

Hex Bit Norway/ Sweden/

position pattern ULS.A. Germany Denmark Finland

7B 0111 1011 # A ns) A
7C 0111 1100 @ O © O
5B 0101 1011 $ U A A

7F 01111111 " a # a
4A 0100 1010 ¢ 6 B 6
5A 0101 1010 ! u a a

Fig. 2.22 EBCDIC alphabetic extender graphics

GRAPHICS

Column Bit Norway/ Sweden/

row pattern U.S.A. Germany Denmark Finland

5/11 101 1011 [A B A
5/12 101 1100 / O O O
5/13 101 1101 | U A A

7/11 111 1011 { a #e a
7/12 111 1100 0 g 6
7/13 111 1101 } u a a

Fig. 2.23 ISO National Use graphics

It is to be noted that the five BCDIC duals (Fig. 2.21) create duals
within a country (U.S.A.), while the alphabetic extender duals create

duals between countries. The former situation can be very troublesome (if
all ten graphics are needed in the same data processing application, for

example), while the latter situation does not cause trouble (for example,

systems problems) as far as is known today. Duals are not good or bad,
per se. Each situation must be examined individually.

There are, theoretically, two kinds of duals.

2.23.1 Many-to-one

Many-to-one refers to different meanings mapped into the same code

position. This is the type described above.

40 Terms and Concepts

2.23.2 One-to-many

One-to-many refers to a single meaning mapped into different code
positions. Generally, this is a situation that will arise not within a code but
rather between two different codes. For example, the 7-Bit Code has two

different control characters, Line Feed and Carriage Return. These two
functions are conbined into one EBCDIC Control Character, New Line.

There is an obvious problem in trying to determine the translation

relationship between these codes with respect to these three characters.

2.24 COLLATING SEQUENCE MATCHES BIT SEQUENCE

The bit sequence of a code is from low (all zero-bits) to high (all one-
bits). Thus for EBCDIC, the bit sequence is 00000000, 00000001,

00000010,...,11111101, 11111110, 11111111. In a code, graphic
meanings are assigned to some of the bit patterns. For reasons outside the

code, there may be an established sequence, from low to high, for these

graphics. Such a sequence is called a collating sequence. The collating

sequence of the graphics may, or may not, match the bit sequence of the

graphics.

In the 64-character, 6-bit BCDIC, for example, the collating se-

quence does not match the bit sequence. Figure 2.9 shows the 64 characters

in bit sequence. Each of the 64 BCDIC characters was assigned a

collating number, from 0, low, to 63, high. The 64-characters of Fig. 2.9

are shown reordered into correct collating sequence in Fig. 2.24, with the

collating numbers shown in each code table position. Figure 2.25 shows

some of the BCDIC characters in column (1). Column (2) shows the

collating number, and column (3) shows the bit patterns from Fig. 2.9.
The sorting or collating operation in a computer involves putting

items in an ordered sequence, the collating sequence. Visualize a sort on

a one-character field. Then, for two items, X1 or X2, the following

question is asked:

Is X1 greater than, equal to, or less than X2?

When this question is answered, the two items X1 and X2 can then be
arranged in correct sequence. Actually, the comparison instruction, which
asks the question above, performs a binary subtraction, X1—X2, and

examines the sign and magnitude of the result.

First a binary subtraction is performed:

X1—-X2=Y.

2.24 Collating Sequence Matches Bit Sequence 41

> Ly ee
Glee

r UI » 1 ar)

a ee,
2
poe, ey,
Le Eel el Te

> lal al
Ste? ee
7 VL 2 sy oO Pe Era

; ES a las] p bea 4 Lal

Sy el >
Ee ey > o>
et ee
ey le]

% us pF LY 7 BY 9 Leal
Fig. 2.24 BCDIC collating numbers

Then, If Y is minus, X1<X2;
or If Y is zero, X1=X2;
or

If Y is positive, X1>X2.

Performing this binary comparison on the bit patterns of column (3) will
not yield the desired result. But if the binary comparison were performed
on the pseudo bit patterns of column (4), the desired result would be

yielded. In short, if the bit patterns of column (3) are converted into the
pseudo bit patterns of column (4) before comparison, the graphics of
BCDIC can be sorted according to the prescribed collating sequence.

In some BCDIC computers, this conversion before comparison was
achieved with a software routine; in other BCDIC computers it was

achieved with a hardware comparator. In one instance there was a

performance penalty, and in the other instance there was additional
hardware cost.

42 Terms and Concepts

1 2 3 4

Collating Bit Pseudo
Graphic | number | pattern bit pattern

Space 0 00 0000 00 0000

$ 7 10 1011 00 0111

* 8 10 1100 00 1000

? 25 11 1010 01 1001

A 26 11 0001 01 1010

B 27 11 0010 01 1011

H 33 11 1000 10 0001

I 34 11 1001 10 0010

J 36 10 0001 10 0100

K 37 10 0010 10 0101

Q 43 10 1000 10 1011
R 44 10 1001 10 1100

S 46 01 0010 10 1110

T 47 01 0011 10 1111

Y 52 01 1000 11 0100

Z 53 01 1001 110101

0 54 00 1010 11 0110

1 55 00 0001 11 0111

2 56 00 0010 11 1000

8 62 00 1000 11 1110

9 63 00 1001 11 1111

Fig. 2.25 BCDIC collating sequence

2.25 Summary of Code Characteristics 43

In developing EBCDIC, a primary design factor was collating se-
quence (see Chapter 8, the Sequence of EBCDIC). The 88 graphics of
EBCDIC were assigned 8-bit bit patterns such that the collating sequence
matched the bit sequence, thus saving software or hardware costs for
customers.

2.25 SUMMARY OF CODE CHARACTERISTICS

Seven codes or representations are given as follows:

Code Figure

ASCII 2.26

An 8-bit representation 2.27

EBCDIC 2.28

BCDIC 2.29

PTTC 2.30

CCITT #2 2.31

FIELDATA 2.32

These are analyzed below as they do, or do not, exhibit the previous

characteristics.

Figure | 2.26 | 2.27 2.28 2.29 2.30 2.31 2.32

Characteristics 8-Bit CCITT | FIEL
1 Code | ASCII | Rep. | EBCDIC|BCDIC | PTTC #2 |DATA

Shifted code - No No No No Yes Yes No

BCD for numerics Yes Yes Yes No No Yes Yes

BCD for alphabetics : No No Yes | Yes Yes No No

Numerics in numeric ;

sequence Yes Yes Yes No No No Yes

Numerics in contiguous
sequence Yes Yes Yes Yes Yes No Yes

Alphabetics in
alphabetic sequence Yes Yes Yes No No No Yes

Alphabetics in

contiguous sequence Yes Yes No No No No Yes

Alphabetics in

noncontiguous sequence] No No Yes Yes Yes Yes No

Signed numerics No No Yes Yes Yes No No

Collating sequence

matches bit sequence Yes Yes Yes No No No Yes

44 Terms and Concepts

b7f 0 0 1
b6 0 0 1 1 1
b5

Co! |
0 1 2 3 7

b4b3b2b1 | Row

NUL DLE SP 0 Pp
0000 0

SOH DC1 ! 1 q
0001 1

STX pe2 " 2 xr
0010 2

ETX DC3 ff 3 8
0011 3

EOT DC4 $ 4 t
0100 4

ENQ NAK % 5 u
0101 5

ACK SYN & 6 v
0110 6

BEL ETB ' 7 w
0111 7

BS CAN ¢ 8 x
1000 8

HT EM) 9 y
1001 9

LF SUB * : z
10101 10

VT ESC + 3 {
1077] 11

FF FS > < {
1100] 12

CR GS - = }
171014] 13

11
so RS . > ~

11101] 14

SI us / 2 DEL
1144 | 15

0-1

Fig. 2.26 ASCII

2.25 Summary of Code Characteristics 45

_ Column of 1] 2] 3 | s|e6| 7 e | 9 | wo [ou 2 | 13 | 14 | 5

00 01 10 711 00 01 10 11 00 01 10 11 00 01 10 11
Row

o {0000} NUL | DLE| SP 0 @ P * Pp

1 |0001] soH| pc1| ! 1}al{lQqQqiatld

2 |0010) sTx} pc2} " 2 B R b r

3 |0011f ETX| Dc3| # 3 Cc Ss c s

4 {0100] for] DCc4 $ 4 D T d t

5 |0101] ENQ| NAK ae

wn

ca
}

a
) c

6 |0110f ACK| SYN & 6 F Vv £ Vv

7 |0111] BEL| ETB ' 7 G. W g w

8 |1000f BS CAN (8 H xX h x

9 1001] AT EM) 9 I Y L y

10 {10107 LF | SUB] * : J Z 3 Zz

a of{to1f yr | Esc] + 3 K C k {

12 11100] FF | FS > < L \ 1 {

 13 1117017 CR | GS - = M] m }

14 11110] so | RS . > N Q) n ~ 41 EC

15 41171717 ST US / 2 0 _ ° DEL | BC EO

@ May be "I"

@ May be """

Fig. 2.27 An 8-bit representation

46 Terms and Concepts

Column 0 1 2

oo

00 01 10

Hots

Pat.
Hole Patterns:

[1] 9-12-0-8-1 11 [13] 0-1

[2] 9-12~11-8-1 12-11-0 9-11-0-1 Block | Hole Patterns at:

[3] 9-11-0-8-1 12-0 12-11 L 3 1 | Top and Left

[4] 9-12-11-0-8-1 11-0 2 | Bottom and Left

[6] No Pch [11] 0-8-2 2 4 3 | Top and Right

[e] 12 {r2] 0 4 | Bottom and Right
Fig. 2.28 EBCDIC

2.25 Summary of Code Characteristics 47

Pattern A B BA

Hole
Pattern—> 0 11 12

SP 6 Ly - & or +

1 1 1 / J A

2 2 2 s K B

21 3 3 T L Cc

4 4 4 U M D

4 1 5 5 Vv N E

42 6 6 W 0 F

421 7 7 x P G

8 8 8 Y Q H

8 1 9 9 Z R I

8 2 0 0 + 4 ! 2

8 21 8-3 # or = > $

84 | B-4 @or ' % or (* Yor)

84 1 8-5 : v J C

842 8-6 > \ 3 <

8421 8-7 Y A $
Hole Patterns:

[7] 8~2
[2] 0-8-2

Fig. 2.29 BCDIC

48 Terms and Concepts

Lower Case Upper Case

Bit A B BA A B BA
Pattern

Hole

Pattern —> 0 11 12 11-0 12-11 120
y

1 hy 18 (21)
SP @ - & SP = _ ee

bd hs]
1 i 1 / 4 a = ? J A

2 2 2 s k b nts K B

24 3 3 t 1 c ; tt L C

4 4 4 u m d : Ls U M D

7
4 1 5 5 v n e % Vv N E

8
42 6 6 Ww ° f ' W 0 F

3
421 7 7 x P g " X P G

10
8 8 8 y q h * bo Y Q H

ey
8 1 9 9 z r i (ba Zz R I

2 12 16 193 22

8 2 0 0 »; A. >) wy, Bs y bey 122]

13 17 20 23

8 21 8-3 # ’ $ + by ; by \ ol : Be

84 4 PN BYP RES PF PN BYP RES PF

84 1 5 RS LF NL HT RS LF NL HT

842 6 uc EOB BS LC uC EOB BS LC

8421 9 EOT PRE TL DEL EOT PRE IL DEL

Hote» 9 9-0 9-11 9-12 9 9-0 9~11 9-12
Pattern

Hale Patterns:

8-4 8-5 {15} 12-8-2 [22] 8-7

(2) 0-8-2 [2] 8-1 12-8-7 [23] 12-8-1 Block | Hote Patterns at:

[3] 8-6 11-8-4 0-8-1

(4] 12-8-4 [i] 12-8-5 0-8-6

[5s] 11-8-6 fiz] 11-8-5 0-8-5

[6] 8-2 [13] 0~8-7 11-8-2

0-8-4 11-8-7 [21] 12-8-6

Fig. 2.30 PTTC

3 1 Top And Left

Bottom and Left

4 Top and Left
 F

l
w
i
n

 Bottom and Left

2.25 Summary of Code Characteristics 49

Bit Letter Figure Bit Letter Figure

pattern case case pattern case case

00000 Not used Not used 10000 E 3

00001 T 5 10001 Z + or”

00010 CR CR 10010 D (2)

00011 0 9 10011 B ?

00100 SP SP 10100 S ’

00101 H (1) 10101 Y 6

00110 N 10110 F (1)
00111 M 10111 x /

01000 LF LF 11000 A -
01001 L) 11001 WwW 2

01010 R 4 11010 J Bell

01011 G (1) 11011 FS FS

01100 I 8 11100 U 7

01101 P 0 11101 Q 1

01110 Cc : 11110 K (

01111 Vv = or; 11111 (3) LS LS

(1) For National Use
(1) Used for Answer Back
(3) Also used for Delete

Fig. 2.31 CCITT #2

CR Carriage Return
SP Space
LF Line Feed
FS Figure Shift
LS Letter Shift

50 Terms and Concepts

Column 0 1 2 3 4 5 6 7

Bit b7/0 0 0 0 1 1 1 1
Pattern b6 0 i) 1 1 0 0 1 1

b5 0 1 0 1 0 1 0 1

Row b4 b3 b2 bi

0 0000 K) 0

1 0001 L - 1

2 0010 M + 2

3 0011 N < 3

4 0100 0 = 4

5 0101 P > 5

6 0110 Q 6

7 0111 B R $ 7
2 CONTROL e

=) (NOT DEFINED) |
8 1000 a pe Cc Ss * 8

9 1001 ee oS D T (9

10 1o180 See E U " '

TF 1011 hee | oF Vv : 3

12 1100 G W ? /

13 1101 H xX !

14 1110 I Y : SPEC

15 1117 J Z STOP | IDLE

Fig. 2.32 FIELDATA

2.26 COMPATABILITY

Compatability between two different codes is not a single, simple aspect.

It is a number of aspects:

= Structural Similarity. The code table is a compact way to exhibit the
relationship between the graphic and control meanings and the

associated bit patterns or hole patterns of a coded character set. As

2.27 Graphics for Controls 51

can be seen in Figs. 2.28 and 2.29, the 26 alphabetics of EBCDIC and
BCDIC are positioned similarly in three contiguous columns of the

code tables (although not in the same order of columns). From this
columnar positioning is revealed the fact that the low-order four bits
of alphabetics are the same in both codes. Equally significant, the
noncontiguous alphabetics are noncontiguous in precisely the same

way in both codes. Further, the specials in both codes are positioned

(mostly) in a 5 by 4 block of the code table. These two codes are said
to be structurally similar. By contrast, the alphabetics of ASCII (Fig.

2.26) are positioned in 26 contiguous bit-pattern positions in two

columns. EBCDIC and the 7-Bit Code are said to be structurally

dissimilar.

® Collating Sequence. The collating sequence of the two codes should
match. If the codes are of different size, the collating sequence of the
smaller code should be embedded in the collating sequence of the
larger code (see Chapter 8, The Sequence of EBCDIC, for a full
discussion of this embedment). .

=" Functional Equivalence. The codes should be functionally equiva-

lent; that is, they should have the same set of control and graphic

meanings, although not necessarily with the same set of bit patterns.
A smaller code is said to be functionally equivalent upward to a

larger code if the smaller code’s set of graphics and control] meanings

is contained in the set of the larger code. EBCDIC and the Hollerith
Card Code are functionally equivalent. ASCII is functionally equiva-

lent upward to EBCDIC.

" Translation Relationship. Translation relationships between two
codes should be as simple as possible. The translation simplicity is
directly related to the structural similarity.

In debates on code compatibility, it often happens that one debater

views two codes as incompatible because not all of the four aspects above
are present, while the other debater views the two codes as compatible

because at least one of the aspects above is present. Certainly, two codes

are compatible if all four aspects are present, incompatible if none of the
four are present. For codes where some aspects are present and others are

not, to determine and agree on which are present and which are not is prefer-

able to arguing about the then indeterminate question of ‘‘compatibility.”’

2.27. GRAPHICS FOR CONTROLS
In some codes, graphic representations are assigned to the control charac-

ters. The virtue of this is that when data are listed, particularly in debug-

ging operations, control as well as graphic characters are visible.

52 Terms and Concepts

In BCDIC for example, graphic representations are assigned to seven
control characters:

Substitute Blank

Mode Change

Word Separator

Record Mark

Group Mark

Segment Mark

Tape Mark

Graphic representations have been developed for the 32 control charac-
ters, for the Space character, and the Delete character of ASCII.

In Text/360, an IBM programming product for the application of
text processing, graphic representations have been assigned to the six
control operations (see Chapter 26, Code Extension):

*

<
+

+
+
e
2
e
p
s

Single capitilization

@ Continued capitalization

$ Underscoring

— Editing

+ Altering

/ Graphic set extension

2.28 COLLAPSE LOGIC

Consider a 256-character, 8-bit code feeding into a 64-character printer.
The 64 printing positions of the printing element may be considered to be
associated with 64 different 6-bit bit patterns. The hardware logic of the
printer will strip off the two high-order bits of 8-bit bit patterns, leaving
6-bit bit patterns. For each different 6-bit bit pattern, there will have
been four different 8-bit bit patterns.

Consider Fig. 2.33. The four bit patterns X1, X2, X3, X4 have bit

patterns 0010 1010, 0110 1010, 1010 1010, 1110 1010. If the two high-
order bits of these 8-bit bit patterns are stripped off, for each of them the

same 6-bit bit pattern 101010 will result. Each of these four 8-bit bit
patterns then would collapse to the same 6-bit bit pattern; that is, each
would go to the same printing position of the printing element. Advan-
tage is taken of the collapse aspect of coded character sets in the design of
printing sets.*

*Collapse logic varies among printer control units. The examples given here are
illustrative only, and do not necessarily reflect any actual printer control unit.

2.28 Collapse Logic 53

Bits 0,1 00 01 10 11

2,3

00 01 | 10111 {00 01] 10111] 0001] 10] 11}; 0001) 10} 11

4567 | 01); 2] 3] 4 5] 6] 7} 8 9| A} B} CD F

0 |} 0000

1

2

3
4

5

6

7

8

9

A | 1010 Xi X2 X3 x4

B

C

D

E

F 1111.

Fig. 2.33 Collapse logic

In EBCDIC, the bit patterns of the small letters a, b, c,...,z differ

from the bit patterns of the corresponding capital letters only in the two

high-order bits. On a 64-character printer, therefore, regardless of
whether the bit patterns of the small letters or the bit patterns of the

capital letters are fed into the hardware logic of the printer control unit,
the same alphabetic printing positions on the printing element are
reached without any change in logic.

Collapse logic is used. in the printing of alphabets other than Latin
alphabets. Consider, for example, Fig. 2.34 that shows the assignment in

the EBCDIC code table of 31 Cyrillic alphabetics, 10 numerics, and the
following 7 specials:

+ SX

cum] oe [+te[e[«le*le|7].e°[*l«lelelelels
Bit 00 01 10 14

Pat.
Row oo | o1 | 10 | 14 | oo | 01 10 | 11 | 00 | 01 10 | 11 | oo | o7 | 10] 11

0 |o000 SP - H 0

1 |0001 / A q 1

2 |0010 5 M ob 2

3 |0011 B H Xx 3

4 |0100 c 0 u 4

5 |0101 A n 4 5

6 |0110 P Ww 6

7 fori HK C UW 7

8 11000 3 T bl 8

9 11001 u ¥ b 9

A |1010

B |1011 n , 0]

© |1700 * Y 3 A

D {1101

E |1110 +

Fo f14141

Fig. 2.34 Collapse logic, Cyrillic-48

cum) ofl atelelelele]7)*lelal[elel°l«]-*
Bit oo 01 10 11

Row Pat oo | 01 | 10] 11 | OO} 01 10 | 17 | oo | o1 10 | 11 | oo | o1 | 10] 11

0 |0000 SP & - 0

1 {0001 / A J 1

2 |0010 B K s 2

3 |0011 Cc L T 3

4 |0100 D M U 4

5 {0101 E N Vv 5

6 |0110 F oO W 6

7 $0111 G P x 7

8 |1000 H Q Y 8

9 |1001 I R Z 9

A]1010

B |1011 Hn > #

c |1 00 < * % @

D |1101

E |1110 +

Fo111114

Fig. 2.35 Collapse logic, Latin-48

2.28 Collapse Logic 55

Consider also Fig. 2.35 which exhibits a 48-character printing set consist-
ing of 26 Latin alphabetics, 10 numerics, and the following 12 specials:*

+ & — / .

< * % @ 3 #

An examination of Figs. 2.34 and 2.35 will show the collapse logic for the

48 printing positions of a 48-character printer as shown in Fig. 2.36.
With the same printer control unit, the collapse logic will automati-

cally provide for a 48-graphic Cyrillic set, or a 48-graphic Latin set,
depending on which printing element is mounted by the user.

Cyrillic, 48 graphics Latin, 48 graphics

Fig. 2.34 Fig. 2.35

Hex Hex

position Graphic position Graphic

FO to F9 |10 numerics | FO to F9 {10 numerics

81 to 89 26 Cyrillic | Cl to C9 | 26 Latin

91 to 99 | alphabetics | D1 to D9 |alphabetics

A2 to AY E2 to E9

5 Cyrillic 5 specials

8C alphabetics | 4C <
90 50 &
AC 6C %
BB 7B #
CB 7C @

7 specials 7 specials

4B ’ 4B .
4E + 4E +
5B xX 5B »
5C * 5C *
60 - 60 —
61 / 61 /
6B , 6B ,

TOTAL 48 graphics | 48 graphics
Fig. 2.36 Cyrillic/Latin collapse

*The special symbol XY, shown both above and in hex position 5B of Figs. 2.34
and 2.35, is the international “Currency Symbol.”

56 Terms and Concepts

2.29 BOOLEAN EQUATIONS

In some of the cases that are given in this book, the question of the
simplicity or complexity of translation relationships from one code to
another, or from one representation to another, comes up. Generally, the

question is not of absolute simplicity or complexity but of comparative

simplicity or complexity. Hardware translation is accomplished by logic

circuits. The complete analysis of such circuits and the calculation of
hardware costs, estimated or actual, is beyond the scope of this book.

However, by making three simplifying assumptions, a reasonably simple

procedure can be used that is sufficiently accurate to answer the following

question:

Given two sets of translation relationships, which set would be more
complex to implement in circuitry?

Assumption 1. The circuit complexity is equal to implement each of four

Boolean operators (to be explained below), AND, Inclusive OR, Exclu-

sive OR, and IDENTITY.

Assumption 2. The circuitry that generates a bit also generates the
inverse of the bit with no additional complexity.

Assumption 3. Given two sets of Boolean equations representing two

sets of translation relationships, the relative circuit complexity of imple-
menting the relationships is proportional to the number of Boolean
operators in the equations.

Example 13

Set 1: Y1I=A&Y one operator, & (to be explained below).

Set2: Y2=(A&Y)|Z two operators, &, | (to be explained below).

Set 2 is more complex than Set 1.

Absolute costs are not determined but relative complexities are; this
information is sufficient for making a decision between two sets. The
procedure, then, is to derive the Boolean equations, and then count the
operators.

There are different notations and conventions used in Boolean
Algebra. Some examples are shown below:

S=AB+CD

S=A-B+C:D

S =(A&B)|("C&D)

S=(A”AB)v(CD)

2.29 Boolean Equations 57

The binary, or two-state, nature of many mechanisms found in computing

systems was noted at the beginning of this chapter. For such two-state
situations, we might say we have A or we do not have A. Alternatively,

we might say we have A or the inverse of A. In Boolean logic, we would
say we have “A,” or we have “not A.’ A convention for representing

these two possible states is A and A; that is, A represents “not A,” or
“the inverse of A” or ‘‘the negation of A,” etc. If we consider A as a

binary variable, it can have two values, 0 or 1. By convention, when the

variable A has the value of 1, we will represent it by A, and when it has

the value of 0, we will represent it by A.

Example 14

We may represent the three bit positions of a 3-bit register by the
Boolean variables A, B, and C. Then the 8 possible states of the 3-bit

register can be represented as follows:

State Representation

000 A BC
001 A BC
010 A BC
O11 A BC

100 A BC
101 A BC
110 A BC
111 A BC

Example 15

Another convention is to represent a variable when its value is 1 by the

presence of the variable and when its value is 0 by the absence of the

variable. This convention is used in a notation based on the decimal

equivalents of the powers of 2:

2°=1
2'=2
27=4
2°=8

The bit positions of a 4-bit register are represented, from high-order bit

position to low-order bit position, by the variables 8, 4, 2, 1. Under the

58 Terms and Concepts

convention of Example 14, 1001 would have been represented as 8 4 21,

but under the presence/absence convention, 1001 is represented simply as

8 1. Under this convention, the 16 states of a 4-bit register are rep-

resented as shown below:

State Representation

0000 No bits

0001 1

0010 2

0011 21

0100 4

0101 41

0110 42

0111 421

1000 8

1001 8 1

1010 8 2

1011 8 21

1100 8 4

1101 841

1110 8 4 2

1111 8421

Example 16

The 8 states of a 3-bit register, Example 14 under the presence/absence

convention, would be represented as shown below:

State Representation

000 No bits

001 C
101 B
011 BC

100 A
101 AC
110 AB
111 ABC

?.29 Boolean Equations 59

Comment. The convention of Example 14 yields a uniform’ notation,
while the convention of Examples 15 and 16 yields a compact notation.

In this book, Boolean equations are used to represent translation
relationships. Five Boolean operators (frequently called logical operators)
and their representative symbols are shown below:

Operator Symbol

AND

Inclusive OR

Exclusive OR

IDENTITY

NOT V
R
E

N
E

ll
¢
<
 >

In order to define these operators, we consider two binary input variables,

A and B, and one binary output variable, Y, as illustrated below. There

are two kinds of operators: (1) dyadic operators; that is, operating on two
terms or expressions (parts (1-4) above), and (2) monadic operators; that
is, operating on one term or expression (part (5) above).

A=——<—P) Dyadi ,
operator Y Be p

Monadic -

A ’ operator >y
There are two possible states for one variable and four possible states

for two variables taken together:

Variable State

A 1
A 0

AB. 00
AB 01
AB . 10

AB 11

60 Terms and Concepts

The operators are defined in the following table:

NOT | AND | Inclusive OR | Exclusive OR | IDENTITY

A|BIA!Bl|AAB AvB AvB A=B

Oo|o!l1]1 0 0 0 1
Oo; 1/110 0 1 1 0

1/0/10] 1 0 1 1 0
1; 1;0]{0 1 1 0 1

Conceptually, we say

a) AND means both A and B are 1.

b) Inclusive OR means either A or B is 1, including the case when both
are 1.

c) Exclusive OR means either A or B is 1, excluding the case when
both are 1.

d) IDENTITY means A and B are identical; that is, both are 0, or both
are 1.

3
Early Codes

During the early days of data processing and telecommunications, a
number of codes were in use or proposed for use:

a) CCITT #2, a 58-character, shifted 6-bit code, used nationally and

internationally on telegraph lines.

b) FIELDATA [3.1, 3.2, 3.3]: a 7-bit code developed by the United

States Army for military communications systems.

c) BCDIC [3.4]: a 48-character, 12-row code (initially unnamed) used

on computing systems. This code was eventually expanded to be a
64-character, 6-bit code and 12-row card code.

d) The Stretch code: a 120-character, 8-bit code used on the Stretch

computer (the IBM 7030) [3.5, 3.6].

e) IPC, Information Processing Code [3.7]: a 128-character, 8-bit code

developed by the United States Air Force proposed to be used for
information processing and information interchange.

f) A 64-character, 6-bit code proposed by H. S. Bright in 1959 [3.8].

g) A 256-character card code proposed by R. W. Bemer in 1959 [3.9].

h) 4-out-of-8 code: a 70-character, 8-bit data transmission code.

These early codes manifested some of the characteristics of coded charac-

ter sets described in Chapter 2. Some of these characteristics would be
carried forward and incorporated into modern codes. It should not be

supposed that these early codes have disappeared from the data proces-
sing scene. Products and systems implementing these codes (with the

61

62 Early Codes

exception of IPC) are still in common use. Figure 3.1 shows the codes and
their characteristics.

CCITT
#2

Fiel-

data BCDIC Stretch IPC

Bright

Proposal

Bemer .

Proposal

4-out-

of-8

Shifted code yes

BCD for

numerics yes yes yes yes yes yes

Numerics in

numeric

sequence yes yes yes yes

Numerics in

contiguous

sequence yes yes yes yes

Signed

numerics yes yes

BCD for

alphabetics yes yes yes yes

Alphabetics in

alphabetic

sequence yes yes yes yes yes

Alphabetics in

contiguous

sequence yes yes yes

Alphabetics in

noncontiguous

sequence yes yes yes yes yes

Alphabetics in

interleaved

sequence yes yes

Space equals

no punches yes yes yes

Collapse logic yes yes yes

Fig. 3.1 Characteristics of early codes

3.1 CCITT #2

CCITT #2 was, and is, a 58-character, shifted 6-bit code, standardized as

an international telegraph code in 1931 by the Comité Consultatif Inter-
national Telegraphique et Telephonique (see Fig. 3.2).

3.1 CCITT #2 63

Bit Letter Figure Bit | Letter Figure
pattern case case pattern ~ case case

00000 Not used Not used 10000 E 3
00001 T 5 10001 Z + or”

00010 Cr Cr 10010 D (2)
00011 O 9 10011 ~B- ?

00100 SP. SP 10100 S '
00101 H (1) 10101 Y 6

00110 N , 10110 F (1)
00111 M . 10111 x /

01000 LF LF 11000 A _
01001 L) 11001 WwW 2

01010 R 4 11010 J Bell
01011 G (1) 11011 FS FS

01100 I 8 11100 U 7
01101 P O 11101 Q 1

01110 C 11110 K (
01111 Vv =Or; 11111 (3) LS LS

(1) For National Use CR Carriage Return
(2) Used for Answer Back
(3) Also used for Delete

Fig. 3.2 CCITT #2

SP Space
LF Line Feed

FS Figure Shift
LS Letter Shift

Figure 3.1 reveals that CCITT #2 manifests few of the characteris-

tics of the other codes, characteristics deemed desirable for data proces-

sing codes. The numerics are not BCD, nor contiguous, nor in numeric

sequence; the alphabetics are not in alphabetic sequence, and so on. But

it should be realized that CCITT #2 was developed as a telegraph code,

and characteristics desirable for a data processing code have little impor-

tance for a telegraph code.

CCITT #2 did manifest a characteristic that is quite necessary for
data processing codes and for telecommunication codes. Three code

positions were reserved for “national use.” This recognizes a characteris-

64 Early Codes

tic of certain European languages (German, Danish, Swedish, Finnish,

Norwegian, for example) which is that such languages have three letters
in addition to the 26 alphabetics of English-speaking languages (see Table
3.1). Such letters are called diacritical letters, or diacritics.

TABLE 3.1 Diacritical Letters

German AOU

Danish/Norwegian £@ A
Swedish/Finnish AOU

Clearly, telegraph devices operating within national boundaries of

countries whose languages require 29 alphabetics would have to have the

capability of sending and receiving all 29 letters. The telegraph code,
then, must have code positions available for 29 letters and CCITT #2

does.
In English-speaking countries, such code positions could be used to

represent other symbols. In the U.S.A., on Western Union telegraph

devices, for example, the symbols # $ and & were provided in these three

code positions.

3.2 FIELDATA

FIELDATA was a 7-bit plus parity code developed by the United States
Army for use on military data communications lines. It became a U.S.

Military Standard in 1960 (see Fig. 3.3).
It is to be noted that although there are 128 code positions in the

7-bit code, only 64 were defined, consisting of 9 control functions and 55

graphic characters. The controls are of the kind required by rather simple,

typewriter-like devices—Space, Upper Case, Lower Case, Line Feed, Car-

riage Return, and so on. The 64 undefined code positions were intended to

be assigned to the more complex kinds of functions necessary for inter-
connection and control of data transmission networks.

As it turned out, three different communications systems were de-
veloped implementing FIELDATA, and each of these three systems used

different control functions in the “not defined’? portion of the code
table—different in the sense of technical definition and different in the

sense of the number of control functions. It was found that because of

these different control functions interconnection of these three communi-

cation systems, and intercommunication between them, was difficult or

impossible.

3.2 FIELDATA 65

Column 3 4 5 6 7

Bit b7 0 1 1 1 1

Pattern b6 1 0 0 1 1

b5 0 1 0 0 1

Row b4 b3 b2 b1

0 0000 K) 0

1 0001 L _ 1

2 0010 M + 2

3 0011 N < 3

4 0100 0 =a 4

5 0101 P > 5

6 0110 Q 6

7 o111 R 5 7

8 16.00 s * 8

9 1001 tr (9

10 1010 U " t

1 1011 Vv : ;

12 1100 W 2 /

13 1101 x \ .

14 1110 Y ; SPEC

15 1111 Zz STOP | IDLE

MS - Master Space SP =~ Space

UC - Upper Case STOP - Stop

LC - Lower Case SPEC - Special

LF - Line Feed IDLE - Idle

CR ~ Carriage Return

Fig. 3.3 FIELDATA

A valuable lesson was learned here. For various reasons, it may be

desirable not to complete the assignment of meanings to all code posi-

tions of a code table initially. For example, the American National
Standard Code for Information Interchange (ASCII), when first standar-

66 Early Codes

dized in 1963, left some 28 code positions without assigned meanings.
And when the extended BCD Interchange Code (EBCDIC) was adopted
as an internal standard by IBM in 1964, of the 256 available code
positions, only 108 code positions had assigned meanings. Indeed, at this
time (almost a decade later) there are still many code positions in

EBCDIC with unassigned meanings. However, in the administration of
these standards, ASCII and EBCDIC, implementors were advised to
provide implementations which did not assign meanings to those code
positions without already assigned meaning. These code positions were

reserved for future standardization. For FIELDATA, implementors pro-

vided implementations with their own local meanings for those code
positions not initially assigned. The result was inter-implementation con-
fusion. The disciplined administration of ASCII and EBCDIC prevented
such confusion. This point of administrative discipline will be discussed
below with IPC, Information Processing Code.

3.3 BCDIC

With modern codes, such as ASCII and EBCDIC, it is common practice

to provide implementations which use not the full repertoires of the codes

but subsets, subsetted by graphics, or by controls, or by both. By contrast,
the code that came to be called the BCD Interchange Code (BCDIC)

evolved from a smaller repertoire to a code with a complete repertoire.

(The evolution of BCDIC is described in detail in the next two chapters.)

The punched card code devised by Dr. Herman Hollerith at the end
of the nineteenth century was a 12-character code consisting of the 10
numerics, 0 through 9, and two control characters in what are now the

12-row and the 11-row of the card. In the statistical applications of the
United States Census—for which Dr. Hollerith devised the punched
card—these control punches served many purposes. When punched cards
came to be used in accounting applications, the 11-punch came to be used
to represent a credit balance (mathematicians would call it a negative
number).

Somewhere around 1932, the punched card code was expanded to

include 26 alphabetics and three special symbols—minus sign, asterisk,
and ampersand. The minus sign had replaced the credit symbol, asterisk
was used for check protection, and ampersand was used in name-and-

address applications (Mr. & Mrs. J. L. Smith, for example). The punched
card code for these 39 graphics and space is shown in Fig. 3.4.

During the 1950s, the advent of computers such as the IBM 702,

705, and 1401 saw the expansion of BCDIC into 47 graphics, and also

the development of a 6-bit code to represent these graphics. With one

3.4 The Stretch Code 67

Patern ed

Hole :

Pattern—> 0 Wo . 12

‘

SP - &

1 i J A

2 2 s K B

3 3 T L Cc

4 4 U M D

5 5 Vv N E

6 6 W 0 F

7 7 x P G

8 8 Y Q H

9 9 z R T

0 0

8-4 *

Fig. 3.4 BCDIC, 40-character card code

exception, the 11 special symbols served an obvious purpose in one or
another commercial application:

'$,#%-&*/ x

The exception was the special symbol, 1. (lozenge). Because the lozenge
appeared on printer chains, it was put to various uses; for example, to

indicate, in the margin of a tabulation, final totals as contrasted to

subtotals.

The 48-character BCDIC is shown in Fig. 3.5.

3.4 THE STRETCH CODE

In 1961, the IBM 7030 was delivered to the Los Alamos Scientific

Laboratory. This computer was developed under “‘Project Stretch,” and

this name was popularly used to describe this computer.

68 Early Codes

Bit
Pattern A 8 BA

Hole

Pattern—¥ 0 41 12

¥

SP - &

1 1 1 / J A

2 2 2 8 K B

21 3 3 T L Cc

4 4 4 U M D

44 5 5 Vv N E

42 6 6 W 0 F

421 7 7 x P G

8 1 9 9 z R I

8 2 0 0

8 21 8-3 # , $

84 8-4 @ x * ty

Fig. 3.5 BCDIC, 48-character code

There were many technological innovations in Stretch. Architectur-
ally, its main innovation was that it had an 8-bit architecture, as con-
trasted with the 6-bit, or 6-bit oriented, architectures of other computers

of the time. With an 8-bit architecture, a 256-character code is possible.
In fact, the designers of Stretch chose to provide a 120-character set that,
apart from its size (most computer character sets of that day were

48-character sets), had some interesting innovations.
The codes for contemporary computers of that time had evolved

from earlier beginnings and compatibility was the primary design criter-

ion. The designers of the Stretch code, E. G. Law, H. J. Smith, Jr., F. A.

Williams, W. Buchholz, and R. W. Bemer, did not perceive compatibility
with contemporary codes to be a primary criterion. Instead, they them-

selves set some criteria that they felt were reasonable for a code. The

criteria were in regard to the size and structure of the set. The criteria are
first stated, and then some of them are discussed.

3.4 The Stretch Code 69

3.4.1 Size

Criterion 1. The set should contain the contemporary 48-graphic set

ound on IBM computers:

 =Space

! 26 alphabetics (upper case)

8 10 numerics

© 11specias .°’ &%(-/,$#u

Criterion 2. The set should contain the following graphics:

26 lower case alphabetics

= The more important punctuation symbols found on_ office

typewriters yb hb

® Enough mathematical and logical symbols to satisfy the needs of such
programming languages as ALGOL. (The total ALGOL set was well

over 100 symbols.)

3.4.2 Structure

Criterion 3. Certain subsets, such as the contemporary 48-character set
tor high-speed chain printer printing and an 88-graphic set for a typewri-
ter, should be simply derivable.

Criterion 4. The graphics should be blocked contiguously by function;
viz., the specials should be in a contiguous block, the alphabetics should
be in a contiguous block, the numerics should be in a contiguous block,
and so on.

Criterion 5. The binary sequence of the bit patterns representing the

graphics should match whatever collating sequence was prescribed for the
graphics.

Criterion 6. The 48 graphics of contemporary IBM computer codes
should have, in the Stretch code, the same collating sequence, or should
be embedded in the same relative collating sequence, as the contempor-

ary collating sequence, namely, Space, then the specials. H& $* —/,

% # @then the alphabetics, then the numerics.

Criterion 7, The upper and lower case alphabetics should be inter-

leaved.

Criterion 8. There should be unique bit patterns for each unique

graphic; that is, duals would not be permitted.

70 Early Codes

As well as these criteria, there was a constraint on the size of the set. The

theoretical constraint was a maximum of 256 characters, since the byte
size of Stretch was to be 8 bits. But there was a more pragmatic constraint
due to the printer to be used with Stretch, the chain printer. The chain
printer, due to its design geometry, had 240 printing positions; so this was
clearly the maximum possible set size. However, as a practical considera-
tion, the larger the set size, the lower is the printing speed of the chain
printer. The actual choice was 120 charaeters. This was a matter of
judgment; it was decided that this increment over existing sets would be
sufficiently large to justify a departure from contemporary codes and
would not include many characters of only marginal value. Also, the set

size of 120, in terms of the 240 printing positions of the chain printer,
meant that each symbol could appear twice on the chain, yielding a not
unreasonable printing speed.

The actual character set and the coded representation is shown in
Fig. 3.6. It is evident from inspection of the code that not all criteria were
met. In fact, the criteria were somewhat mutually conflicting, and some

trade-offs were necessary.

Column 0 | 1 | 2 | 3 4 [5 | e | 7 8 | 9 | A | B c | D | E F

00 01 10 11 oo o1 10 17 00 01 10 11 00 01 10 71
Row

0 |o000] sp [& c k 8 0 8

1 0001 > + Cc K s 0 8 4

2 ;o010} + 7 $ d 1 t 1 9

3 [0011 z ° a D L T 1 9

4 [01007 a + * e ma u 2

BS joint f = (E M U 2

6 jo110] + 7 / f n v 3 -

7? |o1aad } v) F N Vv 3 2

8 |1000f y % ; g ° Ww 4

© j1001) y \ ; G 0 W 4

A ji010} + | © ' h Pp x 5

a |to17] Il I " H P x 5

c |11007 5 # a i qd y 6

D j17101 > ! A I Q Y 6

E]19707 © @ b 5 r Zz 7

Fojatip og | ~ Bi rc} R/| zl] 7

Fig. 3.6 Stretch, 120-character set

3.4 The Stretch Code 71

Comment on Criterion 6

The contemporary collating sequence for the 47 graphics provided on
contemporary computers was not achieved. In order to provide an
89-graphic subset and a 49-graphic subset derivable by simple logic
(Criterion 3), the specials had to be positioned somewhat arbitrarily

(see Figs. 3.7 and 3.8), and this was deemed more advisable than the

collating-sequence criterion. Nine of the contemporary specials did col-
late low to alphabetics and numerics, although even these were not,
within themselves, in the contemporary collating sequence. It was felt that
the new sequence would be quite usable and that it would be necessary
only rarely to resort a file in the transition to the Stretch code. And it is
always possible to translate codes to obtain any desired sequence.

Comment on Criterion 3.

As can be seen in Figs. 3.7 and 3.8, both the 49-graphic subset and
89-graphic subset were simply derivable from the 120-graphic code.

Column of af 2] 3 a{s|s6 [7 e[oef[ale c | ole | fF

Bit 00 91 10 11

Pat. "|
00 01 10 11 oo | 01 10 11 00 | 01 10 11 oo | 01 10 11

Row

0 |o000] SP & 0 8

1 {0001 Cc K S

2 |oote $ 1 9

| 3 }0011 D L T
b—

4 |0100 * 2

6 {07101 E M U

6 ;0110 / 3 -

7]o114 F N Vv

a [1000 % ; 4

9 1001 G 0 W

A |1010 > ' 5

B {1011 H P xX

c 11100 # 6

p |1101 A I Q Y

E [1110 @ 7

F 11117 B J R Z
‘ig. 3.7. Stretch, 49-character set

72 Early Codes

Column 0 | 1 | 2 | 3 4 iz [6 7 & 9 a | 8 c D E F

Bit | a0 a1 10 11

Pat. "|

Row oo | 01 10 11 oo | o1 yo | a1 oo } 071 10 | 11 oo | 01 10 11

@ j00007 gp & ¢ k 8 0 8

1 ooo1 + Cc K s 0 8

2 0010 $ d 1 t l 9

3 [0071 = D L T 1 9

4 [0100 * e m u 2

5 {0101 ¢ E M U 2

6 |0110 / £ n v 3 ~

7 {0111 } F N Vv 3 ?

8 10006 > g ° wW 4

9 [1001 ; G 0 W 4

A |1010 ‘ h P x 5

B 11011 " H P xX 5

c 11700 a L q y 6

D {1101 A I Q Y 6

—e [tite b 3 r z 7

Fo [1111 B J R Z 7
Fig. 3.8 Stretch, 89-character set

Note that the 49-graphic set included the contemporary 48-graphic
set (see Criterion 1) and additionally had the graphic apostrophe or

single quote. The provision of a 48-graphic-plus-Space set fitted neatly

into the geometry of the 240-printing-position chain printer: 5 x 48 = 240,
Each graphic was provided in 5 printing positions, yielding very respecta-
ble printing speeds.

Note that the 49-graphic set is not entirely a subset of the 89-graphic
set. Note also that it was found not practical to retain the upper- and
lower-case relationships of punctuation and other special symbols com-
monly found on typewriter keyboards. (There was no single convention

anyway, and typists were accustomed to finding differences in this area.)

Comment of Criterion 7

The benefit of interleaving upper- and lower-case alphabetics is dubious.

(For a fuller discussion of this point, see Chapter 25, Contiguous, Non-
contiguous, and Interleaved Alphabets.) However, once it is decided to
interleave the alphabets, as was done in the Stretch code, a further

3.4 The Stretch Code 73

decision is necessary: Which alphabetic should precede within the pair,
the upper-case or the lower-case? The designers of this code had ob-
served that no real precedent existed for the relative position within the
code. But the choice had to be made. They chose that lower case should
precede upper case within the pair, for reasons not known to the author.

It is interesting to note that had they made the other choice, so that
“A” had bit pattern 0010 1100 and “a” had bit pattern 0010 1101, for
example, the derivation of the 49-character subset (Fig. 3.7) from the

120-character set (Fig. 3.6) would have been logically simpler. Observe
that in Fig. 3.7 the specials chosen alternate in code position with those

not chosen and the same is true for the alphabetics and the numerics.
However, two code positions intervene between the last special and the
first alphabetic, and no code position intervenes between the last alphabe-
tic and the first numeric. The logical equations to describe the choice of
code positions are somewhat complex because of the double gap and the
null gap. Had the opposite choice been made in assigning upper- and
lower-case alphabetics, both anomalies would disapppear, and the logical
equations would have been quite simple. It should also be noted that this
latter choice would not have affected the derivability of the 89-character
subset, since the 52 alphabetics would still occupy the same contiguous 52
code positions.

It is interesting that in the design of IPC, Information Processing
Code, described below, where the designers also chose to interleave the
upper- and lower-case alphabetics, the decision was that upper-case
should precede lower-case alphabetics within the pair.

In conjunction with the Stretch bit code, there was a punched card
code. The bits of the code were named BO, Bl, B2,...,B7, from

high-order to low-order significance within the byte. A parity bit, odd

parity, named Bp was also punched. The card code (see Fig. 3.9) was a

binary card code, specified by the following algorithm:

Card Row Code Bit

12 —
11 —

0 —

1 Bp

2 BO
3 Bl
4 B2
5 B3
6 B4
7 BS
8 B6
9 B7

74 Early Codes

EXT CHAR SET 1
i ECS Card ' oust
i Identification i

Bit] o000 08 CODD DO ONDDNOOHDDTODDDDDNDNODOCDDODDODDD DONNA DODO DDONND DOOD ggonncoogegan
12-3 4 8 7B 8 1D 11 52 19 14 19 $6 FF $8 OB 20 20 22 23 24 25 OT ZB 29 WO 31 32 3) 4 35 36 37 HBB 40 AN 62 43 44 AD 6 47 AS 49 50 51 52 53 54 55 56 57 SO 55 GD G1 62 6) G4 65 65 6? GG 62 70 71 72:12 74 75 76 17 78 79

RUCR UO et igasecccigeraiisg

OEPELESTELEVESELELEPT EEL EP ELeLePTEeeeeeeeeeeesEePeeeeEPETEeeeeyl LEPSEEEEEE TELE

3333333399993939333999933399933999999339393399993339393399333399N 939939939339 993

SRAAAAAAAAAASAAAGAAGASAGAAA44 AA SEGUE RRU MBO OUORRRRU OREN 4444445 4000556

S55555555555555 OPPO OOO PP PM MBRE SS S55555555 5555 SURO M PPR RMPPR BR SBS 555555559555

CCCCCCCCMMMDRRNR SC CCCCCCRRRRRRRECCECCCCORRRRRMEE SCCCOCSCHRBRRERGBSSccccG5cbGEGGE

POTTER
CPUC OME SOURS CURSORS CSUN SUN SORES CONC CRR SOMBRE RRS ORM SCBR CORN SORRY soos cg saceRsas

“SN

O
o

W
N
Y

=|
O

VU

TR OO eB) ed ee Ee
123 430 7B G10 08 12:55 96 95 18 17 88 18 20 20 22 23 24 ZS 29 27 2 28 30 ST 32 33 4 3S 38 2) 39 49 41 42 43 44 25 4g 47 49 49 50 51 52-59 54 55 $6 97 SE 59 GO GI 62 63 64 65 68 G7 64 69 <2 7) 72 75 74 75 78 77 78 70 80

MXr*Atvbiro< LL] 77% o#DEBZ*/S,' abdcdefqahijzga Conventional
5 5 Punching

co with Inter-
pretation

EXT CHAR SET 2
| ee

-=
>

i

DODDDDDOO DONA DC ODDAODDDDDCONODDONNODOAHNTODDDTHDDTHNNDDOHO HOC ONN AO ORM ooo oogogoa
12-345 BOF SO 1D 10 02 13 14 15 18 FF be OM 20 21 22 22-24 2 2 27 28 29 W 50 32 33 4 TSW ODD WS 99 40 A142 4) 4S 06 47 48 45 50 51 57 53 55 56 57 58 59 60 61 62 6) G4 65 65 G7 GA G9 70 71 12 73 74:75 76-77 78 79 AO

DEUCE DD eect rascer gira

2222222222222222222 2222220222222 222 2222222222222 D222 22 T2222 2222222222822

TET ST REED Be RRS

SAGAAAAAAAAAAAGAAAAAAAAAASA GAAS ABMMQMEUDUUUERDRQORRROGRODSS44545444454444440544444

SSSSSSSSSSSSS SSS MMMM MSRM MMRUBBUES 5555555555555 55 UPR MMMMNS555555550555555555555

BECCCCCCMMMRBABRCCCCCCCCHMPRMURBSSSCCCCCHPMMMBMRSSCSCCCCHCEEEGGG 66S 6556565666666

7777 MMU ae

COMMSSURSSGRS SRBC SMBS CHASM MSR MS CMRS SMA RC CPR SSM PSS MBMSCSABkees ease CMs eaaseee

Me eee eee aaa eae ama ase
i itd decbedemebessteatend 4

| k L
k 1

dedenbssletienbertoctentenl, b ctenberdeadhuadbencbaenl 1 ott

Fig. 3.9 Cards punched with extended character code

iM

so
p

ache cl lee Leah naib sandaeabemel el sadnetenboem a

t
z

i
K

| str lolvls | |

s}tjujv{wIx]y|z

t

MIN o

mno stuvwxy2z0Q1

slelale
OFPIQIR
par

In order to distinguish cards with this binary punching from cards

punched with the conventional Hollerith card code, binary punched cards
had 12-holes and 11-holes punched in column 1. Within an application,

conventional Hollerith card code punching could be used in the right end
of such cards, as shown in Fig. 3.9. The Space character, having no bits in
the code, would nevertheless have a parity bit punched in row 1.

However, skipped fields would have no punches, as can be seen in the
lower card in Fig. 3.9.

3.5 IPC 75

As in discussed in Chapter 16, “Decimal ASCII,” the structural

strength of a card punched in binary came under serious question

particularly if most of the data was numeric (which would lead to one or
more rows being laced because of the zone bits in the representation of
the numerics). It should be noted that the question of binary card coding
in the Decimal ASCII debate was considered in the environment of an
individual card, mailed to a human, carried by the human in a pocket in
varying conditions of humidity, temperature, and abuse, and subsequently

required to be further processed in card equipment. By contrast, the
normal environment for a Stretch card was much more protective—

generally a deck of cards, handled with reasonable care in a machine
room environment. The binary card discussed in Chapter 16 was expected
to be subjected to structural stress, the Stretch card was not.

3.5 IPC

IPC, Information Processing Code, was developed by Edward Morenoff,
John B. McLean, and Lt. Lawrence Odell in 1964. It was intended as an

information manipulation-oriented character set with associated binary

code representation. The author does not know if it was actually im-
plemented, but it has some interesting aspects. The design criteria were
somewhat similar to those of the Stretch code.

Criterion 1. The set should contain the following graphics:

= = Upper- and lower-case alphabetics

= =€6©=Numerics

= §=6The more important punctuation symbols found on office typewriters

2?" 3

= Special symbols peculiar to user operations.

Criterion 2. Certain subsets, 7-bit, 6-bit, 5-bit, 4-bit, should be easily

derivable.

Criterion 3. Code positions should be provided that would be dedicated
to local interpretation.

IPC was an 8-bit code. However, only 128 characters were specified,

and the use of the 8th bit was deliberately left undefined for specification

in local environments on the basis of particular applications. For example,

the 8th bit might be used as a parity bit to increase the reliability of data

transmission. Or it might be used to indicate that some special signifi-
cance should be attached to a particular character, such as being part of a
“keyword,” or a part of a highly sensitive piece of information. Since the

76 Early Codes

Column 0 1 2 3 4 5 6 7

Bit b7 | 0 0 0 0 1 1 1 1
ramen as 0 0 1 1 0 0 1 1

bB 0 1 0 i 0 1 0 1

Row b4 b3 b2 b1

0 0000 0 c K s (a r 3

1 0001 1 ce k 8 \ x % 2

2 0010 2 D L T ? B < ®

3 0011 3 d 1 t # ly)

4 0100 4 E M U ° = > Bk,

5 0101 5 e mn u / - % Bk,

6 0110 6 F N v v o | Bk,

7 0111 7 £ n v f + Bk,

8 1000 8 G 0 W * 8 .

9 1001 9 g ° Ww) ; 4 Cy

10 1410 SP H P X . @ o Cy

11 1011 RES h P x > x > C3

12 1100 A I Q Y Tt " K C,

13 1101 a t q y _ ' “ Ce

14 1110 B J R Zz w $ C Ce

15 1111 b 4 x z + ¢ J Cy
Fig. 3.10 IPC, 7-bit subset

8th bit is undefined, the code is shown in a 7-bit representation (see Fig.

3.10). The names of the graphics and control characters are given in

Table 3.2.

As with the Stretch code, IPC has the upper- and lower-case

alphabetics interleaved. And as with the Stretch code, a decision had to

3.5 IPC 77

TABLE 3.2. IPC, special graphics and controls

(Left parenthesis "Quotes
! Exclamation > Apostrophe

? Question $ Dollars
Numbers ¢ Cents
° Degrees >» Summation
/ Slash 1/4 One quarter

* — Asterisk <= Equal or less
) Right parenthesis 1/2 One half

Period = Equal or greater
, Comma 3/4 Three fourths

a Pi «© Infinite

— Minus) Arrow (down)
w Omega @ Theta

+ Plus t Arrow (up)
a Alpha ob Phi
xX Multiply — Arrow (right)
B Beta kK Kappa
+ Divide <— Arrow (left)

= Equals] Right bracket
- Dash { Left bracket

V¥ Square root > Cubed
§ Integral ? Squared
: Colon Escape code #2
; Semicolon (E] Escape code #1

@ At Bk; Blank key #i
X Box —x * Center dot

CG, Control #i

be made on which should precede within the pair. The IPC designers
chose that upper case should precede lower case, so that proper nouns

would collate ahead of common nouns. For example, Jack

0011110, 0001101, 0010001, 0100001

collates ahead of jack

0011111, 0001101, 0010001, 0100001.

The most interesting aspect of IPC is the design philosphy of Criter-
ion 3—local interpretation. In the design of ASCII, described in later

chapters, a set of control characters was defined to include several types
of input/output equipments, thus forming a general set, which must of

necessity have more characters than the set contained in IPC that is
interpreted differently for different equipments.

78 Early Codes

Example

The seven control characters could be locally interpreted as follows:

Cl backspace C5 Stop underline

C2 Unformatted tab C6 Carriage return
C3 Formatted tab C7 End of message

C4 Start underline

Cofumn 0 1 2 3 4 5 6 7

Bit b7 40 0 Q 0 1 1 1 1
Paseo b6 0 0 1 1 0 0 1 1

b5 0 1 0 1 0 1 0 1

Row b4 b3 b2 b1

0 6000 0 Cc K s

1 0001 1 c k s

2 00310 2 D L T

3 0011 3 d 1 t

4 0100 4 E M U

5 0101 5 e m u

6 017110 6 F N Vv

7 011471 7 £ n Vv

8 1000 8 G oO W

9 1001 9 g ° w

10 1010 SP H P xX

11 1011 RES h P x

12 1100 A t Q Y

13 1101 a 1 q y

14 1110 B J R Z

15 11141 b j r Zz
Fig. 3.11 IPC, 6-bit subset

3.5 IPC 79

Contained within the set were four positions with unassigned meaning
and corresponding to two “blank keys’? on a keyboard. Thus there are

two upper-case and two lower-case characters available for local interpre-

tation.
As stated under Criterion 3, subsets should be simply derivable. By

dropping the high-order bit, a 6-bit subset is derived (Fig. 3.11). It
contains numerics, upper- and lower-case alphabetics, Space, and the

reserved code for local use.

Column 0 1 2 3 4 5 6 7

Bit b7| 0 0 0 0 1 1 1 1

Pacer b6 0 0 1 1 0 0 1 1

b5 0 1 0 1 0 1 0 1

Row | _b4 b3 b2 b1

0 0000 UN c K S

1 0001

2 0010 UN D L T

3 0011

4 0100 UN E M U

5 017101

6 0110 UN F N Vv

7 01171

8 1000 UN G 0 W

9 1001

10 1010 SP H P x

11 10771

12 1100 A I Q Y

13 117101

14 1110 B J R Z

15 71177

UN - Unassigned

Fig. 3.12 IPC, 5-bit subset

80 Early Codes

Column 0

Bit b7
Pattern b6 0

b5

Row b4 b3 b2 b1

0 0000 0

1 0001 I

2 0010 2

3 0011 3

4 0100 4

5 0101 5

6 0110 6

7 0111 7

8 1000 8

9 4001 9

10 1010 UN

11 1011 UN

12 1100 UN

13 1101 UN

14 11710 UN

15 11141 UN

. . UN - Unassigned

Fig. 3.13 IPC, 4-bit subset

By dropping the highest- and lowest-order bits, a 5-bit subset is
derived (Fig. 3.12). It contains upper-case alphabetics, Space and five
“unassigned” characters. One of these unassigned characters could be
used to indicate either upper- or lower-case representation.

By dropping the three highest-order bits, a 4-bit subset is derived
(Fig. 3.13). It contains the numerics and 6 “unassigned” characters for
local interpretation.

3.6 An Early 64-Character Code Proposal 81

Pater oo 01 10 114

y

0000 0 + _ b

0001 1 A J /

0010 2 B K S

0011 3 C L T

0100 4 D M U

0101 5 E N Vv

0110 6 F 0 W

0111 7 G P x

1000 8 tl Q Y

i001 9 I R Z

1010 wu e Y d

1011 = $:

1100 >) * (

1101 = + < >

1110 n j [=

1111 ; u : n

“ — OR u - Up Shift

m - AND b - Space

e - End of line, end of card, d - Down Shift

or carriage return n - Null

Fig. 3.14 Early 64-character proposal

3.6 AN EARLY 64-CHARACTER CODE PROPOSAL

In a Letter to the Editor, Communications of the ACM, 1959 May, H. S.

Bright proposed a 64-character, 6-bit code. At that time, most printing

and keypunching equipment was limited to 47 or 48 characters. The
proposed code is shown in Fig. 3.14.

It is structurally compatible with BCDIC (Fig. 3.5). The sequence of
the code table columns containing the alphabetics has been reversed from
BCDIC, so that the alphabetics are in relative collating sequence. Oddly
enough, Space, which traditionally collates low to numerics, alphabetics,

and specials, was not assigned to the bit pattern 000000. This was

undoubtedly done so that zero could be given bit pattern 000000, so that

the numerics would be in relative collating sequence.

82 Early Codes

3.7 AN EARLY 256-CHARACTER CARD CODE PROPOSAL

In 1959 September, R. W. Bemer proposed a “Generalized Card Code
for 256 Characters.” At that time, as stated previously, character

sets provided on printers and keypunches were mainly limited to 48.

As described earlier in this chapter, Project Stretch was started in
IBM in 1954. It was a project to develop a bigger and faster computer‘

than any then in the field. One decision made was that Stretch would
have an 8-bit architecture, in contrast with most computers of that time
which had a 6-bit, or 6-bit oriented, architecture.

R. W. Bemer, therefore, foresaw the need for a 256-character card

code. The card code he proposed was not, in fact, adopted by Stretch, but

it has many ingenious aspects. The card code set had criteria for design.

Criterion 1. The new set must contain the existing 48-character set as a
subset, with exactly the same graphic—to—hole-pattern relationship.

Criterion 2. The new set should contain at least 256 combinations and

be expansible beyond this number.

Criterion 3. Meanings need not initially be assigned to all hole patterns.

Criterion 4. The hole patterns should be structured, if possible, on
existing zone punch/digit punch hole patterns.

Criterion 5. Hole patterns should be constructible and reproducible on
existing keypunches (for example, the 024 or 026).

Criterion 6. There should be no duals.

Criterion 7. ALGOL characters should be included.

Criterion 8. Characters not in the current IBM set or ALGOL set, but

used by other manufacturers, should be included.

Criterion 9. There should be a simple relationship between upper- and
lower-case alphabetic hole patterns.

There are 322 possible combinations of no more than four punches
per card column, when no more than two may be zones (12, 11, 0) and no

more than two may be digits (1 through 9). Figure 3.15 shows the 256 of
these that remain when all combinations with two-digit punches contain-
ing a 1-punch and ten other combinations are excluded. The figure also

shows assignment of both old and new graphics to hole patterns.

An ingenious aspect of this proposal is that each of the hole patterns

may be constructed in a card column by superimposing the hole patterns
for two of the alphameric characters in current use. These two characters

are chosen for their mnemonic content. Thus [is represented mnemoni-
cally by LB (for Left Bracket) and is constructed of the hole pattern 11-3,

3.7 An Early 256-Character Card Code Proposal

Fig. 3.15 A 256-character card code proposal M Mnemonic

Zone

Punches 12 11 0 12-11 11-0 0-12

Digit

Punches] G | M/ G M G M |G M G M G M |G M

SP + le |—- |-|o 0 | & —~+/6 | o-Jo +0
1 1 T/A A J J / / a —A | j OJ

2 2)}2/8 B K K 1S S b —B |k OK | s +S

3 3 |} 3/C Cc L L | T T c —C {I OL |t +T

4 4);4]D D M MIU U d —Dim OM | u +U

5 5|}5/E E N N | Vv Vv e —-Eln ON | v +V

6 6 | 6]F F 0 o};}w wi] ft —F lo 00 | w +W

7 7|71/G G P P Xx x g —Gip OP | x +X

8 8 |8]H H Q Q|yY Y h —-H{q oo ly +Y

9 9}9]4 | R R |Z Z i —I lr OR | z +Z

2-3 \ [LB = LS | ; sc

24 RX _ US
2-5

2-6 N switch | SW] bool BO

2-7 Nii BG stop | SP | O BX

2-8 SX + SY JV sa

2-9 S] RB | = RS

3-4 QO A LM comm | CM ~ TD

3.5 MM ¢ | CE < LE |10 | TN
3-6 QQ V LO co |< LW
3-7 (LP proc | PC complex | CX

3-8 # | #]. . $ $ > ’

3-9 oO cl | < LR cr CR |A TR

4-5 } ND | # UN

4-6 t UW] do DO 1 DW

4-7 ° DG| + PM dbl pr | DP

A8 @;} @| x ma] xX * % % " ba |’ Qu

4-9 = ID \ RD

5-6 “7 NO ¥ EO

5-7 2 GE EP

5-8 € EH = EQ

5-9 ifei | IE return | RE | | VR

6-7 goto | GO

6-8 Ye HF

6-9 ? IF orif | OR for FR | > RW

7-8

7-9) RP > GR

8-9 % QR array| RY | :% IY

G Graphic

83

for L, and 12-2, for B. Therefore, the hole pattern chosen to represent

Left Bracket is 12-11-2-3. Fig. 3.16 shows the derivation of the
mnemonics chosen for new graphics.

Some ALGOL words were arbitrarily assigned to single graphics:

If is assigned to ?

BEGIN is assigned to {

END is assigned to }

INTEGER is assigned to #

84 Early Codes

Mne- Mne-

Graphic monic Symbolizing Graphic monic Symbolizing

+ + ’ ’

Xx * : Sc SemiColon

/ / : co COlon

\ RD Reverse Divide ! EP Exclamation Point

+ PM Plus or Minus ‘ Qu QUote

J sa SQuare root " Da Double Quote

= EQ EQuals = LS Left Substitution

UN UNequals =: RS Right Substitution

> GR GreateR 10 TN base TeN

= GE Greater or Equal] RB Right Bracket

< LE Lesser or Equal (LP Left Parenthesis

< LR LesseR) RP Right Parenthesis

~ TD TilDe [LB Left Bracket

| NO Not t UW Up arroW

Vv LO Logical Or 4 DW Down arroW

A LM Logical Multiply < LW Left arroW

Vv EO Exclusive Or > RW Right arrow

= ID IDentical to { BG BeGin

} ND eND

¢ CE CEnts [VR VeRtical

Ye OR one QuarteR A TR TRiangle

Ye HF one HaLf oO BX BoX

cr CR CRedit oO Cl Circle

° DG DeGree _ US UnderScore

oo lY InfinitY procedure PC ProCedure

go to GO GO to switch SW SWitch

do DO DO array RY aRraY

return RE REturn comment CM CoMment

stop SP StoP integer #

for FR FoR boolean BO BOolean

or if OR OR if complex CX CompleX

if either IE If Either double pr DP Double Precision

Fig. 3.16 Minemonic derivations for characters

Other words could be assigned to single graphics:

Record Mark + and Group Mark + were assigned to existing hole
patterns 0-8-2 and 12-8-5, respectively. The mnemonics chosen, SY and

EH, are not of course mnemonics for Record Mark and Group Mark, but

COMMENT could be assigned to ”

STOP could be assigned to !

RETURN could be assigned to <—

are mnemonics for the appropriate hole patterns for keypunching:

S, 0-2

E, 12-5

Y, 0-8

H, 12-8

SY, 0-8-2

EH, 12-8-5

3.8 4-out-of-8 Code 85

Column o | 1 | 2 | 3 4 L 5 6 | 7 8 | 9 | A | B c | o | E | F

Bit 00 01 10 11

Pat.
00 01 10 11 oo | 01 10 11 oo | 01 10 11 00} 01 10 11

Row '

0 j|0000 SP

1 }0001 A / J l

2 10010 B Ss K 2

4 {o100 D U M 4

ae TL CL E 5 v N

6 10110 < [F 6 W 0

7 [0111 7 xX P G

8 |1000 H Y Q 8

INQ 9 |1001 IDLE ErR| | 9 Zz R

A |1010 \ a ? 0 $!

8B {1011 # ; s

c |1100 $ 7 u @ 4 *

pb [1101 v # A £

E |1110 > 6 - &

Fo ot4a114

TL = Transmit Leader INQ ~ Inquiry

cL ~ Control Leader ERR - Error

SOR1 ~ Start of Record Odd IDLE - Idle
ACKI ~ Acknowledge Odd *TEL - Telephone

SOR2 ~ Start of Record Even *EOT - End of Transmission/Message

ACK2 Acknowledge Even

. * May be sent as valid
Fig. 3.17 4-out-of-8 code data characters

3.8 4-OUT-OF-8 CODE

Another code of the early 1960s had an interesting characteristic. It was
used solely for data transmission; it was an 8-bit code. The interesting

characteristic was that, of the 8 possible bit positions for any bit pattern
of the code, exactly four of the bits would be one-bits. Hence the name,
4-out-of-8 code (see Fig. 3.17). Any single “hit” (the accidental change of
a zero-bit to a one-bit, or of a one-bit to a zero-bit) on a bit of a

transmitted bit pattern would create an other than 4-out-of-8 bit pattern,
and such erroneous bit patterns could be checked by very simple circuitry.
Each bit pattern, as received, was fed through a counter. If the count was

4, the bit pattern was accepted as valid, otherwise a data check was

raised. Of course, compensating hits (that is to say, hits on a single bit
pattern that changed some one-bit to a zero-bit and some zero-bit to a
one-bit) would not be detected, but occurrence of such hits was statisti-

cally very much less than occurrence of single bit hits.

86 Early Codes

Mathematically, the code allows exactly 70 valid 4-out-of-8 bit
patterns. As can be seen by examination of Fig. 3.17, 64 of these were

graphic characters (called “data characters” at that time) and 6 were
control characters. Thus this code fittted BCDIC nicely with its 64
characters. As will be described in Chapter 5, 7 of the 64 characters of
BCDIC were control characters between various BCDIC CPU’s and
magnetic tape drives. However, these 7 BCDIC control characters were

not 4-out-of-8 control characters; that is to say, they would be transmit-

ted, end to end, without effecting any control actions on the data
transmission units.

Some of the 4-out-of-8 control characters did double duty, depend-

ing on the data transmission situation. Thus a data transmission unit,
sending a data record, would precede it with SOR1, Start of Record Odd.
When the transmission unit at the other end received this record, it would

send back to the original transmission unit ACK], Acknowledge Odd
(providing no data check had been detected by the receiving unit).

Note from Fig. 3.17 that although the numerics and alphabetics are
not contiguous within columns, they are nevertheless BCD, under the

definitions in Chapter 2.

CITED REFERENCES

3.1 Military Communication System Technical Standard, MIL-STD-188A, 1958

April 25,

3.2 Military Communication System Technical Standard, MIL-STD-188B, 1964

February 24.

3.3 Military Communication System Technical Standard, MIL-STD-188C, 1969

November 24.

3.4 IBM Corporate Systems Standard, BCD Interchange Code, CSS 3-2-8015-0,

1962 April.

3.5 W. Buchholz, ‘Planning a Computer System.””» New York: McGraw-Hill,

1962.

3.6 R. W. Bemer, and W. Buchholz, ‘“‘“An Extended Character Set Standard.”’

IBM Technical Report 00.721 (Rev.), 1960 June 1.

3.7 E. Morenoff; J. B. McLean; and L. Odell, “IPC, A Coded Character Set for

Information Processing,’’ Rome Air Development Center Technical Documentary

Report No. RADC-TDR-64-426. 1964 October.

3.8 H. S. Bright, “A 64-Character Alphabet, Proposal,’ Letters to the Editor,

Communications of the ACM 2:5. 1959 May.

3.9 R. W. Bemer, ‘“‘A Proposal for a Generalized Card Code for 256 Charac-

ters,’ Coinmunications of the ACM 2:9. 1959 September.

The Duals
of

BCDIC

The code described in the previous chapter as ‘‘early BCDIC”’ will be
called BCDIC, Version 1 in this chapter. This coded character set was
extended; first by the addition of duals, to BCDIC, Version 2, and then by
an expansion to 64 characters, to BCDIC, Version 3.

4.1 BCDIC, VERSION 1

In the late 1950s, the chain printers provided by IBM had a printing
repertoire of 48 graphic characters, as follows:

Space 1

Alphabetics: A to Z 26

Numerics: 0 to 9 10

Specials:

Dollar sign

Slash

Lozenge

Asterisk
Percent sign

At sign

Ampersand
Minus, Hyphen

Number sign

Period .

Comma J

11

+
1
e
F
@
x
X

F
H
F

 wy

87

88 The Duals of BCDIC

Hole

Pattern» 0 1 12

SP - &

1 1 / J A

2 2 s K B

3 3 T L Cc

4 4 U M D

5 5 Vv N E

6 6 W 0 F

7 7 X P G

8 8 Y Q H

9 9 Zz R I

0 0

8-3 # $

8-4 @ % * i

Fig. 4.1 BCDIC, Version 1

These 48 graphic characters were also keypunchable, interpretable, and

verifiable by a single keystroke on the IBM keypunches and verifiers of

the day. These 48 characters, which constituted BCDIC, Version 1, are

shown in Fig. 4.1

4.2 BCDIC, VERSION 2

Two data processing requirements, European languages and FORTRAN,

led to the development of what came to be called “duals.”

4.2.1 European Languages Requirements

The languages of some European countries (Germany, Sweden, Den-

mark, Norway, Finland) require 29 letters—the usual 26 alphabetics of

English-speaking countries plus three letters called diacritics. Spanish and

Portuguese alphabets have 27 letters. It would be clearly advantageous,

from a marketing point of view, to be able to provide these extra

alphabetics on printers, keypunches, and verifiers. But how could this be

4.2 BCDIC, Version 2 89

done? The solution that was examined first was to increase the character

capability of printers, keypunches, and verifiers from 48 to 51.

In the case of chain printers, this was entirely feasible, since the chain

has a possible graphic capability of 240. In fact, on 48-character chains,

each of the 48 graphics appears five times on the 240-graphic chain. If

there are more than 48 graphics, 51, for example, some of these graphics

will not appear five times on the chain; in consequence, the printing speed

(lines per minute) would be reduced. Since printing speed was (and is) a

primary competitive factor for printers, the solution of providing 51

graphics on a chain, with consequent slower printing speeds, was unat-

tractive.

In the case of the keypunch (and verifier), two approaches were

examined. Under the first approach, card hole patterns beyond the 48

could be assigned and keypunched by the technique known as multi-

punching. Under this technique, while a “‘multipunch”’ key is held down,
other keys may be struck, but the punched card does not advance to the

next card column. Accordingly, a number of holes may be punched in a

single card column. Clearly, when any of the three diacritic letters is

encountered on a data sheet by a keypunch operator, the keypunching

mode would have to depart from touch-keying while the operator pays

special attention to holding down the multipunch key and to keying such

other keys as necessary to generate the appropriate hole pattern. In this,

approach, then, the keypunching speed would be reduced. As with the

line-printer solution discussed above, this approach to keypunching was

unattractive.
Under the second approach, either existing keypunches and verifiers

could be modified, or new keypunches and verifiers could be designed

with additional keys to generate each of the three diacritics with a single

keystroke. Presumably (after some training) keypunch operators would be

able to touch-key the additional keys, so keypunching speed would be

maintained. This approach would result in a relatively costly design and

development project, with a product that would have only a small market.

The projected additional price for European keypunches and verifiers was

unattractive.

A different kind of solution was then proposed. It was observed that

three special graphics @ # $ were peculiar in origin and use to English-

speaking countries. They were neither needed nor used at that time in

continental European countries. The suggestion was to substitute the three
diacritics for these three specials, wherever they appeared on the chain.

The consequence was that printing speed would not be reduced. Simi-

larly, they could be substituted on the keytops and printing plates of

keypunches.

90 The Duals of BCDIC

Under this substitution approach, only minor costs would be in-

volved. The solution, then, had the following characteristics:

No reduction in printing speeds.

No reduction in keypunching/verifying speeds.

Small cost.

This approach had the advantages above, and no (known) disadvantages.

It was adopted. The approach is still used in current products.

It should be noted, in respect to this approach, that there results a

number of graphics—multiple graphics, that is—for three card hole

patterns, as shown in Fig. 4.2. However, within a country, the graphic set

is unique, without duals.

Hole pattern | U.S.A. | Germany | Sweden | Finland | Norway | Denmark

8-3 Fa A A A A A

8-4 @ é 6 6 @ g
11-8-3 $ U A A A A

Fig. 4.2 Diacritic letters

4.2.2 FORTRAN Requirements

The FORTRAN programming language had, among its other objectives,

the objective of a printed listing that would resemble as much as possible

the formulae found in mathematical text books. Many of the mathemati-

cal symbols found in text books were deemed to be unnecessary for

FORTRAN. Some mathematical symbols / — . , were already provided

on IBM printers. It was decided that the asterisk * could be used to

represent multiplication. But five symbols () + = ‘' (not provided on

IBM printers) were deemed to be absolutely necessary for FORTRAN.

How to provide them?

It was decided that the most economical and efficient solution was to

provide them by substitution, as with the European diacritics. The only

remaining problem was to choose which five of the specials provided on

IBM 48-character printers, keypunches, and verifiers should be replaced

by the five mathematical symbols. It was decided to replace % 1 & # @

by () + = ’ (respectively). This solution resulted in duals within a

country. The addition of these five duals led to BCDIC, Version 2, shown

in Fig. 4.3.

4.2 BCDIC, Version 2 91

Povtorn— 9 11 12

SP a - & or +

1 1 / J A

2 2 S K B

3 3 T L Cc

4 4 U M D

5 5 Vv N E

6 6 W 0 F

7 7 Xx P G

8 8 Y Q H

9 9 Z R L

0 0 “

8-3 # or = ’ $

8-4 @ or ' Zor ¢ * Wor)

8-5

8-6

8-7
Hole Patterns:

[7] 8-2
[2] 0-8-2

Fig. 4.3. BCDIC, Version 2

Initially, this solution was ideal. With very few exceptions, computing

installations in those days were either of a commercial orientation or of a

scientific/engineering orientation. In ‘‘commercial’’ installations, such

commercial applications as payroll, inventory, premium billing, and utility

billing were processed; in such installations, neither scientific nor en-

gineering applications were processed. Similarly, in “‘scientific’’ installa-

tions, scientific or engineering calculations were processed, and commer-
cial applications were not. (I repeat, there were few exceptions.)

The exceptions that began to be noted were those users who had

installations that were commercially oriented, although the company itself

was of an engineering or scientific nature. In such companies, there were

people who wanted to use the computer for scientific or engineering

calculations. It is to be noted that the processes of compiling, debugging,

92 The Duals of BCDIC

and executing FORTRAN programs could be performed regardless of

whether the printers, keypunches, and verifiers had the scientific or

commercial graphic sets. However, if the installation had the commercial

graphic set, program listings were somewhat bizarre. For example, a

FORTRAN statement such as

xX = (A+ B)*(C— D)/(E + F * G)

would show in the program listing as

X#% A&Bu*% C-DxH/% E&F*G

Such program listings, though bizarre, were unambiguous. To FOR-

TRAN programmers who suffered in the commercial installations of the

day, the mental translation of

% to (
mw to)
& to +

#~ to =

@ to '

became an automatic act.
It should be reemphasized that the scientific symbols seldom (if ever)

were needed or used in the listings that were the final results of the

executed programs. It was only in the listings of the original FORTRAN

programs that programmers had to put up with the graphic substitutions.

Programmers were (and, incidentally, still are) notably vocal. If there

were something to complain about, they complained vociferously. These

complaints gave rise to the question, Could this situation, admittedly

infrequent but nonetheless aggravating, be ameliorated?

4.3. BCDIC, VERSION 3

A solution to the “duals problem”? was attempted with the IBM 1410.

(Another attempt was made in the System/360. See Chapter 9, The Duals

of EBCDIC.) The 1410 was to have as its console, a typewriter. The

typewriter could provide up to 88 graphics. It was decided it would

provide 63, and Space. (The reasons for a character set size of 64 are
detailed in the following chapter, The Size of BCDIC.) The 47 graphics

and Space provided on 48-character chain printers are shown in Fig. 4.3.

The 63 graphics and space proposed to be provided on the 1410 console

typewriter are shown in Fig. 4.4; it is called BCDIC, Version 3.

It is to be observed in Fig. 4.4 that four of the five ‘“‘scientific”
graphics () = ' were to be given unique card hole patterns. Curiously, the

4.3 BCDIC, Version 3 93

Hole

Pattern —> 0 11 12

SP ¢ LA - &

1 1 / J A

2 2 8 K B

3 3 T L Cc

4 4 U M D

5 5 v N E

6 6 W 0 F

7 7 x P G

8 8 Y Q H

9 9 Zz R Tr

0 0 + EL :
8-3 # ’ $

8-4 @ % x <

8-5 =) ¢

8-6 > ' 3 >

8-7 v " A $

Hole Patterns:

[1] 8-2
[2] 0-8-2

Fig. 4.4 BCDIC, Version 3

fifth scientific graphic + was not to be provided. The author does not

know the reason for this curious anomaly.

Beyond the four scientific graphics, 12 new graphics had been added.

These were of two kinds:

Kind 1 2? 235" < >

Kind 2 + J A #

The graphics of Kind 1 were added as a result of market studies for

“‘most-needed graphics’ in data processing applications. The graphics of

Kind 2 were chosen to meet a criterion which will be described in the

next chapter.

This coded character set was announced for the IBM 1410. How-

ever, as will be discussed in the next chapter, a review of coded character

sets was then undertaken, and this led to the BCD Interchange Code,

BCDIC.

The Size
of

BCDIC

5.1 SIZE OF CHARACTER SET

What limits the size of a character set? Is it the number of characters in a

character set? The limitation is mathematical, and comes from the binary

characteristic of the code that represents the character set. Recall that the

binary aspect comes from the nature of the physical medium or hardware

that handles the character code. Once the binary aspect of the physical

medium is perceived, the binary capacity must next be determined. Some
examples follow.

Magnetic tape, seven tracks. One track is for parity, leaving six tracks

for storage of characters. The character set size is 2° = 64 characters.

Magnetic tape, nine tracks. One track is for parity, leaving eight tracks

for characters. Set size = 28 = 256 characters.

Paper tape, eight rows. One track is for parity, leaving seven tracks for

characters. Set size = 2? = 128 characters.

Punched cards, twelve rows. Set size = 2'* = 4096 characters. Most
punched card character sets have a set size less than the maximum
capacity. For the System/360, for example, the punched card character

set size is restricted to 256, in order to match the Nine Track Magnetic

Tape character set size of 256 characters.

As described in the previous chapter, IBM character set sizes before

the introduction of the 1410 were 48 characters, a limitation imposed by

the chain printers and keypunches of the day. The chain-printer limitation
of 48 characters was based not on the number of possible different

95

96 The Size of BCDIC

graphic characters on the chain but on marketing considerations having to

do with printing speeds.

With the introduction of the 1410, its console typewriter provided a

possible character set size of 88 characters. The limitation of printing

speed held the chain printer set size to 48 characters, but it was decided to

expand the console typewriter set size beyond 48 characters. What should

this character set size be?
There were two hardware aspects which limited the set size, happily

to the same number. The 1410 architecture was 6 bits, hence maximum

set size was 64 characters. Magnetic tape for the 1410 was seven tracks.

One track was for parity leaving six tracks for characters. So the magnetic

tape also restricted the set size to a maximum of 64.

It was decided to expand the 1410 character set size to 64 characters.

Before this time, the 48-character set, BCDIC, Version 2, was as shown in

Fig. 5.1.

Pattern A 8 BA

Hole

Pattern~-> 0 "1 12

sp - & or +

1 1 1 / J A

2 2 2 s K B

2) 3 3 t L C

4 4 4 U M D
4] 5 5 V E

42 6 6 W 0 F

421 7 7 X P G

8 8 8 Y Q H

8 1 9 9 Z R I

8 2 ft) 0

8 21 8-3 # or = , $

84 8-4 @ or ' % or (* Yor)

Fig. 5.1 BCDIC, Version 2

5.2 BCDIC, Version 3 97

5.2 BCDIC, VERSION 3

The binary coded decimal (BCD) nature of the card-code-to—bit-code

relationship pointed to the obvious card-code expansion, to include 8-2,

8-5, 8-6, 8-7 digit punches in conjunction with the zone punches, as

shown in Fig. 5.2.

There were two problems to be solved in determining the 64 hole

patterns. Since the numeric ‘0’ would clearly retain its card hole pattern

0, what hole patterns would be assigned to code positions in Fig. 5.2
indicated by ' and *? Both of these code positions (following the table

column and table row indications) would have the card hole pattern of 0,

but three code table positions with the same hole pattern, 0, would be

unacceptable.

Pattern —_ A 8 BA

Hole
Pattern >} 0 11 12

SP UN. LD - & or +

1 1 l / J A

2 2 2 S K B

21 3 3 T L Cc

4 4 4 U M D

4 1 5 5 Vv N E

42 6 6 W oO F

421 7 7 x P G

8 8 8 XY Q H

8 1 9 9 Z R I

8 2 0 0 Ls UN L] UN. cs UN. ts

8 21 8-3 # or = , §

84 8-4 @ or '' % or ¢ * M or)

84 1 8-5 UN. UN. UN. UN.

842 8-6 UN. UN. UN. UN.

8421 8-7 UN. UN. UN. UN.
Hole Patterns: UN. - Unassigned graphic

[1] 8-2

{2] 0-8-2

Fig. 5.2 Expansion of BCDIC card code to 64

98 The Size of BCDIC

Bit

Pattern A B BA

Hole
Pattern-—* 0 11 12

SP ¢ Q - &

' ' 1 / J A

2 2 2 s K B

21 3 3 T 7 c

4 4 4 U M D

4 1 6 5 V N 5

42 6 6 W 0 F

421 7 7 x P G

8 8 8 Y¥ Q H

8 1 9 9 Zz R I

8 2 0 0 f 12] { 2

8 21 8-3 # ; $

84 8-4 a x x 7

84 1 8-5 : =) (

842 8-6 > ’ ; <

8421 8-7 yo n , & »

Hole Patterns: SP - Space

[7] 8-2

[2] 0-8-2

Fig. 5.3. BCDIC, Version 3

Note that the bit pattern for code table position * is 82. From the

BCD relationship, therefore, a card hole pattern of 8-2 would generate

the proper bit pattern. Combining the digit punches 8-2 with a zone

punch 0 would therefore generate the correct bit pattern, A82, for code

table position 7. This hole pattern therefore was chosen for this code

position.
But what about code table position '? Although the numeric ‘‘0”

occupies code table position * and has the hole pattern 0, a proper hole

pattern from a BCD relationship point of view would be 8-2.

It should be pointed out that the objective was to determine a set of

64 hole patterns with a BCD relationship. One such set would be the 16

digit combinations, ‘“‘no-digits’’, 1, 2, 3, 4, 5, 6, 7, 8, 9, 8-2, 8-3, 8-4, 8-5,
8-6, 8-7 taken with the four zone punches, “‘no-zone’’, 0, 12, and 11.

5.3 BCDIC, Version 4 99

However, this set does not include the hole patterns 12-0 and 11-0, which
were widely used in card processing applications. In order to include
these in the BCDIC set, two would have to be dropped out of the set of
64 above. The two chosen to be dropped out were 12-8-2 and 11-8-2.
(Note: As described in Chapter 10, these were included in the 64-
character subset for EBCDIC, and 12-0 and 11-0 were not included.)

The hole patterns 11-0 and 12-0 fall logically, for the code table of
Fig. 5.2, in code positions * and *. The only remaining hole pattern from
the set of 64 above that has no logical position is 8-2, and the single code
table position without an assigned hole pattern is position ', so that by a
process of elimination, the hole pattern 8-2 was assigned to code table
position |.

As described in the previous chapter, 16 graphics had been chosen
for the IBM 1410 to expand the character set from 48 to 64. The result,
BCDIC, Version 3, is shown in Fig. 5.3.

5.3 BCDIC, VERSION 4

Of these 16 graphics, four had been chosen to eliminate duals and
provide ()’ = as unique graphics. Eight had been chosen as a result of
market studies for most-wanted additional graphics:

1? : 3; " << > ¢

Four had been chosen to meet an interesting criterion:

+ + / 0A

These four graphics occupied code positions 7, *, +, and >, whose bit
patterns had a control function with respect to magnetic-tape devices on

one or another of the IBM computing systems.

There is an aspect of human nature which surfaces in data proces-

sing. Experience has shown that if graphics are provided on a computing
system, they will be used in one way or another by customers, even if they

have no intrinsic meaning. The lozenge is an example. It has no intrinsic

meaning but customers came to use it to signify things peculiar to their

applications—within applications, customers gave the lozenge a meaning.

For example, in banking installations, the lozenge was frequently used on
tabulation listings to indicate (to the customer) second level totals.

But it would be very undesirable if customers, within an application,

used the graphics for code positions 7, *, +, and > so that they would be
required to print out on listings. The actual printing of such graphics

100 The Size of BCDIC

would not present any hazard, but the data containing the bit patterns

representing these graphics, if written on or read from magnetic tape,
might cause strange and unwanted results. These bit patterns had a

common and interesting characteristic. They were generated or removed

automatically by the magnetic-tape hardware. The customer did not have

to enter them with his input data.

The obvious criterion for graphics to be assigned to these code

positions was that they should cause customers to be disinclined to use
them in applications. They should, therefore, be abstract shapes without

intrinsic meaning. The graphic shapes finally chosen to meet the criterion

are as follows:

234 5

+ VJ A #

How well the graphics meet the criterion the reader can judge.

As stated in the previous chapter, a reconsideration of BCDIC,

Version 3 was undertaken. There were a number of reasons:

1. The plus sign was not provided.

2. The characters

Fee teehee ee
112-8-5 | 11-8-5 | 0-8-5

would require multipunching on a keypunch. The speed of

keypunching FORTRAN source language programs would be re-

duced.

3. FORTRAN program decks, keypunched according to the 1410 pro-

posal, BCDIC, Version 3, could not be compiled on any non-1410

computer, because the card hole patterns (and hence the bit patterns)

for () = ‘had been changed. Similarly, the FORTRAN compiler for

the 1410 could not compile any FORTRAN program decks from

non-1410 computers.

4. If a 1410 FORTRAN program deck were entered into a 1410, it

would not list properly on the chain printer of the 1410. () = '

would not list as () = ’ nor indeed even list as % H # @ (the dual

graphics). Such a program deck could be listed properly on the 1410

console typewriter, but this mode of listing would be excessively slow

as compared with listing on a chain printer.

5.3 BCDIC, Version 4 101

Reason 3 above was crucial. The ability to enter, list, compile, and

execute a FORTRAN deck on any IBM computing system was a very

strong sales point. Therefore, the 1410 coding proposal was changed to

remedy the four problems above.

The result of this change became the BCD Interchange Code,

BCDIC. The criteria set for BCDIC were as follows:

1. The 48-character code would be extended to 64 characters—63

graphics and Space.

2. Compatibility with the 48 characters of the day—Space, 10 numerics,

26 alphabetics, and 11 specials (including the 5 duals)—would be

maintained. That is to say, BCDIC, Version 2 (Fig. 5.1) would be the

point of departure.

Pattern A B BA
Hole
Pattern —> 0 1 12

SP ¢ Ly - & or +

1 1 1 / J A

2 2 2 S K B

21 3 3 T L Cc

4 4 4 U M D

4 1 5 5 v N E

42 6 6 W 0 F

421 7 7 x P G

8 8 8 YX Q H

8 1 9 9 Z R I

8 2 0 0 $ L2| ! 2

8 21 8-3 # or = , $

84 8-4 @ or ' 4 or)+) * Yor)

84 1 8-5 Ls] Ls] Ls]

842 8-6 > Le ; <

8421 8-7 ¥ L7 wn C8 A Ls $ 10

Hole Patterns: SP = Space

[1] 8-2
[2] 0-8-2

Fig. 5.4 BCDIC, Version 4

102 The Size of BCDIC

3. As much as possible, compatibility with the announced 1410 set,

BCDIC, Version 3 (Fig. 5.3), would be maintained.

4. Graphics for control characters should have no intrinsic meaning.

Initially, these criteria led to the code table of Fig. 5.4.

5.4 BCDIC, FINAL VERSION

Code positions °, °, 7, * that had held () = ‘ in the 1410 proposal were
left blank, with four new graphics to be chosen.

Code positions 7, 7, °, '° with graphics + V A + were deemed to
satisfy Criterion 4. But code positions ' and * had bit patterns that
functioned as control characters on one or another IBM computer.

Graphics ¢ " were clearly a violation of Criterion 4; they were rejected.

This left code positions ', *, and ® to be assigned graphics satisfying

Criterion 4, and code positions ° and ° to be assigned new graphics.

Code positions ®, °, and * had held () ’ under the 1410 proposal.
When new graphics [| / were suggested to fill these code positions, the

suggestion was adopted.

After much debate, 6 y ++ were chosen for code positions ', 7, and ®
to satisfy Criterion 4. To satisfy Criterion 4, then, eight graphics had

been chosen:

6 y + £ nw A V #

How well these graphics satisfy the criterion, the reader may judge.

The final result was BCDIC, shown in Fig. 5.5. It was approved as an

IBM Corporate Systems Standard in 1962.

Two factors were primary in the development of BCDIC from early

BCDIC, Version 1: equipment limitations and compatibility. Equipment

limitations led to the introduction of duals both for alphabetic extension

and for programming language symbols. Compatibility led to the reten-

tion of the duals, even when the 1410 console typewriter removed one

equipment limitation. (It may be remarked that the chain of the chain

printer, with its capability of 240 graphic positions, did not limit the

printing set to 48. Another aspect of the chain printer, printing speed,

was responsible for limiting the printing set to 48 graphics.)

Compatibility with existing practice is an important factor in deci-

sions on coded character sets. In summary, the four objections to the

1410 proposal were as follows:

1. Absence of plus sign.

5.4

3.
4.

BCDIC, Final Version

Bit

Pattern > A B BA

Hole

Pattern» 0 11 12

SP b y - & or +

' 1 1 / J A

2 2 2 5 K B

21 3 3 L c

4 4 4 U M D

4 1 5 5 V N E

42 6 6 W 0 F

421 7 7 x P G

8 8 8 Y Q H

8 4 9 9 Z R I

B 2 0 0 # ! 2

8 21 8-3 # or ; 3

84 8-4 @ or % or (* Wor)

84 1 8-5 Y] L

842 8-6 > \ ; <

8421 8-7 v co A #

Hole Patterns: SP - Space

[1] 8-2
[2] 0-8-2

Fig. 5.5 BCDIC, Final version

Multipunching required for keypunching,

that is, for keypunching FORTRAN program decks.

103

FORTRAN incompatibility—1410 versus other computing systems.

1410 FORTRAN Programs not listable on 1410 chain printer.

All of these problems were in fact solvable at the time, admittedly at

some cost. The incompatibility that would have resulted pre- and post-

1410 was unacceptable. The problems were not solved. Duals were

assigned into BCDIC.

The Size
and Structure

of PTTC

6.1. INITIAL CONSIDERATIONS

In 1959, engineers had started to design and develop a new communica-
tions terminal which came to be the IBM 1050. The keyboard and

printing functions were to be provided by an electric typewriter. The
typewriter provides a capability of 88 graphics. The question to be
decided was what the transmission code should be. Since perforated tape
was also envisaged for this terminal, the code came to be named the
Perforated Tape and Transmission Code (PTTC).

In today’s technology, where hundreds and thousands of electronic
circuits can be placed on a small chip, the cost of a bit is negligible. But in
the technology of the early 1960s, the cost of a bit was appreciable—6-bit

registers cost appreciably more than 5-bit registers, 7-bit registers cost
appreciably more than 6-bit registers, and so on.

Another cost factor was implicit in the byte size. On serial data

transmission lines, a fixed factor was the number of bits transmittable per
second. To transmit, for example, a thousand characters of seven bits per
character would take appreciably more time than to transmit a thousand
characters of six bits per character. The length of time the data transmis-

sion line was in use was a direct factor in determining the amount of

money that had to be paid for the use of the data transmission line. In
short, data transmission line costs were dependent on the byte size of the

transmission code.
These two cost factors, hardware cost and transmission cost, both

pointed to the necessity of keeping the byte size of a transmission code as

105

106 The Size and Structure of PTTC

small as possible. In those days, a design engineer built his reputation on
his ability to ‘‘squeeze the bits.”

Before the introduction of the IBM 1050, printing terminals had
been limited to single case capability. But the use of an electric typewriter
on the 1050 would give the capability of duocase printing—capital letters

and small letters. This duocase capability was held to be a very significant

marketing factor.

6.2 SIZE OF CHARACTER SET

Recall that the byte size of a code prescribes the number of characters
that can be incorporated into the code, by virtue of a simple binary

relationship. If the byte size if 5 bits, then 2° = 32, and there are 32

different bit patterns available; that is, a 5-bit code can have 32 charac-

ters. If the byte size is 6 bits, then 2° = 64, and there can be 64 characters.

Similarly, 7 bits leads to 128 characters, 8 bits leads to 256 characters,
and so on.

In designing a coded character set, the first determination must be

the number of characters needed to meet the requirements of the
applications in which the code will be used. This done, the code size may
then be determined by applying the analysis of the preceding paragraph
in reverse. For example, if 48 characters are needed, the 32 character

positions of a 5-bit code are insufficient, but the 64 character positions of
a 6-bit code are (more than) sufficient. A 6-bit code is needed if 48

characters must be provided.

In the case of the 1050, the determination of the number of charac-

ters proceeded as follows:

Alphabetics: 26 lower case and upper case

Numerics: 10

Specials: At this time, the character set for most IBM products was 47

and Space. For the console typewriter of the 1410, the set was 63

and Space. From this, it was rationalized that from 11 to 27 specials

should be provided. Assume at least 11 would be needed.

Space: 1

Controls: The number of control characters needed was not known in the

initial design phase of the 1050. Clearly, characters would be needed

to control the typewriter, to control the perforated-tape facility, and

to control the data transmission lines. Initially, let the number of

control characters be x.

6.3 PTTC, Version 1 107

The above tabulates as follaws:

Lower case alphabetics 26
Upper case alphabetics 26

Numerics 10 73 graphic characters*
Specials 11 at least

Space 1
Controls x

744+ x

Therefore, initial analysis showed that (at least) 73 graphic characters, the
Space character, and an as yet undetermined number of control charac-

ters would be needed for PTTC. This apparently showed that a 6-bit,

64-character set was insufficient; a 7-bit, 128-character set was appar-

ently indicated. But it was pointed out that a particular technique of

coding, which involved the use of shift characters, could reduce the size

requirement to 6 bits. (A full discussion of this coding technique is found
in Chapter 2.)

6.3 PTTC, VERSION 1

Recall from Chapter 2 the formula 2**' — y (where x is the number of

bits in the code byte and y is the number of characters wanted to be

independent of preceding shift characters). For PTTC it was decided that

the Space character and all control characters should be independent of

preceding shift characters. At a first analysis, x was taken to be 6.

Qty = 21 _ y

=128—-—y

Thus it was seen that with a byte size of 6 bits, and using the technique of

shift characters, 128 - y characters could be realized. Also, if y =

number of control characters, including Space, then the number of

graphic characters is 128 — 2y. The following possibilities were reviewed.

* It is to be noted that the number of graphic characters needed would be more
than 73. This would certainly be realizable on the 88 graphic capability of the
electric typewriter. Also, the figure 88 would clearly dictate that the maximum
number of specials would be 88— 62 = 26.

108 The Size and Structure of PTTC

Number of Number of Number of

control graphic different
characters characters characters

(y) (128 — 2y) (128 — y)

17 94 111

18 92 110

19 90 109

20 88 108

At first it was argued that, since the typewriter provides 88 graphics
only, the choice should be 20 control characters (including Space) and 88
graphics.

It was counter-argued that extensive analysis of applications suitable
for the 1050 showed that 16 control characters and the Space character

would be sufficient. Consequently, the choice should be 17 control

characters (including Space) and 94 graphic characters. While it was
admitted that the typewriter could print 88 graphics only, it was also true
that paper tape, punched cards, data transmission lines, and serial printers

could certainly implement 94 graphic characters.

At this point, a completely different factor emerged. At this time,
standards committees, nationally and internationally, were developing a
standard interchange code. All details of this code were not yet decided,
but some details were decided:

a) The code would be 7 bits.

b) There would be 32 control characters, the Space character, the
Delete character, and 94 graphic characters.

It was now proposed that the 1050 should implement the 7-Bit Code, so

that it would be compatible with the emerging national and international
standards. On the question of 7-bit size for the 1050, two counter-
arguments were voiced:

a) A 7-bit 1050 would cost much more than a shifted 6-bit 1050, and

low cost was a primary design objective of the 1050.

b) The 1050 development schedule was such that it would certainly be
developed and announced before the slowly developing national and
international standards were approved. Details of the standards, such

as number and choice of control characters and graphic characters,

changed from one committee meeting to the next. It was a reason-

able certainty, then, that the 1050 character set would disagree, in
greater or lesser detail, with the finally approved character set of the

standards.

6.3 PTTC, Version 1 109

These two factors, particularly the cost factor, were decisive. The earlier

decision, to design and develop a shifted 6-bit 1050, was upheld.
However, out of this debate emerged another factor, which was

decisive on the earlier question of graphics and controls. A communica-
tions system was postulated which would have terminals implementing
the 7-bit code, communicating via a computer, with 1050s implementing

the shifted 6-bit code. The significant aspect here was that a message,
consisting of graphic characters and the Space character, would go from
one kind of terminal, through a computer, to the other kind of terminal.

If these different kinds of terminals needed different control charac-
ters to send or receive messages, the computer program could accommo-

date such differences, removing or injecting control characters into the

data stream as necessary. But if the terminals had different graphic sets,
no computer program could compensate. The number of graphics, and
the actual graphics must match.

From this analysis, it was decided that the number of graphics in
PTTC and the 7-bit code should be the same, 94. At this stage, the actual
graphics could not be matched, since the 7-bit code was not yet finalized.

However, after the 7-bit code was finalized, a later model of the 1050 could

match the graphics. So the decision was made for the 94 graphic charac-
ters. As a consequence, Space and 16 control characters would be
independent of shift. The initial code chart for the 1050 looked like Fig.
6.1.

The 16 control characters to be independent of shift were:

PN Punch On

BYP Bypass
RES Restore

PF Punch Off

RS Reader Stop
LF Line Feed

NL New Line

HT Horizontal Tab

Uc Upper Case
EOB End of Block

BS Back Space
LC Lower Case

EOT End of Transmission

PRE Prefix

IL Idle

DEL Delete

Upper Case and Lower Case would be the two required shift characters.

110 The Size and Structure of PTTC

Lower Case Upper Case

Bit —_—_ BA B A BA B A
Pattern

Hole

Pattern—>|

1

2

21

4

4 1
47 GRAPHICS

42

421

8

8 1

8 2

8 21

84

84 1

842

8421

Hole-_»|

Pattern

Block }| Hole Patterns at:

I 3 1 Top And Left

Bottom and Left

2

2 4 3. | Top and Left

4 Bottom and Left

Fig. 6.1 PTTC, Version 1

6.4 PTTC, VERSION 2

Since there was to be a card reader/punch attached to the 1050, a

translation would be needed for the bit code of PPTC to/from the card

code. In order to minimize the cost of such a translator, it was decided to

structure the code, with respect to alphabetics and numerics, so that it

6.4 PTTC, Version 2 111

Lower Case Upper Case

Bit = _____y A B BA A B BA
Pattern

Hole

Pattern—>

SP SP

1 1 j a J A

2 2 s k b S K B

21 3 t 1 c T L Cc

4 4 u m d U M D

4 1 5 Vv n e Vv N E

42 6 Ww oO £ W oO F

421 7 x P g Xx P G

8 8 y q h Y Q H

8 1 9 z r 1 Zz R I

8 2 0 Li U4 LA L2 | 2 L2

8 21

84 PN BYP RES PF PN BYP RES PF

84 1 RS LF NL HT RS LF NL HT

842 UC EOB BS LC uc EOB BS LC

8421 EOT PRE IL DEL EOT PRE IL DEL

Hole»!

Pattern

Hole Patterns:

J
Block | Hole Patterns at:

1 3 1 Top And Left

2 Bottom and Left

2 4 3 Top and Left

4 Bottom and Left

Fig. 6.2 PTTC, Version 2

resembled BCDIC; that is, the alphabetics would be distributed into three
columns of the code table. Clearly, a corresponding upper- and lower-
case alphabetic would be on the same 1050 keytop. In order to minimize

the logic circuitry between keytops and the generation of the bit patterns
of PTTC, lower-case and upper-case alphabetics should occupy corres-

112 The Size and Structure of PTTC

ponding (same bit pattern) locations in the code table. The numerics
should be in the lower-case side of the code table, since they are
commonly on the lower-case shift of a typewriter. Finally, with these
decisions made with respect to numerics, upper-case alphabetics and
lower-case alphabetics, it seemed intuitively right that the controls occupy
the block of four rows at the bottom of the table. This led to the code

table of Fig. 6.2.

6.5 PTTC, VERSION 3

There now remained the assignment of 32 specials to code positions. It is
to be noted that, with 94 total graphic positions and a typewriter printing
capability of 88 graphics, 6 of these remaining 32 code positions would
contain graphics not printable on the typewriter. Clearly, because of the
typewriter concept of upper- and lower-case graphics on a key, it would
be confusing to an operator if any key had a printable graphic in one
case but not in the other case. Also, it would complicate the logic circuitry
to realize such an aspect. These considerations led to the conclusion that

three of the nonprintable graphics should be in lower case and three in

upper case. Also, they should be located in corresponding positions in the
code table (to do otherwise would create the undesirable aspect). It was
decided that positions ' and 7 (Fig. 6.2) would be assigned to nonprintable
graphics.

Before decisions were made on specific assignment of the 32 specials,
some preliminary. decisions were made with respect to the associated card
code. The reason behind this sequencing of decisions was as follows.
Hopefully, card-code assignments could be made on some orderly basis
that would optimize the card-code to bit-code relationship, and hence
minimize the cost of the hardware translator. If such an assignment of

card codes could be worked out, then most of the 32 specials would

automatically locate themselves in the code table, because of their already
established BCDIC card codes.

The first problem to be solved was with respect to alphabetics.
Hitherto, in data processing equipment and applications, only one set of

alphabetics was provided. It would be more correct to call these alpha-

betics ‘‘capital letters,”’ rather than “‘upper-case letters.” To refer to them as

“upper-case alphabetics” would imply the existence of ‘lower-case

alphabetics,”’ and these latter were not, in general, provided on data

processing printers.
The “capital letters’”’ had well-established card codes. Now, however,

on the typewriter of the 1050, there were to be both lower- and
upper-case letters. The question was, should lower- or upper-case letters

6.5 PTTC, Version 3 113

be assumed as corresponding to the previous capital letters and hence be
assigned their card codes? At first, the answer seems obvious. Upper-case

letters should be considered equivalent to the previous capital letters.

After all, they would have the same graphic shapes when printed.
There was a counter-argument. Three modes of operation were

visualized for the 1050. In the first mode, a communications network

would consist of 1050s only, with human operators sending, receiving,

and routing messages. In the second mode, the network would consist of
1050s communicating to a computer, and not directly to each other. In
this mode, a computer program would do the work on routing or

switching messages. In the third mode, the network would be of the same
kind as for the second mode, but the 1050s would be considered as data

entry points, with the computer executing some data processing applica-
tion on the data received.

In the first two modes (for which the telegraph network of Western
Union might be considered an example), it was assumed that the mes-

sages sent and the messages received would use both lower- and upper-
case letters. There was a human-factor reason for this decision. Human

beings are educated to read text in lower- and upper-case letters. Books,
magazines, newspapers, etc., display text in both lower- and upper-case

letters. It is interesting to read a page of text, printed only in upper case.
It is difficult to read; quite possible, of course, but difficult. Interestingly, a

page of text in lower-case letters poses very little difficulty in reading. The

reason is clear. In a page of text, very few capital letters appear. First

word in sentence, people’s names, names of cities, towns, countries, etc.,

are initially capitalized. But all other letters are lower case. A human being
is more used to reading lower-case letters. On the Telex telegraphic
network, this human factor was recognized, and text on a Telex printer is

totally lower-case letters (no capitals). By contrast, a Western Union
telegram, printed on Teletype printers, all in capital letters, is more

difficult to read.
To repeat, it was assumed that in the first two modes, both lower-

and upper-case capability would be used. But in the third mode, remote
data entry to a computer, it was assumed that only upper-case letters

would be used. This was because the printer of the computer had capital
letters only. There would be less confusion if both terminal and computer
printers printed letters of the same shape, that is, capital letters. This

assumption led to a most interesting conclusion.

The fewer times an operator has to depress the case shift key, the

higher the operator productivity. The numerics on the typewriter are in

lower case. On the assumption that capital letters would be used, and not

small letters, it would be more efficient (in this particular communications

114 The Size and Structure of PTTC

mode) if the capital letters were actually reached by the lower-case shift
of the printing element. In fact, recognizing this potential efficiency
factor, typewriter elements were provided that had capital letters in
lower-case shift as well as in upper-case shift.

In the first two communication modes, then, it was assumed that

small letters would predominate, with occasional occurrence of capital

Lower Case Upper Case

Bit A B BA A B BA
Pattarn

Hole

Pattern—> 0 11 12 NYA NYA NYA NYA

1 1

2 2

21 3

4 4

4 1 5

42 6

421 7

8 8

8 1 9

8 2 0

8 21 NYA

84 NYA

84 14 NYA Bees’
“« CONTROLS =

842 NYA ee :

8421 NYA i oe
*

Hole—p} NYA NYA NYA NYA
Pattern

NYA - Not Yet Assigned

Block | Hole Patterns at:

1 3 1 Top And Left

2 Bottom and Left

2 4 3 Top and Left

4 Bottom and Left
Fig. 6.3. PTTC, Version 3

6.6 PTTC, Version 4 115

letters. In the third communication mode, it was assumed that capital
letters would be used exclusively. At this point, a principle was evolved,
as follows:

In common data processing applications a particular set of card hole

patterns is associated with the letters. In such data processing appli-

cations, such letters happen to be capital letters. In 1050 communica-

tions applications, this same set of card hole patterns should be

associated with the set of letters predominantly used in the applica-

tion. In the first two modes of 1050 communication applications, the

predominant letters will be small letters. In the third mode, the

predominant (actually, the only) letters will be capital letters. What is
significant is that, for all three modes, the predominant letters will

appear in the lower-case shift of the typewriter. Therefore, the card

hole patterns that have, in data processing applications, been as-

signed to capital letters, should for PTTC be assigned to the lower-

case shift of the code, regardless of whether small or capital letters

are implemented in the lower-case shift.

After considerable debate, agreement was reached on this principle. The
card code assignment to PTTC then began to take shape. Compare Fig.

6.2, where the assignment of the numerics and lower-case letters is
shown, to the preliminary card code for PTTC as shown in Fig. 6.3.

6.6 PTTC, VERSION 4

Some further decisions were now made with respect to card codes:

1. Upper-case alphabetics would have the same digit punches as lower-
case alphabetics, but with zones corresponding as shown below:

Zone punches

Lower-case alphabetics 0 11 12

Upper-case alphabetics 11-0 } 12-11 12-0

2. In code positions * and ” in Fig. 6.3, hole patterns of 11-0, and 12-0,
respectively, would be assigned.

3. For the sixteen control characters, the digit punches would be 4, 5, 6,
and 7, to optimize the bit-code to card-code translation relationship.

4. The control characters would have the zone punches already assigned

to the table columns for lower-case alphabetics, and also, for all

control characters, an additional zone punch, 9.

116 The Size and Structure of PTTC

These decisions deserve some comment. In choosing the zone punches for
the upper-case alphabetics, the reasoning was as follows:

a) There would be no more than two zone punches.

b) Of the two zone punches, one would match that of the corresponding

lower-case alphabetic.

Lower Case Upper Case

Bit = A B BA A B BA
Pattern

Hole

Pattern—>} 0 11 12 NYA 11-0 12-11 | 12-0

No Pch 2 La]

1 1 1 25 11-1 12-1 12=11-1] 12-0~1

2 2 2 0-2 11-2 12-2 11-0-2 | 12-11-2] 12-0-2

21 3 3 0-3 11-3 12-3 11-0-3 | 12-11-3] 12-0-3

4 4 4 0-4 11-4 12=4 11-0-4 | 12-11-4] 12-0-4

4 1 5 5 0-5 11-5 12-5 11-0-5 | 12=11-5} 12-0-5

42 6 6 0-6 11-6 12-6 11-0-6 | 12-11-6] 12-0~6

421 7 7 0-7 11-7 12-7 11-0-7 | 12-11-7| 12-0-7

8 8 8 0-8 11-8 12-8 11-0-8 | 12-118] 12-0-8

8 1 9 9 0-9 11-9 12-9 11-0-9 | 12-11-9] 12-0-9

8 2 0 GQ 1-04 12-0-4

e 21 | NYA boy ty

84 4 9-4 9-0-4 |9=11-4 |9-12-4 9-4 9-0-4 |9-11-4 | 9-12-4

84 1 5 9-5 9-0-5 |9-11-5 |9-12-5 9-5 9-0-5 |9-11-5 |9-12-5

842 6 9-6 9-0-6 |9-11-6 |9-12-6 9-6 9-0-6 |9-11-6 | 9-12~6

8421 7 9-7 9-0-7 |9-11-7 | 9-12-7 9-7 9-0-7 | 9-11-7 | 9-12-7

Hole—» = 9 9-0 9-11 9-12 9 9-0 9-11 9-12
Pattern

NYA - Not Yet Assigned

Block | Hole Patterns at:

1 3 1 Top And Left

2 Bottom and Left

2 4 3 Top and Left

4 Bottom and Left
Fig. 6.4 PTTC, Version 4

6.7 PTTC, Version 5 117

In choosing 11-0 and 12-0 for code positions ' and 7 in Fig. 6.3, the
objective was to provide the algebraic sign capability already provided in
common practice. That is, the eleven punch over a digit punch in a
numeric card field should indicate a negative number for all numerics, 0
through 9. Similarly, the twelve punch over a digit punch in a numeric

field should indicate a positive numeric for all numerics, 0 through 9.
The choice of 4, 5, 6, and 7 as digit punches for the bottom four rows

of the table would optimize their BCD translation to/from the PTTC bit
code.

A zone punch of nine would distinguish all control characters from
all graphic characters. Advantage could be taken in the hardware of this
distinguishing characteristic.

With these decisions, the card code assignments shown in Fig. 6.3
were increased to those shown in Fig. 6.4.

6.7 PTTC, VERSION 5

There now remained 32 graphic positions in the PTTC code table with

unassigned graphics. Of these 32 code positions, 30 had not yet been
assigned card hole patterns. The numerics, alphabetics, and Space of
BCDIC had been assigned. There remained 27 BCD graphics and hole
patterns to be assigned in PTTC. For compatibility reasons, the 27
BCDIC graphics and hole patterns should match the 27 in PTTC. The

BCDIC specials were now reviewed:

@ 8-4; 11-8-6
/ 0-1 + 8-2
- 11 %(0-8-4
&+ 12 8-5
#= 8-3. * 11-8-4
+ 0-8-2 [12-8-5
, 0-8-3] 11-8-5
$ 11-8-3 + 0-8-7

12-8-3 + 12-8-7
A 11-8-7 0-8-5
\ 0-8-6 Vv 8-7
< 12-8-6 |! 11-0
> 8-6 ? 12-0
= 12-8-4

The card hole patterns 11-0 and 12-0 had been assigned in locations '
and * in Fig. 6.4, so the BCDIC graphics ! and ? would be assigned to

these PTTC code positions.

118 The Size and Structure of PTTC

Lower Case Upper Case

Bit

Pattern A B BA A B BA

Hole

Pattern—> 0 1k 12 11-0 12-11 12-0

2 2 NS

21 3

4 4 SS
4 1 5

42 6

421 7 \S

8 8 SN

soit ss NG

 84 4

84 1 5

842 6

8421 7

Hole») og 9-0 9-11 9-12 9 9-0 9-11 9-12
Pattern

Block | Hole Patterns at:

i 3 1 Top And Left

Bottom and Left

2

2 4 3 Top and Left

4 Bottom and Left Fig. 6.5 PTTC, Version 5

For translation reasons, the hole pattern 11 should be assigned in

position *, and the hole pattern 12 in position * of Fig. 6.4, which would
then dictate the assignment of graphics — and & +. For translation pur-
poses, hole patterns 8-3, 0-8-3, 11-8-3, and 12-8-3 should be assigned

in positions °, 7, °, °, respectively, which in turn would dictate the
location of graphics # = , $. (respectively). For translation purposes,

hole pattern 0-1 should be assigned in position °, which would dictate

the location for /.

These decisions resulted in Fig. 6.5.

6.8 PTTC, Final Version 119

Lower Case Upper Case

Bit A B BA A B BA
Pattern

Hole

Pattern—>| 0 11 12 11-0 12-11 12-0

y
2 T4 18 21

SP @ort ~ &or + SP A ae \ ny < BH

3 15
1 1 1 / j a > 134 2 Ls J A

4

2 2 2 $ k b Wor 4 s K B

5
21 3 3 t 1 e 3 Ley T L Cc

6
4 4 4 u m d 6 Le U M D

7
4 1 5 5 v n e %or (4 Vv N E

8
42 6 6 w o £ : Cy W 0 F

5
421 7 7 x P g " aa x P G

10
8 8 8 y q h * no YX Q H

TI
8 1 9 9 Zz xr t C Cy Zz R I

2 12 [6] {91 [22
8 2 0 0 + | ? J ba $ Y v

73 17 20 Es
8 21 8-3 #or= ; $. » Jue , ES

84 4 PN BYP RES PF PN BYP RES PF

84 1 5 RS LF NL HT RS LF NL HT

842 6 UC EOB BS LC UC EOB BS LC

8421 7 EOT PRE IL DEL EOT PRE IL DEL

Hole-—p —g 9-0 | 9-11 | 9-12 9 9-0 | 9-11 | 9-12
Pattern

Hole Patterns:

[1] 8-4 [s}s8-5 [is] 12-8-2 [22] 8-7

2] 0-8-2 [2] 8-1 12-8-7 [23] 12-8-1 Biock | Hole Patterns at:

[3] 8-6 11-8-4 0-8-1 1 3 1 Top And Left

[4]12-8-4 [14] 12-8-5 0-8-6 2 | Bottom and Left

[5]11-8-6 [r2}11-8-5 0-8-5 2 4 3 | Top and Left

[se] 8-2 {i3] 0-8-7 11-8-2 4 Bottom and Left
[7] 0-8-4 = [fa] 11-8-7 [21] 12-8~6

Fig. 6.6 PTTC, Final Version

6.8 PTTC, FINAL VERSION

There are 23 unassigned code positions (shaded) and 18 unassigned
BCDIC graphics. The remaining card hole patterns and remaining PTTC

bit patterns were simply not able to be matched to any orderly translation

relationship. The assignments were made to optimize the translation
relationship as much as possible, while realizing that the relationship
could not be very good.

120 The Size and Structure of PTTC

When the 18 BCDIC graphics and hole patterns were assigned in the
PTTC code table, there would remain five unassigned code positions. Five
graphics and five hole patterns were finally chosen as follows:

Graphic Hole pattern
. (UC) 12-8-1
, (UC) 0-8-1
! (UC) 11-8-2

? (UC) 12-8-2
" 8-1

These five were then assigned into the PTTC table, leading to Fig. 6.6,

the final version of PTTC.

These five hole patterns were chosen for the following reason. An

examination of the table shows that all combinations of digit punches 1,
2, 3, 4, 5, 6, 7, 8, 9, 8-3, 8-4, 8-5, 8-6, 8-7 with zone punches

“no-zones”, 0, 11, and 12 (the hole patterns from BCDIC) had been

assigned in PTTC. Additionally, for the capital letters, the double-zone

combinations 11-0, 12-11, 12-0 had been introduced as previously de-

scribed. Additionally, the two BCDIC hole patterns 8-2 and 0-8-2 had
been assigned. Now five more hole patterns were needed. What should
they be?

They could have been some combination of double-zone punches
with the double-digit punches 8-3, 8-4, 8-5, 8-6, 8-7, but this would have

resulted in hole patterns of four holes. It was thought preferable to choose

hole patterns of no more than three holes, and there were six such that
suggested themselves; 8-1, 0-8-1, 11-8-1, 12-8-1, 11-8-2, 12-8-2. The

8-1 was first choice, since it was a hole pattern of two holes only. Then
four of the five remaining possibles were chosen, 0-8-1, 12-8-1, 11-8-2,

and 12-8-2.

The
Structure of

EBCDIC

7.1 INITIAL CONSIDERATION

It is supposed by some people that the requirement that led from

computers with a 6-bit architecture to computers with an 8-bit architec-

ture was the requirement for a larger set of characters. It was known that

the then current 64-character set of 6-bit computers, while sufficient for

most data processing applications, was becoming insufficient for some

data processing applications. On the one hand, an insufficient number of

graphic code positions had led to the use of duals (Chapter 4). On the

other hand, an insufficient number of control] code positions had led to

the development of PTTC (Chapter 6). The implementation of PTTC on

the IBM 1050 (which was based on an electric typewriter) had introduced

lower-case as well as upper-case alphabetics to many people in the data

processing world. Also, a new data processing application, text proces-

sing, had led at least one customer to order a special IBM 1403 print

chain and to have special instructions developed for his 1401 computer to

allow him to manipulate and process upper- and lower-case alphabetics.

These situations and applications in the data processing field cer-

tainly emphasized the needs for a larger coded character set than that of

BCDIC. But these needs were very far from sufficient to dictate a

requirement for an 8-bit computer architecture. There were two other

very fundamental aspects of computer architecture that pointed at the

requirement for an 8-bit architecture. These aspects led to the develop-

ment and marketing of the IBM System/360. Once an 8-bit architecture

was decided on, with a consequent possible 256 character code positions,

121

122 The Structure of EBCDIC

the opportunity to enlarge or extend the character set from that of

BCDIC was obvious. IBM did indeed take that opportunity; the 8-bit,

256-character EBCDIC was developed and implemented.

The first aspect was the efficiency of representation of numerics in a

coded character set. The requirement for 26 (or 29) code positions to

represent alphabetics and for 10 code positions to represent numerics

together set a requirement for at least 36 code positions. In its turn, the

requirement for at least 36 code positions set a requirement for a code

byte of at least 6 bits, and BCDIC was (and is) a 6-bit coded character

set.

Although 4 bits at most are required to represent the 10 numerics,

the 10 numerics of BCDIC are represented by 6 bits, 2 bits more than

needed for numeric representation only. That is to say, numerics in

BCDIC have an unnecessarily large, and hence inefficient, bit representa-

tion.

So numerics are inefficiently represented in BCDIC. Is this signific-

ant? Indeed it is. It was variously estimated in the early 1960s that

approximately 75 percent of the data used in data processing applications

was numeric data. In short, 75 percent of the data was inefficiently

represented. Was this fact significant? In previous paragraphs, it has been

stated that requirements for larger character sets, although clearly per-

ceived, were not deemed sufficient to increase the bit size of computer

architecture. But the inefficiency of numeric data representation affected

about 75 percent of the data processed in computers. It hardly needs to

be said that efficiency of a computing system was (and is) one of the key

elements of any computer marketing strategy. Could the efficiency of

numeric representation be improved?

The ‘packing’ of two numeric digits into one 8-bit byte would

essentially represent numeric data in 4 bits, the practical minimum.

Maximum efficiency of numeric representation would be realized. This was

one of the aspects which led to the IBM decision to develop an 8-bit

architecture for computers.*
The other aspect had to do with the binary nature of the System/360.

In designing the Stretch Computer [7.1], for a number of reasons the
organization was chosen to be binary rather than decimal. Similar reasons
led to the decision that System/360 would be binary. Not only, of course,

* It must be noted that 8 bits, while ideal for representation of packed numerics,

is not ideal for the representation of all data, such as alphabetics and special
graphics. To represent all of numerics, alphabetics, and an adequate number of
special graphics, 6 bits is sufficient. So, to represent alphabetics and special
graphics by an 8-bit code is for them, inefficient. That is an illustration of a design
trade-off.

7.2 Technical Decisions 123

would arithmetic be binary but so also would addressing be binary. For
binary addressing of memory words, there is considerable advantage in
choosing the number of bits in each word to be a power of 2. The three
possibilities looked at were

25 = 32
2°=64
27 = 128

The choice of 64 bits gives a good compromise between speed and cost of
memory, and provides ample space to represent a floating-point number

in one memory word.
Since the memory word size of 64 bits was chosen, and since a byte

must be an integer submultiple, eight 8-bit bytes was the natural choice.
The decision to go to 8 bits was made, and a coded character set of

potentially 256 characters resulted. The 6-bit code had been named the
BCD Interchange Code, with BCDIC as the acronym. Since the number

of available character positions was to be extended from 64 to 256, the

new code came naturally enough to be named the Extended BCD

Interchange Code, with EBCDIC as the acronym.

7.2 TECHNICAL DECISIONS

7.2.1. 8-Bit Code Table

The first technical decision, then, was that the coded character set would

be 8 bits with a potential of 256 characters, although as narrated above,

this was more a consequence than a decision. The second decision was

how to exhibit it in manuscripts, documents, manuals, and so on. At the

time, 6-bit codes were being exhibited in 4-by-16 code tables; 7-bit code
tables were being exhibited in 8-by-16 code tables. The natural decision
was to exhibit EBCDIC in the form of a 16-by-16 code table.

7.2.2 Bit Numbers

The next step was to decide how to number or name the bits of an 8-bit

byte, for reference purposes. The philosophy for BCDIC was bit naming:

B, A, 8, 4, 2, 1. The philosophy for ASCII was a combination of bit

naming and bit numbering: b7, b6, b5, b4, b3, b2, b1. A common

engineering practice was to number from left to right and to associate the

order of the numbering with high to low significance; for example,
memory addresses in a computer, columns on a punched card, tab stops
on a typewriter. It was decided to number the bits of an EBCDIC byte

124 The Structure of EBCDIC

according to this same philosophy (0, 1, 2, 3, 4, 5, 6, 7) from the

high-order to the low-order bit of a byte, as shown:

0/1/2/3|4]5|6|7

7.2.3. Hexadecimal Numbers

The next step was to decide how to reference a particular code position.

It was decided that the 16 columns (from left to right) and the 16 rows
(from top to bottom) would be named 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C,

D, E, F, as shown in Fig. 7.1.

A particular code position would be referenced by giving its column

name followed by its row name: for example, code position A7 in Fig.

7.1. This notation came to be called the hexadecimal notation, or hex

notation.

The columns and rows could have been named (numbered) 0, 1, 2, 3,

4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, as was done with another 8-bit

Column a | 1 | 2 3 4 | 5 | 6 | 7 8 | 9 | A B c D E | F

Bit oo 01 10 11

Pat.

00 01 10 11 00 01 10 11 00 o1 10 11 oo 01 10 11

0 0000

1 0001

2 0010

3 0011

4 0700

5 0101

6 0110

7 [0111 A7

8 1000

9 1001

A 1010

B 1017

c 17100

D 4101

E 47470

 F 1T11

Fig. 7.1 Hexadecimal columns and rows

7.2 Technical Decisions 125

code form (to be discussed in Chapter 20). The hex notation is more

compact, and always requires exactly two “‘typing” spaces for the man-

uscript representation of a code position; 35, A7, EF, etc. By contrast,

the numeric notation requires a separating mark (the slash /) to avoid

confusion; 0/9, 3/15, 1/11, etc. Also, if allowed to be a non-uniform

notation to gain compactness, as 1/6, 1/11, 11/1, 11/11, the number of

““‘typing’’ spaces could vary from three to five, while, if uniformity was

imposed, as 01/06, 01/11, 11/01, 11/11, the number of ‘“‘typing”’ spaces

required would be exactly five. Either way, the hex notation, with its

always uniform requirement for exactly two ‘“‘typing” spaces, seems

superior.

7.2.4 Quadrants

The final decision, also for purposes of referencing the code table, was to

consider the code table to be divided into four equal quadrants, as shown

in Fig. 7.2. The quadrants would then be referred to as the first quadrant,

the second quadrant, etc., or as quadrant one, quadrant two, etc.

Column

Bit
Pat.

>

0 0000

1 0001

2 00710

3 00171

4 0100

5 0101

6 0110

7 0111

8 1000

9 1001

A 1070

B 1011

Cc 1100

D 17101

E 1110

F 1111
Fig. 7.2 EBCDIC quadrants

126 The Structure of EBCDIC

7.2.5 Blocks

The code table would have to be shown with four unequal blocks in order

to exhibit the card code (as described in Chapter 2), as shown in Fig. 7.3.

Block 1

Block 3

Block 2

Block 4

- Figure 7.3

7.35 SUMMARY

In summary, then, five decisions were made in order to exhibit and

reference the EBCDIC Code Table:

1. The code table would be 8 bits, with a potential of 256 characters.

2. The bits of an EBCDIC byte would be numbered 0, 1, 2, 3, 4, 5, 6,

7, from left to right, that is, from high-order bit to low-order bit of a

byte.

3. The 16 columns and 16 rows of the code table would be named

according to a hexadecimal notation: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B,

C, D, E, F. A particular code position would be referenced by giving

first its column name, then its row name.

4. For purposes of reference the code table would be considered to be

divided into four quadrants of four columns each; first quadrant,

second quadrant, etc.

5. In order to exhibit the card code, the code table would be shown in

four (unequal) blocks.

These decisions having been made (the last four decisions might be

considered more of an administrative than of a technical nature), atten-

tion was then directed to the technical aspects of EBCDIC. Ten criteria

emerged.

7.4 CRITERIA

Criterion 1 (Collatability)

The 64 characters of BCDIC, when embedded in the 256 code positions

of EBCDIC, should have the same collating sequence, not necessarily

contiguously, as BCDIC.

7.4 Criteria 127

Criterion 2 (Space collatability) .

The Space character should collate low to all EBCDIC graphic charac-

ters, those immediately assigned and those to be assigned in the future.

Criterion 3 (Separability)

Control characters should be easily distinguishable, by their bit-patterns,

from graphic characters; that is, graphic and control characters should be

separable.

Criterion 4 (Duocase capability) .

Lower-case alphabetics, as well. as upper-case alphabetics, should be

assigned.

Criterion 5 (Duocase relationship)

Corresponding upper- and lower-case alphabetics should differ only in

high-order, or zone, bits. The bit patterns for corresponding upper- and
lower-case alphabetics should have the low-order four bits identical.

Criterion 6 (Sign capability)

The concepts of positive, negative, and absolute numerics, zero through

nine, should be incorporated.

Criterion 7 (Card-code compatibility)

The card hole patterns for the 64 BCDIC characters should be the same

for BCDIC and EBCDIC.

Criterion 8 (Translation simplicity)

The translation from the 64 6-bit bit patterns of BCDIC to their equival-
ent 8-bit EBCDIC bit patterns should be as simple as possible.

Criterion 9 (Subsetability)

By dropping the two high-order bits of the 8-bit EBCDIC bit patterns, a

compact 64 character subset should emerge. This subset should consist of

the 64 BCDIC characters but need not have the same bit patterns.

Criterion 10 (No duals)

The five dual pairs of BCDIC should be eliminated, giving rise to ten

unique EBCDIC characters.

It was recognized that Criterion 10 conflicted with Criteria 1, 7, 8,

and 9. The resolutions of this conflict led to user dissatisfaction, as

described in Chapter 9, The Duals of EBCDIC. .

128 The Structure of EBCDIC

Criteria 1 through 7 are discussed in Chapter 8; Criteria 8 and 9 are
discussed in Chapter 10; Criteria 7 and 10 are discussed in Chapter 9.

REFERENCE

7.1 W. Buchholz, “Planning a Computer System.” New York: McGraw-Hill,
1962, Chapter 5.

The
Sequence of
EBCDIC

During the late 1950s and early 1960s, the code used on IBM computers

was a 64-character, 6-bit code, called BCDIC. It met the require-

ments of the time well enough. The 64 6-bit bit patterns were sufficient to
represent the following:

a) Space, alphabetics, and numerics.

b) The extra diacritic and accent letters needed for the major European
Latin alphabets.

c) Special graphics needed for most data processing applications.

d) Special graphics needed for the major programming languages (As-

sembler, COBOL, FORTRAN, etc.).

e) Control characters needed for control of either data processing
devices (mainly tape drives) or formatting of data.

It came to suffer from two defects—duals and collating sequence. (For a
discussion of the duals problem, see Chapter 9.)

We learned in Chapter 7 of the decision to go to an 8-bit computer
architecture. This led to the potentiality of a 256-character, 8-bit code set
and to the establishment of ten criteria. The application of seven of these

criteria, beginning with Criterion 1 relating to collatability, are discus-
sed in this chapter.

8.1 BCDIC COLLATING SEQUENCE

The 63 graphics, and Space, of the BCD Interchange Code (BCDIC) are

shown in Fig. 8.1, arranged in sequence of bit patterns from low (00,0000)

129

130 The Sequence of EBCDIC

Pattern 00 4 re ul

0000 : sp 6 - & or +

0001 1 / J A

0010 2 S K B

0011 3 T L C

0100 4 U M D

0101 5 V N E

0110 6 W 0 F

0111 7 xX P G

1000 8 YX Q H

1001 9 Zz R I

1010 0 t ! ?

1011 # or = , $

1100 @ or ' % or (_ * Wor)

1101 : v J C

1110 > \ 3 <

1111 v # A +

Fig. 8.1 BCDIC

to high (11,1111). There was, however, an established collating sequence

for these 64 characters. Each graphic character, and the Space character,
was assigned a collating number, from low (0) to high (63). In Fig. 8.2 are
shown the collating numbers assigned to the 64 characters of Fig. 8.1. As

can be seen, the bit-pattern sequence of the 64 characters did not

correspond in any way to the collating sequence of the 64 characters. The

graphic characters, arranged in collating sequence, are shown in Fig. 8.3,
with collating numbers running from 0 (low) to 63 (high).

The basic element in any sorting or collating application is a com-

parison of the magnitude of two quantities. Essentially, the question is

asked (by machine instructions in a program):

Is item A greater than, equal to, or less than item B?

Depending on the answer, the item is inserted into an ordered list of

items. This comparison (by executing what was generally called a Com-

pare instruction) is generally implemented in hardware by subtracting one

8.1 BCDIC Collating Sequence 131

Pattern >

0 19 12 6

55 13 36 , 26

56 46 37 27

57 47 38 28

58 48 39 29

59 . 49 40 30

60 50 41 31

61 51 42 32

62 52 43 33

63 53 44 34

54 45 35 25

20 14 7 1

21 15 8 2

22 16 9 3

23 17 10 4

24 18 11 5

Fig. 8.2 BCDIC collating numbers

item from the other and inspecting the sign and magnitude of the result

(positive, zero, or negative).

In order that the Compare instruction would function correctly on
the basis of the established collating sequence, and despite the disordered
bit-pattern sequence, one of two approaches has been employed.

8.1.1 Convert/Compare/Reconvert Approach

On the binary machines (704, 709, 7090, etc.) an instruction was pro-

vided, generally called a Convert instruction. When executed, this instruc-
tion would convert the 6-bit bit patterns to another set of bit patterns.

This other set of bit patterns had the characteristic that the bit pattern
sequence matched the collating sequence. Thus, when executed, the
hardware Compare instruction subsequently would function so that the

data would be arranged into the correct collating sequence. After the

sorting or collating function was implemented on all the data, that portion

132 The Sequence of EBCDIC

i a
Ge ee

nor) L4 » Le 7 24 wy LEY
c LY » LY pS x GY

a eee 3 ES y 1S

» Let @or GY x A z (Le

& or + 4 uBR , 24 9 SH
Sep eee
» Le y Ge y EY 2 LE

eet
, bo a BY p bal , BY
a 4 gp EL g FY 5 LE
eee ed
ey ae ee
ee} ee

% or) 2S p EL 7 (Me g (s2

Fig. 8.3. BCDIC graphics in collating sequence

of the data that had been “‘converted” had to be reconverted back to its

correct BCD bit patterns. This reconversion was accomplished by another

instruction.

8.1.2 Comparator Approach

On the character machines (1401, 1410, 705, 7080, etc.) special hardware

called ““comparator” hardware was built in. This hardware, when execut-

ing a compare instruction, first performed the equivalent of the Convert

instruction described above, then executed the actual comparison of the

two items. Thus, the hardware, without actually converting any data (and
thus eliminating the need for a subsequent reconversion) allowed the data
to be sorted or collated into the correct sequence.

8.2 Embedment of BCDIC Collating Sequence 133

An analysis of the two approaches reveals the following:

In the Convert/Compare/Reconvert approach, no extra hardware

was required, but extra CPU time was required to execute the

conversion and reconversion parts of the program.

=" In the Comparator approach, no extra CPU time was required, but

the Comparator hardware itself increased the cost of the computing
system.

There was, therefore, either a performance penalty or a hardware cost
penalty.

8.2 EMBEDMENT OF BCDIC COLLATING SEQUENCE

In the design of the new 8-bit CPU code, the Extended BCD Code

(EBCDIC), it was postulated that the above penalties could be removed,

Column 0 | 1 | 2 | 3 4 | 5 | 6 | 7 8 | 9 | A | 8 c Do | E | F

Bit | 00 01 10 11

Pat. 7
00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11

Row .

0 {0000 . I 0 19 12 6

1 |0001 55 13 36 26
a

2 |0010 56 46 37 27

3 {0011 57 47 38 28

4 lo1ool. 58 48 39 23

5 [0101 II] 59 49 oO 30

6 |0110 60 50 a1 31

7 {0111 : 61 51 42 32

8 |1000 62 52 43 33

9 100% 63 53 Ru 34

A |1010 TILT} 54 55 35 25

B |1011 20 1s 7 1

c |1100 21 15 8 2

D {11701 IV] 22 16 q 3

— 41110 23 17 19 &

Fo |t1t1 24 18 11 5
Fig. 8.4 Blocks in BCDIC

134 The Sequence of EBCDIC

without any deleterious effects on the user. Let us see what actually

happened.

In studying Fig. 8.2, it was observed that the code table could be

visualized as being in four major blocks, designated I, UH, HI, and IV in

Fig. 8.4, Then if the blocks were rearranged relative to each other, with a

view towards coming closer to a correct collating sequence, the result

would be as shown in Fig. 8.5. Then, if the two high-order bits of each

column were inverted (zero for one, and one for zero) and the columns

reordered on the new two high-order bits, the result would be as shown in

Fig. 8.6. Finally, given the freedom that columns, or if necessary, partial

columns, could be distributed into the 16 column spaces of an 8-bit code

table, the results would be as shown in Fig. 8.7.

In Fig. 8.7, observe that the 64 characters are almost (not quite, see

character 0 and character 13) in correct collating sequence, albeit not

contiguously in bit-pattern sequence. The fact that the BCDIC collating
sequence could be embedded in the EBCDIC collating sequence was the

primary design factor for EBCDIC.

Column} 0 | 1 | 2 [3 4 | 5 | 6 | 7 8 | 9 [A | B c | Db | E | F

Bit. 00 01 10 1

Pat. "4
Row 00 | 01 10 11 oo | 01 10] 11 oo | o1 10 14 oo | 01 10 1

a |oo000 20 15 7 1

1 }0001 21 15 8 2

2 {0010 IV] 22 16 9 3

3 [oor 23 17 10 4

4 0100 24 18 12 5

5 |0101 I 0 19 12 6

6 |0110 TIT | sy 45 35 25

7 |0411 55 13 36 26

8 1000 56 46 37 27

9 |1001 57 47 38 28

A }1010 II } 58 48 39 29

ae |1011 59 49 40 30

ce {1100 60 50 41 31

Dp }1101 61 51 42 32

e |ii10 62 52 43 33

ee 63 53 4h 34
Fig. 8.5 BCDIC rearrangement 1

Column 0 [1 | 2 | 3 4 | 5 | 6 | 7 8 9 | A B Cc | D | E | F

Bit oo 01 10 11 ~]

Pat.
Row 00 01 10 11 00 o1 10 11 00 01 10 11 00 01 10 11

0 |0000 z 7 Va 20

1 0001 2 8 15 bt

2 0010 IV 3 9 16 22

3 [0011 4 10 17 2 |

a

4 |0100 5 li 18 24

5 0101 I 6 12 19 9

6 0170 TIT] 25 35 4S 54

7 10111 26 36 13 55

8 |1000 27 37 46 56 |

9 1001 28 38 47 5

A |1010 29 39 48 58

B |1011 IL] 30 40 49 59

c |1100 31 41 50 50 |

Oo +1101 32 42 51 61

—E 11110 33 43 52 62 |

F141 34 44 53 6

Fig. 8.6 BCDIC rearrangement 2

Column| 0 | 1 2 | 3 4 5 | 6 | 7 8 | 9 | A | B c | D | E F

Bit oo 01 10 11

Pat. "|
Row 00 01 10 17 00 01 10 11 00 Ot 10 11 00 o1 10 11

0 |0000 1 7 14 20

1 0001 2 8 15 21

2 |0010 IV 3 9 16 22

3 [00171 4 10 17 23

4 10100 5 1 18 24 “|

5 |0101 I] 6 12 19 @ -

6 0110 III} 25 35 45 54

7 |o111 26 | 36 | @3) | 55

8 $1000 27 37 46 56

9 1001 28 38 a7 87

A |1010 29 39 48 se |

B 1011 IL 30 40 49 59

c 11100 31 ut 50 60
—~

D |1101 32 42 51 61

E |11710 33 43 52 62

F 411114 34 ah 53 63

Fig. 8.7. BCDIC rearrangement 3 (two collating exceptions)

135

136 The Sequence of EBCDIC

8.3. BCDIC CARD CODE RELATIONSHIP

It was at this point that several other factors were reviewed as design
requirements. Following this review, criteria for EBCDIC design were

established, and the final EBCDIC was designed. Before looking at the
criteria, let us look at the other design factors.

First, in BCDIC, there was a reasonably simple relationship between
BCDIC card hole patterns and BCDIC bit patterns (see Fig. 8.8). This
relationship, the cornerstone of the binary coded decimal algorithm,
results in relatively simple and inexpensive hardware translators in card

reader/punch units serving as input/output units to CPU’s. It was deemed

desirable to maintain this simple bit-pattern—to—hole-pattern relationship
in EBCDIC, if possible. The translation relationship, bit patterns to/from
hole patterns, reveals itself on examination of Fig. 8.8.

Pattern nd No Zone A B BA

No Pch 8-2 Is] 11 12

i 1 0-1 11-1 12-1

2 2 0-2 11-2 12-2

2) 3 0-3 11-3 12-3

4 4 0-4 11-4 12-4

41 5 0-5 11-5 12-5

42 6 0-6 11-6 12-6

421 7 0-7 11-7 12-7

8 8 0-8 11-8 12-8

8 1 9 0-9 11-9 12-9

8 2 0 0-8-2 uo 4 wo -

8 21 8-3 0-8-3 11-8-3 12-8-3

84 8-4 0-8-4 11-8-4 12-8-4

84 1 8-5 0-8-5 11-8-5 12-8-5

842 8-6 0-8-6 11-8-6 12-8-6

8421 8-7 0-8-7 11-8~7 128-7
Exception translation

Fig. 8.8 BCDIC-BCD relationship

8.3 BCDIC Card Code Relationship 137

Zone punches—no zone, zero zone, eleven-zone, twelve-zone—

translate to/from the two high-order, or zone, bits—No zone, A, B,

BA.

Digit punches 1, 2, 3, 4, 5, 6, 7 translate to/from their binary

equivalents, 1, 2, 21, 4, 41, 42, 421.

Eight punch translates to/from its binary equivalent 8. This holds
whether or not it is in conjunction with digit punches 1, 2, 3,..., 7.

Nine punch translates to/from its binary equivalent 8 1.

Zero punch translates a little trickily, depending on whether it is a
zone punch or a digit punch. It is a zero punch if it is alone, or if it is
in conjunction with either zone punch 12 or 11 and then translates

to/from its conventional BCD equivalent 8 2. It is a zone punch if it

is in conjunction with any other digit punch 1, 2, 3,..., 7, 8, 9, and

translates to/from the A zone bit.

cum of l?zle]ele*lel7lel*l*][*l[el°l=|*
Bit 00 01 10 11

Pat. 7
oo 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11

Row

0 |eooe ©[@ |@ {| @| + | as Jas |
1 0001 26 36 @ 55

2 }0010 27 37 46 56

3 [0011 28 38 47 57

4 10100 29 39 48 58
4

5 [0101 30 40 49 59

6 |0110 31 41 50 60

7 |o0111 32 42 51 61

8)}1000 33 43 52 62

9 |1001 34 Aa 53 63

A 1010

—_

B |1011 1 7 14 20

c |1100 2 8 15 21

D 11101 3 9 16 22

— |1110 4 10 17 23

Fo of14114 5 11 18 24
Fig 8.9 BCDIC rearrangement 4 (five collating exceptions)

138 The Sequence of EBCDIC

In order to maintain this hole-pattern-to-BCD bit-pattern relationship, it
is clear that the embedment of the 64 BCDIC characters in the 8-bit code
table, as shown in Fig. 8.7, would be wrong. Instead, the embedment

shown in Fig. 8.9 would come closer to preserving both the collating
sequence and the BCD relationship.

Block I is a little garbled on the collating sequence, and Block III

would put the BCD bit patterns 8 2 in the top row. But these are

peculiarities which we will study later.

8.4 TECHNICAL DECISIONS

Decision 1

The first decision was with respect to control characters and graphic

characters. It was decided (on a purely intuitive basis) that there would be
64 control character code positions and 192 graphic character code

positions.

Decision 2

The second decision was with respect to the code table location of the

control and graphic characters. It was decided that a quadrant would be
devoted to control characters (i.e., control characters should not overlap

quadrants) and that the first quadrant would be reserved for control

characters. Both Decision 1 and Decision 2 were based on Criter-

ion 3 (see Chapter 7): “Control characters should be easily disting-

uishable, by their bit patterns, from graphic characters; that is, graphic

and control characters should be separable.”
The first structuring of EBCDIC began to emerge (Fig. 8.10).

1 2 3 4
Control

characters Graphic characters

Figure 8.10

Decision 3

It was decided that the special graphics should be contained in one

quadrant (mostly) and the alphabetics and numerics in another quadrant,
as shown in Fig. 8.9. This decision was based on Criterion 1, the

requirement to embed the BCDIC collating sequence in the EBCDIC

8.4 Technical Decisions 139

collating sequence. Letting S stand for special graphics, and AN stand for

alphabetics and numerics, this gave rise to three possibilities, as shown in
Fig. 8.11.

1}/2/3 1) 4 1}/2/3)]4 1}/2/3 / 4

S |AN S SN AN S |AN

Possibility one Possibility two Possibility three

Figure 8.11

Decision 4

Criterion 2 dictated that the Space character should occupy the first
code-table position in the Second Quadrant (Fig. 8.12).

Space

[
|

1 2 3 4

Figure 8.12

Decision 5

The gross collating sequence of BCDIC, and hence of EBCDIC, was

specials, alphabetics, numerics. It was decided (intuitively) that specials
should collate low to lower-case alphabetics as well as to upper-case

alphabetics.

Decision 6

Criterion 4 (inclusion of lower-case alphabetics) and Decision 5 clearly
ruled out Possibility 3 of Fig. 8.11.

Decision 7

It was decided (intuitively) that lower-case alphabetics as well as upper-
case alphabetics should collate low to numerics.

Decision 8

Decision 7 clearly ruled out Possibility 1 of Fig. 8.11, and left Possibility
2 as the only possible structure for EBCDIC. Decision 2, and Decisions

140 The Sequence of EBCDIC

3, 5, 6, and 7 which led to Decision 8, established the EBCDIC structure

as shown in Fig. 8.13.

Column o

Bit
Pat.

0000

0001

0010

00171

a100 CONTROLS LOWER CASE UPPER CASE
ALPHABETICS HABETICS

0101

0110

0141

1000

1001

101710

1011

1100

SPECIALS
1101

1110

1111
Fig. 8.13 EBCDIC gross structure

Decision 9

It was decided that Criterion 1 would be applied absolutely, regardless of
other criteria. An examination of Fig. 8.9, therefore, indicated that

characters 6, 12, 19, 0, and 13 must be rearranged and Figs. 8.14 and

8.15 show the final result.
It is to be noted that Criterion 6 was also met by Fig.

8.15. The card hole patterns and positive, negative, and absolute

numeric equivalents were as shown in Fig. 8.16. Note also that some of

the card hole patterns for EBCDIC had now been established, as shown
in Fig. 8.17. It was decided at this time that, as regards small letters and
capital letters, the capital letters should be assigned to the BCDIC hole
patterns for alphabetics, in order to ensure a more reasonable migration
from BCDIC to the EBCDIC environments.

coum] of 1]2[s|[«[e]e,7]*,e,alelelol«|.r
Bit | 00 01 10 11

Pat. ”
oo | 01 10 14 oo | 01 10 | 11 oo | 01 10 11 oo! 01 10 11

Row

o j;o000 I 0 6 12 19 TIL f 25 35 45 54

1 0001 13 26 36 55

2 {0010 27 37 46 56

3 {0011 28 38 47 57

4 0100 29 39 48 58

5 0101 IT] 30 40 49 59

—

6 0110 31 al 50 a

7 [0111 32 42 51 61

8 |1000 33 43 52 62

9 71001 34 Qh 53 63

A |1010

B 11041 1 7 ra | 20 |

c 1100 2 8 15 21

—_

D {1101 IV 3 9 16 22

—E {1110 4 10 17 23

F 11111 5 12 18 24

Fig. 8.14 BCDIC rearrangement 5 (correct collating sequence)

Column} 0 | 1 | 2 | 3 4 5 | 6 7 8 | 9 I A | B c |» | E | F

Bit 00 01 10 11 i”

Pat, ~
oo | 01 10 11 oo | 01 10 11 oo | 01 10 11 oo] 01 10 11

Row

o |ooo0o0 SP | &+ - 6 ? | + 0

1 0001 / A J J

2 |0010 B K S 2

3 [0011 c L T 3

4]0100 D M U 4

5 {0701 E N Vv 5

6 101170 F Oo W 6

7 Yow G P xX 7

8 1000 H Q Y 8

9 1001 IT R Zz 9

A |1010
au

B 11011 . $ > its

c |1100 m)t| * 1% ¢(/@!'

D |1101 [J Y

E /1710 < 3 \ >

F |a1i1 ¢ A # ¥

Fig. 8.15 BCDIC graphics in EBCDIC

1A1

Hole Numeric Hole Numeric Hole Numeric
Graphic | pattern | equivalent | Graphic | pattern | equivalent | Graphic | pattern | equivalent

? 12-0 +0 ! 11-0 —-0 0 0 0
A 12-1 +1 J 11-1 -1 1 1 1
B 12-2 +2 K 14-2 —2 2 2 2
Cc 12-3 +3 L 11-3 —3 3 3 3
D 12-4 +4 M 11-4 —4 4 4 4
E 12-5 +5 N 11-5 -5 5 5 5
F 12-6 +6 O 11-6 ~6 6 6 6
G 12-7 +7 P 11-7 ~7 7 7 7
H 12-8 +8 Q 11-8 -8 8 8 8
I 12-9 +9 R 11-9 -9 9 9 9

Fig. 8.16 EBCDIC-—BCD relationship

Column 0

00

Hote

Pat.

X = Assigned Hole Patterns
Hole Patterns:

G] Ml [13] 0-1
2] Block | Hole Patterns at:

[3] [3] 12-0 1 3 L Top and Left

(4] 11-0 2 Bottom and Left

[5] No Pch [1] 0-8-2 2 4 3. | Top and Right

[e] 12 [2] 0 4 | Bottom and Right
Fig. 8.17. Preliminary EBCDIC hole patterns

142

The Duals
of

EBCDIC

9.1 A- AND H-DUALS

In Chapters 4 and 5 there is a discussion of the five duals of BCDIC; why
they came into being, an attempt to eliminate them, and why they were
not eliminated after all. The duals came into existence because of
equipment limitations and were retained for reasons of compatibility.

A number of different 48-character chains were provided for the
families of 6-bit computers. These chains were designated by letters A, B,
C, D, E, F, G, H, I, etc. One of these chains carried the ‘‘commerical”’

graphics and was designated an A chain. Another chain carried the
“scientific” graphics and was designated the H chain. In time, the duals
came to be designated by these letters; the A-duals and the H-duals.

Hole patterns A-duals H-duals

0-8-4 % (
12-8-4 x)
12 & +

8-3 # =
8-4 @

While EBCDIC was being developed (as described in previous chapters),

the question arose again, “Should the duals be eliminated?”

9.2 IMPLICATIONS OF REASSIGNING DUALS

Certainly, the equipment limitations could be removed. While the

System/360 was being designed, a new keypunch (which came to be the

143

144 The Duals of EBCDIC

IBM 029 Keypunch) was being designed. It would expand from the

capability of the 026 Keypunch to key 48 characters by single key-stroke
to a capability of 64 characters. New printers were being designed, and it

was assumed or hoped that the long-established 48-character printing set

could be expanded without sacrificing printing speed. The question of
compatibility of card hole patterns with BCDIC would obviously arise
and would have to be reviewed. But the full implications of any such

incompatibility could not be reviewed in depth until the nature and extent

of the incompatibility was known. The first thing to be determined was
what the incompatibility might be. There were four possibilities:

Possibility 1. Retain the de facto BCDIC hole patterns for the A-duals,
and assign new hole patterns to the H-duals.

Possibility 2. Retain the de facto BCDIC hole patterns for the H-duals,
and assign new hole patterns for the A-duals.

Possibility 3. Retain the de facto BCDIC hole patterns for some of the
A-duals and for some of the H-duals, and assign new hole patterns to the
other A-duals and to the other H-duals.

Possibility 4. Assign new hole patterns to the A-duals and to the

H-duals.

It was clear that, whatever the implications of Possibilities 1 and 2, these

must be determined first, after which the implications of Possibilities 3

and 4 could be determined easily. So Possibilities 1 and 2 were looked at
first.

Three data processing customer situations were reviewed:

Situation 1. Customer now, or in the future, will take a successfully

performing application on a BCDIC computer and convert it to run on an
EBCDIC computer.

Situation 2. An application will be organized so that it is processed
partially on a BCDIC computer and partially on an EBCDIC computer.

Situation 3. An application will be processed completely on an EBC-

DIC computer.

With respect to Possibilities 1, 2, 3, and 4, Situation 3 seemed to display

no implications, so it was disregarded in further review.
Two assumptions were now made:

Assumption 1. A-duals will appear mainly in data. That is, they will be
required to be input to the system, will exist in data during various stages
of processing, and may be required in output listings or other output data.

9.2 Implications of Reassigning Duals 145

Assumption 2. H-duals will appear mainly in programming source lan-
guage statements. That is, they will require to be input to the system, and
will be required for source language program listings, and will be required
during compile processes, but will not then be required in further stages

of processing.

Some implications now emerged:

Implication 1. Possibility 1 posed no adverse implications under As-
sumption 1 for any of Situations 1, 2, or 3, but it posed adverse
implications under Assumption 2.

Implication 2. Possibility 2 posed no adverse implications under As-
sumption 2 for any of Situations 1, 2, or 3, but it posed adverse
implications under Assumption 1.

Implication 3. Possibilities 3 and 4 posed adverse implications for all of
Situations 1, 2, and 3 under both Assumptions 1 and 2.

Before we consider adverse implications, let us look at another

assumption that was made.

Assumption 3. Under Possibilities 1, 2, 3, and 4, the “new” hole

patterns would nevertheless be contained within the set of 64 BCDIC
hole patterns. That is to say, the “new” hole patterns* could still be input
to BCDIC computing systems, even though their graphic meanings had

been changed.

Now, let us examine the adverse implications in detail. First we need
some terminology to cover the four Possibilities precisely.

If the old and therefore compatible hole patterns are retained for the
A-duals, the data containing these duals will be called “‘compatible

BCDIC A-data,” or “compatible EBCDIC A-data,” depending on which
code is used. Similarly, if old hole patterns are retained for the H-duals,
reference will be made to “compatible BCDIC H-data,” or to ‘‘compati-

ble EBCDIC H-data.”
If new and therefore incompatible hole patterns are assigned to the

A-duals, reference will be made to “incompatible BCDIC A-data” or to

*An intriguing aspect of “new” hole patterns emerged in EBCDIC. A 64-
character subset of the 256 EBCDIC hole patterns was the set that was single-
stroke keypunchable on the 029 Keypunch. But the EBCDIC set of 64 hole
patterns did not match the BCDIC set of 64 hole patterns. EBCDIC subset
contained 12-8-2 and 11-8-2, but not 12-0 and 11-0 (12-0 and 11-0 were, of

course, contained in the total set of 256 EBCDIC hole patterns). BCDIC set
contained 12-0 and 11-0, but did not contain 12-8-2 and 11-8-2. This anomaly is
fully discussed in Chapter 10.

146 The Duals of EBCDIC

“incompatible EBCDIC A-data.” Similarly, if new hole patterns are
assigned to the H-duals, reference will be made to “incompatible BCDIC
H-data” or to “incompatible EBCDIC H-data.”

9.2.1 Situation 1 Consequences

Consider Situation 1 under each of the four Possibilities:

Situation 1/Possibility 1. There will be no problem with A-data, but all
programs will have to be either reprogrammed or rekeypunched for the
incompatible EBCDIC H-data, then recompiled and redebugged.

Situation 1/Possibility 2. Data containing compatible BCDIC A-data
will have to be converted to incompatible EBCDIC A-data. Programs

will have to be either reprogrammed or recompiled and redebugged (but

not rekeypunched).

Situation 1/Possibility 3. The actual situation here would depend on
which A- and H-duals were, or were not, changed. However, for those

applications with A-data whose A-duals had been changed, data would
have to be converted. Programs would have to be either reprogrammed
or rekeypunched, then recompiled and redebugged.

Situation 1/Possibility 4. Data containing compatible BCDIC A-data
would have to be converted. Programs would have to be rekeypunched,
recompiled, and redebugged.

9.2.2 Situation 2 Consequences

Now, Situation 2 had to be defined in greater depth. There are three
considerations:

* BCDIC computer does, or does not, process H-data.

= BCDIC computer does, or does not, pass A-data to EBCDIC

computer.

=" BCDIC computer does, or does not, receive A-data from EBCDIC

computer.

The various possible situations are shown in the left column of Fig. 9.1.

For these various situations, the table indicates whether implications are
unsatisfactory (U) or satisfactory (S). For the various Situations under the

four Possibilities, Situation/Possibilities were unsatisfactory in 12 in-
stances because of change of H-duals, unsatisfactory in 18 instances

because of change of A-duals. Assuming all Situation/Possibilities were

9.2 Implications of Reassigning Duals

BCDIC Possibility Possibility Possibility Possibility

Computer 1 2 3 4

Processes H, yes U S U U
Passes A, yes S U U U
Receives A, yes S U U U

Processes H, yes U S U U

Passes A, yes S U U U

Receives A, no S S S S

Processes H, yes U S U U

Passes A, no S S S S

Receives A, yes S U U U

Processes H, yes U S U U
Passes A, no S S S N)

Receives A, no S S S S

Processes H, no S S S S

Passes A, yes S U U U

Receives A, yes Ss U U U

Processes H, no S S S S

Passes A, yes S U U U

Receives A, no S S S S

Processes H, no S S S S

Passes A, no S S S S

Receives A, yes S U U U

Processes H, no S S S S

Passes A, no S S S S

Receives A, no S S S S

Figure 9.1

147

equally likely to occur, the table shows more unsatisfactory implications
for A-dual changes than for H-dual changes.

There was another consideration. There are vastly more tapes con-

taining application data (i.e., containing A-duals) than there are source
language program tapes (i.e., tapes containing H-duals). In general, it was
reasoned that the costs of converting data (if A-duals were changed)

would be vastly greater than the costs of converting programs (if H-duals

were changed). Possibility 1, therefore, seemed to pose very much less of

148 The Duals of EBCDIC

a cost implication for users than Possibility 2. Possibilities 3 and 4 seemed
to pose more cost implications for users than either Possibilities 1 or 2. In
short, Possibility 1 seemed to be the least onerous choice.

9.3 FIRST DECISION

The first decision was made. If one of the four Possibilities were chosen, it

would be Possibility 1—to retain the BCDIC hole patterns for the
A-duals and to change the hole patterns for the H-duals. This Possibility
would be taken together with Assumption 3—to retain the 64 BCDIC

hole patterns.

The next step was to decide which five BCDIC graphics would be

replaced by the EBCDIC H-duals:

() + =!

9.4 FURTHER DECISIONS

Some further decisions were made:

1. Space, numerics, alphabets would not be changed.

2. @ # % & HK would not be changed.

3. ., * / $ — would not be changed.

This left the following BCDIC graphics for consideration:

>> $2 < > [— J

/ 6 y + £ # A V

This problem was being considered in the same time frame as the
design and development of the System/360. It had already been decided

that none of the control functions provided by the seven BCDIC control
characters would be provided as functions on the System/360, and the
seven graphics would not be provided on the System/360. Therefore, the
seven graphics would not be provided in EBCDIC, and the seven

corresponding code positions were available for assignments of the H-
duals or of new graphics as seemed appropriate.

It was decided that the five H-duals would not be assigned to any of
these seven code positions. The reasoning went as follows. The five
H-duals were graphics used in programming languages. It was entirely
possible that source language programs intended for execution on
System/360 might first pass through a BCDIC computer, for one or
another reason. But such programs would have to have the “new” codes

9.4 Further Decisions 149

for the H-duals, whatever they might be. If the H-duals were assigned to
the hole patterns of BCDIC control characters, then, when such programs
were entered into a BCDIC computer, the H-duals would have bit

patterns of control characters. And if such programs were then recorded

on seven-track magnetic tape, during the recording or subsequent reading
of such tapes on BCDIC computers, the control bit patterns might cause
unexpected and undesirable effects. Might not, of course, if care was
taken, but the feeling was, it was better to be safe than sorry. The

H-duals should not be assigned to the hole patterns of the BCDIC control
characters.

This left the following set of BCDIC graphics, of which five were to
be replaced by H-duals:

;!< > \ CE]

Intuitively, it was decided to replace

[] by ()

leaving

; ! < > \

three of which were to be replaced by

+ = !

As has been mentioned before, it had already been decided not to
provide on the 029 keypunch the hole patterns 12-0 and 11-0 as
single-stroke keypunchable characters. In consequence, the hole patterns
of the BCDIC graphics ? ! were not available to be replaced by any of the
H-duals. (The reason for this aspect of the design of the 029 Keypunch is
discussed more fully in Chapter 10.) This left BCDIC graphics

; < > \

The ; was a required graphic in COBOL, so it could not be replaced.
Both < and > were also COBOL graphics, but the COBOL standard
stipulated that they could be represented by two-character representa-
tions; GT (Greater Than) for > and LT (Less Than) for <. It was

decided that < and > were the two BCDIC graphics to be replaced, and
+ and = were chosen to replace them, respectively. BCDIC ; and

EBCDIC ; would be matched. This left BCDIC graphic either : or \ to be
replaced by ’; on not much more than a toss of a coin basis, it was decided
to replace

by '

150 The Duals of EBCDIC

The situation was now as follows:

BCDIC EBCDIC

Space match Space

0-9 match 0-9

A-Z match A-Z,

.,* /$—- ; match .,* (/$-;

@#% & match @#F%*&k&H

:>[<] replaced by "= (+)

2! hole patterns not

to be assigned

EBCDIC graphics

\ undecided
By + # + AV not to be assigned

in EBCDIC

At this stage then, five BCDIC graphics < > [|: were to be replaced,
the card hole patterns of two BCDIC graphics ? ! were not to be on the

029 Keypunch, and no decision has been made with respect to the
BCDIC graphic \ .

The next question was whether any of the seven BCDIC graphics

< > [—]: ! ?

should be reassigned to BCDIC hole patterns to be vacated by

+ + + 6 AV ¥

9.5 PL/I CONSIDERATIONS

While this question was being considered, a new factor came on the

scene. A new higher-level programming language, PL/I was being de-

veloped. PL/I itself has some character set requirements. The Space

character would be needed and so would the following 59 graphics:

10 numerics 0 to 9

26 alphabetics A to Z

3 alphabetic extenders # $ @
20 syntactics* + = -—- {[* () < > L

, 2 3 2? | Tt ' % &

*A syntactic is a character that has some specific meaning within the syntax of a
programming language.

9.6 “88 — 26 = 62” 151

Actually, the PL/I designers had wanted more graphics, in particular [
and], but the requirement to implement the set on a 60-character chain
made it impossible to provide the brackets to PL/I.

It was decided that these 59 graphics must definitely be assigned in
EBCDIC and to hole patterns that are single-stroke keypunchable on the
029 Keypunch. Many of them had already been assigned, under the
discussion above. The Space character, numerics, alphabetics, and al-

phabetic extenders had been assigned. Of the syntactics, 13 had been

assigned:

() + = ' 2,5 % &/ * -
Seven syntactics remained to be assigned:

< > | 7 _ ?

Also, graphics for three lower-case alphabetic extenders needed to be
assigned. Ten BCDIC graphics had not yet been replaced:

27 !\ 6 + £ # AV

Of these ten, as mentioned previously, the hole patterns 12-0 and 11-0
for ? and ! were not to be available on the 029 Keypunch. Compensating
for this, two new hole patterns would be available, 12-8-2 and 11-8-2.

It seemed like a fortuitous match—seven syntactics and three lower-

case alphabetic extenders needed to be assigned, and eight BCDIC hole
patterns and two new hole patterns were available. This fortuity quickly

disappeared, for the following reasons.

9.6 “88 — 26 = 62”

The console typewriter for the System/360 would provide 88 graphics and

the Space character. Of these 88, 26 are lower-case alphabetics, leaving

62 graphics. The 029 Keypunch can provide 63 graphics and the Space
character, but if it does so, one of those 63 graphics cannot be typed on
the console typewriter. The system would be out of balance. To resolve

this system imbalance, the 029 Keypunch must be allowed to provide
only 62 graphics, and the Space character. The 029 would have the

physical capability of providing a 63rd graphic, but it must not do so. This

reasoning was accepted. (A fuller discussion is given in Chapter 10.) The
029 Keypunch was designed to have a key that will generate the 0-8-2

hole pattern, but no graphic is interpreted on the punched card. Since the

0-8-2 hole pattern was selected, no EBCDIC graphic would be assigned
to replace the BCDIC +.

152 The Duals of EBCDIC

9.7 ASCIi CONSIDERATIONS

The consequence of this decision was that there were 9 hole patterns
available and 10 graphics to be assigned. This dilemma was resolved by
consideration of another factor. It would be helpful in the long run if
EBCDIC provided the same set of graphics as ASCII. A corollary of this
was that EBCDIC should not have graphics that were not in ASCII. This
focused attention on three EBCDIC graphics:

| 7° x

The first part of the solution involved | and “‘. As described in Chapter
24, this problem was solved when the standards committees decided that

the ASCII graphics ! and * could be stylized as (that is, substituted by) |

and “|

This left the graphic 4 to be resolved. Attempts to persuade the

standards committees to assign this graphic in ASCII were unavailing.
Eventually, it was decided not to assign 4 in EBCDIC. This decision, as it
turned out, was not subsequently accepted by many customers, who

requested that it be provided on printers for the System/360. It was
provided to these customers, although it ostensibly did not exist in

EBCDIC.

9.8 BCDIC CONTROL CHARACTERS

This brought the counts back to match—EBCDIC graphics for BCDIC
hole patterns. The question that now arose concerned the fact that six of
these BCDIC hole patterns represented BCDIC control characters. As

stated above, BCDIC hole patterns that represented BCDIC control

characters were avoided in reassigning the H-duals. Shouldn’t they also

be avoided in assigning the rest of the PL/I syntactics?
It would not be possible to avoid them, however, if Assumption 3

above was to be valid. So the question was not how to avoid assigning
PL/I graphics to BCDIC control characters, but rather what the implica-
tions of such an assignment might be. The reasons for avoiding BCDIC

control characters for H-duals were reviewed:

=» H-duals were used in FORTRAN and COBOL source language
programs.

* Such programs, intended for execution on a System/360, might

nevertheless be processed in some way on a BCDIC computer before

arriving at the System/360.

=" During the processing on a BCDIC computer, the source language

program might be stored on magnetic tape.

9.9 Lower-Case Alphabetic Extenders 153

=" The control bit patterns might cause unpredictable and unwanted
results.

Since PL/I, as a programming language, was not being developed for

use on a BCDIC computer, it seemed unlikely that any PL/I source
language programs intended for execution on a System/360 would be
entered into a BCDIC computer for any reason. Therefore, it seemed

that assigning PL/I syntactics to BCDIC control bit patterns was unlikely

to lead to trouble. Two of these syntactics < and > were also COBOL
syntactics, so it was decided not to assign < and > to BCDIC control
characters. There were just two BCDIC noncontrol characters remaining

unassigned, 4 (freed up as described above) and \. These two hole

patterns were assigned to < and > (respectively).

The five remaining PL/I syntactics | * _ : ? were assigned to the hole
patterns previously assigned to BCDIC graphics = y A 6 # respec-

tively.

9.9 LOWER-CASE ALPHABETIC EXTENDERS

The sole remaining problem, then, was assignments for the three lower-

case alphabetic extenders. While this development work on EBCDIC was
going on, a new PTTC was being developed for the System/360 (see

Chapter 12). The criterion developed for lower-case alphabetic extenders

for the new PTTC was as follows:

U.S.A. graphics for the three lower-case alphabetic extender code

positions must be such that they will not be required or wanted in

any European country with a Latin alphabet. That is, in such
countries, the U.S.A graphics can be “throwaways.”

The three graphics ¢ ! ” were chosen to meet this criterion. (These
graphics also met the requirement that they be ASCII graphics, although

¢ disappeared from ASCII before ASCII was finally approved as an
American National Standard.) And so ¢ ! were assigned to the two new

hole patterns, 12-8-2 and 11-8-2, and ” was assigned to the sole re-

maining BCDIC graphic ,/ with its hole pattern of 8-7.

It should be pointed out that because of their card hole patterns 12-
8-2 and 11-8-2, the EBCDIC ¢ and ! came in time to be associated with

the ASCII graphics [and] associated with those hole patterns. When this

association became firm (when the American National Standard Hollerith

Punched Card Code was approved), it was suggested that EBCDIC be
changed, replacing ¢ and ! with [and] (respectively). This suggestion was

reviewed, but not adopted, for the following reasons.

154 The Duals of EBCDIC

1. The cost to replace 029 Keypunch printing plates and keytops,
printer chains and trains, typewriter printing elements, graphic dis-
play character generators, etc., would be considerable.

2. Graphics [and | were in ASCII code positions which corresponded

to National Use positions in the ISO 7-Bit Code. ISO 7-Bit Code

National Use graphics, like EBCDIC alphabetic extenders, were ex-

pected to be replaced in those European countries with Latin al-
phabets of more than 26 letters; that is, the graphics [and | would
not, in fact, appear in Europe.

3. In FORTRAN and PL/I, there had long been an unfulfilled require-
ment for a second pair of ‘‘parentheses.”” The [and] would certainly
serve that purpose. If the brackets were put on the 029 Keypunch,

that would make them available for just such a second level of

parentheses.

4. But such a compiler would not serve in Europe, where the brackets

would be replaced by letters.

5. To avoid such a potential dichotomy for programming languages
between Europe and the U.S.A., graphics [and | were not put on the

029 Keypunch.

6. A small glitch between ASCII and EBCDIC—{[and] corresponding
respectively to ¢ and !—seemed preferable to the potential program-
ming language dichotomy of reason 5 above.

9.10 FINAL ASSIGNMENT OF SPECIALS

Figure 9.2 shows the final assignment of specials into EBCDIC in 1970,
as a result of reassigning the H-duals. Figure 9.3 shows, for comparison,
the graphics that would have been assigned in EBCDIC if the BCDIC
specials, complete with A/H-duals, had been assigned according to their
BCDIC card hole patterns. Of the 27 BCDIC specials, only 11 ended up
with unchanged code positions in EBCDIC.

9.11 CONSEQUENCES OF REASSIGNMENT

A question that arose was whether the collating sequence had been

affected by these changes. The primary criterion in the development of

EBCDIC was that the collating sequence of BCDIC should be embedded
in the EBCDIC collating sequence (see Chapter 8). In a very real sense,
this criterion had not been aborted, even though many BCDIC graphics

ended up with EBCDIC card hole patterns different than their BCDIC

card hole patterns.

cum] of 1f2fsil«ls]el7,ele,alele]olel].
Bit 00 01 10 11

Pat.
oo | 01 10 11 oo | 01 10 |} 11 oo | 01 om) 11 oo | 01 10 11

Row

0 j;0000 SP & ~

1 |o001 /

2 |0010

3 |0011

4 |0100

5 {0101

6 [01710

7 |o111

8 |1000

9 |1001

A |1070 ¢ 1 :

B 11011 . $: #f

c [1100 < * % @

D |1101 () t

& 11110 + : > =

Fo f1111 | 7 2 "

Fig. 9.2 EBCDIC specials

coum] o | 1 | 2 {3 a|{s |e | 7 a [ofa] es c | ofe |.

Bit 00 01 10 11

Pat. "|
oo | 01 10 11 oo | 014 10] 11 oo | 01 10 | 11 oo | 01 10 1

Row

0 |0000 SP { &+ - ? ! +

1 |0001 /

2 ;0010

3)0011

4 [0100

5 |0101
—

6 {0110

7 |0111

8 11000

9 {1001

A |1010 6
—

B {1011 ; $ > f=

c {1100 my} * [% ¢] @

dD [1101 E J v :

—€ (1110 < ; \ >

an) $ A ai v

Fig. 9.3 BCDIC specials in EBCDIC

155

156 The Duals of EBCDIC

Example

The field on which records are sorted or collated is called a keyword.
Keypunch a set of records, and keywords, on an 026 (BCDIC) Keypunch.
Enter the data into a BCDIC computer. Sort the records in sequence of

keywords.
Take the same card deck, and enter it into an EBCDIC computer.

Sort the records in sequence of keywords.
The sequence of records in the BCDIC computer and the sequence

of records in the EBCDIC computer will be identical.

The sequence of records will be identical, but will anything be

different? List the keywords and records on the printer of the BCDIC

computer. List the keywords and records on the EBCDIC computer.
Compare the listings. If all graphics in the keywords and records are in
the following set, the listings will be identical:

Space

Numerics 0 to 9

Alphabetics A to Z

Specials ., f * $ - 3; & % F @

If graphics are used in keywords or records beyond the set above, the
listings will look different, the differences corresponding to the differences

between Fig. 9.2 and 9.3. But it must be reemphasized that the sequence of

records will be identical.
Were there any adverse effects of the reassignment of the H-duals?

Yes, indeed! The first effect showed up for programmers who were
developing various programs for the System/360. Engineering models of

the System/360 were available for the use of programmers, but 029

Keypunches were not. Programmers could not get their programs

keypunched according to the EBCDIC card hole patterns. If programs

could not be keypunched, they could not be entered and debugged. The

solution to this impasse was to modify several 026 keypunches to gener-

ate the EBCDIC hole patterns for() + = '. Then the programs could be

keypunched, entered, and debugged.
The second effect was on customers who had received a System/360.

Of course, old BCDIC machine language programs would not work on

the System/360, but, to the extent that customers had retained source

language program decks or program tapes for COBOL or FORTRAN,

the programs could be recompiled, a task which was a far less onerous

proposition than reprogramming. Unfortunately, such program decks or

tapes would have the old BCDIC H-dual hole patterns or bit patterns for

() + =' and the System/360 compilers for COBOL and FORTRAN had

9.11 Consequences of Reassignment 157

Column

Bit a

o}a1]2f[s a | s]s6 {7 aj 9]ale c | ole] r

00 01 11

Pat.
00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11

0 o0a0
&

+

1 0001

2 0010

3 00g11

4 0100

5 0101

6 0110

7 0111

8 1900

9 1001

A 1010

8 1011
I

c 1100

D 1101

E 1110

F 1111

Fig. 9.4 A- and H-duals in EBCDIC

been written assuming the new EBCDIC patterns for these graphics.

Could this dilemma be resolved?

It could, and was, with the aid of some IBM customers. Consider Fig.

9.4. EBCDIC hex positions 4D, 5D, 4E, 7E, and 7D were the assigned

positions for the bit patterns of () + = '. EBCDIC hex positions 6C, 4C,

50, 7B, and 7C were where these graphics would have been assigned

according to their old BCDIC hole patterns or bit patterns. Three things

were done.

1. The logic in the control unit of the chain and train printers was

modified, as shown in Fig. 9.4, so that

either hex position 4D or 6C printed (

either hex position 5D or 4C printed)

either hex position 4E or 50 printed +

either hex position 7E or 7B printed =

either hex position 7D or 7C printed '

158 The Duals of EBCDIC

2. The scan portion of the FORTRAN compiler was modified so that
either of the equivalent pairs of bit patterns would be accepted for ()
+=",

3. The scan portion of the COBOL compiler was similarly modified.

By these actions, old FORTRAN or old COBOL program decks or tapes

could be read into a System/360, listed for debug purposes, compiled, and
executed.

Clearly, if these actions had been taken during the development cycle
of System/360 programs, the first adverse effect above would not have
occurred, and unmodified 026 Keypunches could have been used. Hind-

sight is easily come by.

With the reassignment of H-duals in EBCDIC, and with the assign-
ment or reassignment of the remaining PL/I syntactics and of the lower-

case alphabetic extenders, the 88 graphics of EBCDIC were set in place.
Attention now centered on completing the 256 card-hole-patterns—to—

bit-patterns assignments. This will be discussed in Chapter 11.

The
Graphic Subsets

of EBCDIC

The 256-character code EBCDIC was designed as the CPU code for the
System/360. As described in Chapter 8, a decision was made to reserve
64 code positions for control meanings and 192 code positions for graphic
positions. The physical capability of chain/train printers of providing up
to 240 different graphics did not limit the total numbers of graphics to be
assigned in EBCDIC. Other factors did set limits and gave rise to graphic
subsets of EBCDIC.

10.1 88-GRAPHIC SETS

The console printer for the System/360 was based on an electric typewri-
ter, duocase, with 44 keys, and a capability of printing the following 88

graphics:

10 numerics 0 to 9
26 lower-case alphabetics a to z

3 lower-case alphabetic extenders ¢ ! ”
26 upper-case alphabetics A to Z

3 upper-case alphabetic extenders # $ @
20 specials /*+ = - &€& % | 7

a ee ee GD

As described in Chapter 8, these 88 graphics were assigned to code
positions as shown in Fig. 10.1.

159

160 The Graphic Subsets of EBCDIC

cum] ofa f2ts[«le*lel7],*[e*[ale][e]o].«|-
Bit 00 01 10 11

Pat.
Row t 00 01 10 11 oo | o1 10 11 oo | 01 10 11 00 01 10 11

0 jo000 SP & - 0

1 0001 / a 4 A J 1

2 {0010 b k s B K Ss 2

3 10011 c 1 t Cc L T 3

4 {0100 d ™m u D M U 4

5 |}0101 e n v E N Vv 5

6 {0110 £ oO w F 0 W 6

7 |o111 g P x G P x 7

8 1000 h q y #H Q Y 8

9 {1001 i r z I R Z 9

A |1010 ¢ |

B |1011 . $; #

c |1100 < * % @

D {1101 () _ '

E |1110 + : > =

Fo [11141 | 7 ?
Fig. 10.1 EBCDIC 88-graphic set

10.2 62-GRAPHIC SUBSET

From the duocase set of 88 graphics emerged a monocase set. The IBM

029 Keypunch was being designed at the same time as the System/360,

and it had been decided to provide 64 hole patterns on the 029. One of

these hole patterns would be the “no-holes” hole pattern for the Space

character, leaving 63 hole patterns to be assigned. It was decided that the

029 Keypunch would provide a monocase set, and that the hole patterns

for the monocase alphabetics would be those already assigned to the

upper case alphabetics of EBCDIC. A keypunch keyboard is represented

in Fig. 10.2.
By the decision to assign the hole patterns of the EBCDIC upper-

case alphabetics to the keypunch monocase alphabetics, the EBCDIC

lower-case alphabetics were excluded from the keypunch—excluded in
the sense of being single-stroke punchable. That is to say, of the 88

10.2

N
u
m
e
r
i
c

Pu

nc
h

C
o
d
e

62-Graphic Subset

™\
\
Al

ph
ab

et
ic

Pu
nc
h

Co
de

(N
ot

to

sc
al

e)

161

Fi
g.

10
.2

02
9

k
e
y
b
o
a
r
d

162 The Graphic Subsets of EBCDIC

Hole

Pattern——> 12 11 0

& - a) SP

1 A J / 1

2 B K 8 2

3 Cc L T 3

4 D M U 4

5 E N Vv 5

6 F 0 W 6

7 G P x 7

8 H Q Y 8

9 L R Zz 9

a ¢ !

8-3 $, i#

8-4 < * x @

8-5) _ t

8-6 + =

8-7 { 7 2 "

Fig. 10.3 EBCDIC 64-graphic set

EBCDIC graphics, 88 — 26 = 62 could be provided. But the keypunch

could provide 63 graphics. There were, then, two possible choices:

1. Assign 63 graphics on the keypunch, and add a graphic to EBCDIC,

making a total of 89.

2. Assign 62 graphics on the keypunch, and thus leave one of the 63

hole patterns unassigned.

If choice (1) were made, the 89th graphic could then not be printed on

the 88-graphic console typewriter. An imbalance in the system would be

created. For this reason, choice (1) was rejected.

Under choice (2), the keypunch could punch and interpret 62 charac-

ters and the Space character. The hole pattern 0-8-2 has no graphic

10.2 62-Graphic Subset

Hole

Pattern > 12 11 0

& or + - 0 SP

1 A J / i

2 B K S 2

3 c L T 3

4 D M U 4

5 E N Vv 5

6 F) W 6

7 G P x 7

8 H Q Y 8

9 I R Zz 9

9 2 Ly ! L2| + b

8-3 $ > # or =

8-4 Wor) * Zor ¢ @ or '

8-5 L 1 Y

8-6 < ; \ >

8-7 # A a v

Hole Patterns:

[7] 12-0

[2] 11-0

Fig. 10.4 BCDIC 64-graphic set

163

assigned. As can be seen from Fig. 10.2, 0-8-2 is engraved on a keytop.
When this key is depressed, the hole pattern 0-8-2 is punched in the card,
but no graphic is interpreted on the card. (As described later in Section
10.3, a graphic was assigned some years later to the hole pattern 0-8-2,
but it is not interpreted on the 029 Keypunch.)

The 64 characters of this EBCDIC subset are shown in Fig. 10.3.
Figure 10.4 shows the 64-character set of BCDIC. It is to be noted that
the two sets of 64 hole patterns are not quite the same. EBCDIC-64 has

hole patterns 12-8-2 and 11-8-2, and does not have 12-0 and 11-0.
BCDIC has hole patterns 12-0 and 11-0, and does not have 12-8-2 and

164 The Graphic Subsets of EBCDIC

11-8-2. The hole patterns 12-8-2 and 11-8-2 were chosen instead of 12-0

and 11-0 for the 029 Keypunch because of a mechanical problem.*
It is of interest that these 64 hole patterns of the 029 Keypunch are

the hole patterns assigned to the 64 graphics and Space in columns 2, 3,
4, and 5 of the 7-Bit Code (Fig. 2.26). In that code, the graphic \ is

assigned to the hole pattern 0-8-2, and the graphics [and] are assigned

to the hole patterns 12-8-2 and 11-8-2, respectively, as contrasted to the
EBCDIC graphics ¢ and !. Further, in the 7-Bit Code, graphics ! and ”
are assigned to hole patterns 12-8-7 and 11-8-7, respectively, as con-
trasted to the stylistically similar EBCDIC graphics | and —. This
64-graphic set is shown in Fig. 10.5.

Another 64-character set emerged during the design of the IBM
System/3. It was decided to provide a printing set of 63 graphics and
Space. Of these 63 graphics, it was quickly decided that 62 would be
those of EBCDIC previously described. But what should the 63rd graphic
be? It will be recalled that for the System/360, a console typewriter of
88-graphic capacity limited the EBCDIC monocase set to 62 graphics.
But for the System/3, a 63 monocase printer would be provided for the
console, so the system imbalance limitation did not appear.

In the System/3, as with other BCD computers, the BCD relation-

ship for alphabetics would be provided. That is, as discussed in Chapter 2,
hole patterns 12-1, 12-2,...,12-9 would mean A, B,...,I as alpha-

betics, but would mean +1, +2,...,+9 as signed numerics; hole patterns

11-1, 11-2,...,11-9 would mean J, K,..., R as alphabetics, but would

mean —1, —2,...,—9 as signed numerics.

When signed numerics are printed out in final listings, the sign — is
separated from the units position of a numeric field and printed sepa-
rately. But during debugging runs, the sign is generally not printed out.
That is to say, —1, -2,..., —9 will print as J, K,..., R. While this may

look peculiar, it is quite unambiguous to the programmer, and is accepta-
ble. Similarly, +1, +2,..., +9 will print as A, B,..., I.

The problem is, what will print for —O and for +0? The problem
with +0 is not so pressing, since input data for debugging generally has
absolute (unsigned) numbers instead of positive (signed) numbers. But the

* Without going into details on this mechanical problem, let it suffice that to
interpret from hole patterns 12-0 and 11-0 would be quite difficult, while to
interpret from hole patterns 12-8-2 and 11-8-2 was quite easy, so the latter pair
were chosen. The hole patterns 12-0 and 11-0 are included in the total set of 256
hole patterns of the EBCDIC card code, but they are not in the 64-character set
of the 029 Keypunch.

10.2 62-Graphic Subset 165

Hole

Pattern 12 11 0

& - 0 SP

1 A J / 1

2 B K 8 2

3 G L T 3

4 D M U 4

5 E M v 5

6 F 0 W 6

“I

Q
 Wd

~ “

8 H Q Y 8

9 I R Z 9

0 C 7 \

8-3 $ > #

8-4 < & % @

8-5 () _ '

8-6 + 5 > =

8-7 i “ 9 "

Fig. 10.5 7-Bit code 64-graphic set

problem for —0 remains. It was decided that there must be an actual
graphic to represent —0. The bit pattern for —0 is in hex-position DO. As
explained later in this chapter, the graphic } had been assigned to this
EBCDIC code position. Therefore, it was chosen to represent —0 in the
System/3.

It seemed strange to provide, in a printing set, } and not to provide {.
However, with the addition of } to the 62 graphics and Space, all positions
of the 64-character set were filled. If { were to be provided, then one of
the 62 graphics would not be provided, and this possibility was rejected
by the System/3 designers. The 64-character set of the System/3 is shown
in Fig. 10.6.

166 The Graphic Subsets of EBCDIC

Column| 6 | 1 | 2 | 3 4 | 5 | 6 | 7 8 | 9 | A | B c D | E F

Bit 00 01 10 41

Row Poe oo | o1 | 10 | 11 |] OO} 01 10 | 11 | 00 | o1 10 | 17 | oo | o1 | 10 | 11

a |oo00 SP & ~ } 0

1 |o001 / A J 1

2 {0010 B K Ss 2

3 [0011 c L T 3

4 \0100 D M U 4

5 |0101 E N Vv 5

6 {0110 F 0 W 6

7 10111 G P X 7

8 |1000 H Q Y 8

9 {1001 I R Zz 9

A |1010 e !

B 11011 $ ’ #

c |1100 < * h @

D |1101 () _ '

—E |1110 + > =

Fo o}aad { 7 ? "

Fig. 10.6 System/3 64-graphic set

10.3 94-GRAPHIC SUBSETS

ASCII, the U.S.A. version of the ISO 7-Bit Code, has 94 graphics. When
the card code for ASCII was approved (to be discussed in Chapter 17), it

was possible to match the graphics of EBCDIC with the graphics of

ASCII, through their associated card hole patterns. At that time, the four

anomalies previously described were revealed:

Hole pattern ASCII EBCDIC

12-8-2 [¢
11-8-2 | !

12-8-7 ! |
11-8-7 A 7

(A fuller discussion of the respective matching of ! and A with | and — is
found in Chapter 24.)

10.3 94-Graphic Subsets 167

In addition to these four anomalies, the 94-graphic set of ASCII
contained 6 more graphics than the 88-graphic set of EBCDIC. Since
these 6 graphics had associated hole patterns, and since the hole patterns
had associated code positions in EBCDIC, it was possible to determine
where to locate them in EBCDIC, as follows:

Hole Hexadecimal

Graphic pattern position

Back slash \ 0-8-2 EO
Grave accent ° 8-1 719

Opening brace { 12-0 CO
Vertical line | 12-11 6A

Closing brace } 11-0 DO
Tilde ~ 12-11-0-1 Al

These six graphics were assigned in EBCDIC, as shown in Fig. 10.7.

Column! 0 | 1 | 2 3 4 5 6 | 7 8 | 2 | A | B c D [E | F

Bit 00 01 10 11

Row Par 00 } 01 10 | 114 oo |} 01 10] 11 00 | 01 to | 11 oo} 01 10 |] 11

0 |oo00 sp | & | - { } \ | 0

1 |o0001 / a j ~ A J 1

2 10010 b k 8 B K 5 2

3 [0011 c 1 t c L T 3

4 |0100 d m u D M U 4

5 |0101 e n Vv E N Vv 5

6 |01170 £ ° w F 0 Ww 6

7 10111 g p x G P x 7

8 |1000 h q y H Q Y 8

9 |1001 * 1 Yr Zz I R Zz 9

A |1010 ¢ | !

B 11011 $ i

c |1100 < Fe % @

D 41101 () _ '

E |iite + ; > =

Fo41414 | = 2 "

Fig. 10.7 EBDIC 94-graphic set

168 The Graphic Subsets of EBCDIC

10.4 CHAIN/TRAIN PRINTER SETS

It is necessary to understand the fundamental principles of chain/train

printers in order to see the rationale for printer sets of graphics.

Chains and trains are similar in concept. They are loops of printing

slugs which are continuously circulated in a plane normal to the plane of

the paper on which printing is to take place (Fig. 10.8).

One principle of a chain/train is significant: the more times a graphic

is repeated around the chain/train, the more frequently it will pass a

printing position. It is common practice to repeat sets of graphics around

the chain/train. Thus a 48-graphic set can be repeated 5 times (5 « 48 =

240), a 60-graphic set can be repeated 4 times (4 x 60 = 240), and so on.

The chain/train does not move more rapidly, but individual graphics pass

a given printing position more frequently. The following table presents

comparative information. Nominal printing speed is given in number of

lines printed per minute (LPM).

Number of graphics Repeated sets Nominal printing speed

40 6 1250 LPM
48 5 1100 LPM
60 4 950 LPM

120 2 570 LPM
240 1 300 LPM

Type array

 Paper form

Armature

hammer

magnet

Fig. 10.8 Schematic representation of chain/train printer

10.5 “Preferred” Graphics 169

10.5 “PREFERRED” GRAPHICS

A more subtle method is to repeat more frequently used graphics more
often than less frequently used graphics. The sets of more frequently used
graphics are called “preferred” graphics. Of course, the principle is still
the same—the more times a graphic is repeated around the chain/train,

the more frequently it passes a given printing position.
Consider a 60-graphic set, which could be repeated 4 times around

the 240 position chain/train, with nominal printing speed of 950 LPM.
But it is also possible to repeat 45 of the graphics 5 times and 15 graphics

just once:

(45 x 5) + (15 x 1) = 240

Then, if all the data being printed on a line contain graphics only in the
set of 45, the nominal printing speed will be 1100 LPM. If the data of a
line contains one or more graphics in the set of 15, the printing speed of
those lines will be 300 LPM. If the data consists mostly of graphics in the
set of 45, printing speeds will approach 1100 LPM, as compared with
950 LPM for a chain/train with 60 graphics repeated 4 times.

Some examples of chain/train sets with preferred sets are given, with
both 48- and 60-character chains for comparison:

Chain/train sets Repeat pattern Nominal printing speed

48 1100 LPM

60, with 45 preferred 45 x 5 = 225 950 LPM

I5x1= 15
60 240

52, with 47 preferred 47 xX 5 = 235 950 LPM

Sx1= 5
52 240

42, with 39 preferred 39 X 6 = 234 1250 LPM

3x2= 6
42 240

84, with 78 preferred 78 X 3 = 234 770 LPM

6x1= 6
84 240

120 120 x 2 = 240 570 LPM

170 The Graphic Subsets of EBCDIC

10.6 48-GRAPHIC SETS

We know that 48-character sets are very popular. They strike a good

balance between reasonably fast printing speeds and adequate graphic
capability. Two well-known sets emerged in the days of BCDIC (Chapter

4) called the A-set and the H-Set, and were perpetuated into EBCDIC

(Chapter 9). Some care must be taken with the terminology. A 48-graphic
set for BCDCIC consisted of 47 graphics and Space, while a set for

EBCDIC consisted of 48 graphics and Space. The 4 of BCDIC was
replaced by the < of EBCDIC.

11 specials

BCDIC A-set Space 0 to 9 AtoZ ,/* - §$ HH @ EK

H-set Space 0to9 | AtoZ ,o/*-$ () =H! +

12 specials

EBCDIC A-set | SpaceO0to9 | AtoZ ,/* -~$ & + %<H#@
H-set Space 0 to 9 A to Z ,/* -~-$& + () =’

10.7. PL/I SUBSETS

The 60-character set for the programming language PL/I consists of 59
graphics and Space:

1 Space

10 numerics 0 to 9

26 alphabetics A to Z
3 alphabetic extenders # $ @

20 specials /* + = - | a _ & %
() <> ’ ., : ; 2

In addition, four 2-character operators are recognized by PL/I:

>= Greater than or equal to

<= Less than or equal to

a= Not equal to

|| Concatenation

A 48-graphic subset of PL/I consists of 48 single-graphic representa-

tions and some 2- and 3-graphic representations:

1 Space

10 numerics

10.8 Katakana Subsets 171

26 alphabetics

12 specials ~ y ' §$ FY
+ - () = &

Operator Representation Meaning

: Colon

; . Semicolon

% // Percent
> GT Greater than

< LT Less than

>= GE Greater than or equal to

<= LE Less than or equal to
= NE | Not equal to

7 NOT Logical NOT

| OR Logical OR
& AND Logical AND

| CAT Concatenation

10.8 KATAKANA SUBSETS

The Japanese written language, like the Chinese written language on
which it is based, consists of ideographs—one ideograph per word. Kanji,
as it is called, consists of many thousands of ideographs. For normal data
processing printers, with limited graphic repertoires, the printing of Kanji
is quite impossible.

Another alphabet, invented by the Japanese and called Katakana, is

more amenable to data processing printer technology. Katakana is a
phonetic alphabet; each Katakana character consists of a vowel, or of a

consonant and a vowel, as shown in Fig. 10.9. Thus, Japanese spoken
words can be phonetically approximated by a written or printed
alphabetic. .

As originally assigned in EBCDIC, Katakana consisted of 47
graphics assigned to bit patterns as shown in Fig. 10.10. From. this
assignment, two Katakana sets were available.

64-character

Space

10 numerics

Katakana graphics
6 specials -— / y . ,

Shape Name Shape Name

P A A HA

4 I t HI

9 U 2 FU

I E A HE

4 0 ih HO

D KA 2 MA

+ KI = MI
7 KU b MU
a KE x ME
4 KO E MO

yy SA P YA
y SHI
R SU 2 YU

P SE
y SO 3 YO

a TA 5 RA
F CHI y RI
y TSU Ib RU
Fz TE v RE
b TO og RO

t NA 9 WA
= NI y N
5 NU
R NE * Voiced Sound Symbol
2 NO ° Semi-voiced Sound Symbol

Fig. 10.9 Katakana-47, phonetics

coumn] o | 1 | 2 | 3 a|s6]el| 7 e]|o|a|s c]ofele

Bit 00 01 10 11

Poe oo | 01 10 | 41 oo | 01 10] 41 oo | 01 10 | 11 | oo | 01 10} 11
Row

0 o000 SP - y 0

Vv [0004 / ? a A J 1

2 |o0010 q F \ B K Ss 2

3 [0011 9 4) ih c L T 3

4 |0100 I T Y D M U 4

5 |0101 4 bh = E N Vv 5

6 |0110 n t 4 F oO W 6

7 10111 + = m G P xX 7

8 1000 9 R £ H Q Y 8

9 |1001 y]oal p t/ ref] zj9

A |1010 q 7 1 L

B }1011 xX , QO

c |1100 * i 3 9

DB 71101 y Nn 3 Dv

— |1110 z cb y *

Fo }4441 Pr 2 b °

Fig. 10.10 Katakana 89-graphic set

172

10.8 Katakana Subsets 173

This set, outlined by heavy lines in Fig. 10.11 is provided by collapse logic
(as described in Chapter 2).

89-character
1 space

10 numerics
26 Latin alphabetics
47 Katakana alphabetics

of 5 Specials . , - |

The 64-character set was sufficient for most normal data processing
applications. The 89-character set was provided on 44-key electric type-
writers. The 89-graphic set is shown in Fig. 10.10.

We shall learn in Chapter 18 that the assignment of Katakana in
EBCDIC created complications.

cum] © [+ telel«lelel7lelel*l[elel ell.
Bit 00 Ot 10 11
Pat.

Row ; oo | 01 | 10 | 14 | oo | o1 | 10} 11 | OO | o1 | 10 | 11 | 00 | ov | 10 | 11

0 |0000 SP - y 0

4 | 0001 / Pp a 1

2 |0010 4 5 2

3 [0011 9 4 ih 3

4 0100 L F Q 4

5 |0101 Zz k = 5

6 |o110 hb t bs 6

7 $0111 + = x 7

8 |1000 2 x E 8

9 |1001 x a P 9

A |1010 a / \ u

B {1011 . ¥ ; g

c |1100 # t 3 5

D |i101 »{| nls] 2

—E |1170 2 ao y ‘

F f4411 t 2 Wu °
Fig. 10.11 Katakana 64-graphic set

11
The

Card Code
of EBCDIC

As described in Chapters 8 and 9, some 63 graphic and card hole-pattern

and bit-pattern assignments had been made in EBCDIC. In Fig. 11.1, the

code positions designated X indentify the hole patterns assigned in
EBCDIC.

11.1 PTTC CONSIDERATIONS

In Chapter 6, it was noted that the de facto monocase card hole patterns
12-1,...,12-9, 11-1,...,11-9, 0-2, 0-3,...,0-9 were assigned to

lower-case alphabetics A, B,...,1, J, K,...,R, S$, T,...,Z, and that

new card hole patterns 12-0-1, 12-0-2,...,12-0-9, 12-11-1, 12-11-2,

...,12-11-9, 11-0-2, 11-0-3,...,11-0-9 had been assigned to upper-

case alphabetics. However, as will be described in Chapter 12, a new

version of the IBM 1050 terminal was being designed for the System/360,

and with it, a new PTTC emerged, which reversed the assignments of

lower-case and upper-case alphabetics noted above. In Chapter 8, it had

been decided to locate the lower-case alphabetics in hex-columns 8, 9,

and A. The card hole-pattern-to—bit-pattern assignments for EBCDIC

were thus extended from those of Fig. 11.1 to those of Fig. 11.2. In

Chapter 9, two hole patterns, 12-8-2 and 11-8-2, were noted and

assigned to graphics ¢ and ! in hex-positions 4A and 5A, respectively.

Figure 11.2, then, shows the hole patterns assigned at this point.

Where a graphic is shown in the code table, the corresponding hole
pattern was assigned.

175

176 The Card Code of EBCDIC

Hole

Pat.
Hole Patterns: X = Assigned Hole Patterns

J ll [13] 0-1

[2] Block | Hole Patterns at:

[3] [2] 12-0 [is] 1 3 1 | Top and Left

[4] 11-0 2 | Bottom and Left

(s] No Pch [1] 0-8-2 2 4 3 | Top and Right

[e] 12 [i2] 0 4 | Bottom and Right
Fig. 11.1 EBCDIC card code, Version 1

11.1

Column 0 1 2 3

00

00 01 10 11 00

Hole

Pat.

Hole Patterns:

11 [13] 0-1

12-0 [15]

11-0

[5] No Pch [11] 0-8-2

[s] 12 [12] 0

E
E
E
 E

Fig. 11.2 EBCDIC card code, Version 2

PTTC Considerations 177

Block | Hole Patterns at:

1 3 1 | Top and Left

2 Bottom and Left

2 4 3. | Top and Right

4 Bottom and Right

178 The Card Code of EBCDIC

8-7
Fig. 11.3 256 hole patterns

In order to arrive at the total EBCDIC set of 256 different hole

patterns, two decisions were made:

Decision 1 All 32 possible combinations of the zone punches 9, 12, 11,
0, 8 (including “‘no-zones”) would be used.

Decision 2 With each of the 32 possible zone-punch combinations, one
of the digit punches 1, 2, 3, 4, 5, 6, 7 (including “no-digits”) would be

used.
The logical set of 256 hole patterns is shown in Fig. 11.3.
In BCDIC, 0 had served both as a zone punch and as a digit punch

for the numeric 0. Thus, in 0, 12-0, and 11-0, the 0 is regarded as a digit
punch rather than a zone punch. In a sense 8 also served as both a zone

punch and a digit punch. With the decision for EBCDIC that 9 would

serve as a zone punch, 9 would also serve both as a zone punch and as a
digit punch for the graphics 9, I, R, Z, i, r, and z.

As described in Chapter 6, in PTTC 16 hole patterns had been
assigned to control characters, as shown in Fig. 11.4. It was decided to

11.2 Translation Consideration 179

carry these assignments forward into EBCDIC. The control characters
might, probably would, not be needed for EBCDIC as a CPU code, but it
was sensible to preempt these hole patterns in EBCDIC, so that they
could not subsequently be assigned to EBCDIC control characters that
would conflict with the PTTC control characters. Besides, with the

decision to attach the IBM 1050 (implementing PTTC) to System/360, it
was clear that PTTC data would enter the System/360. It would be
necessary to have EBCDIC bit patterns into which all PTTC bit patterns,
controls, and graphics could be translated.

In Chapter 8, it was decided that the first quadrant of EBCDIC
would be reserved for control characters. In consequence of this decision,
the PTTC control characters would be located in the first quadrant.
Therefore, zone punches 9-12, 9-11, 9-0, and 9 would be assigned to

Quadrant 1.

Zone

punches

9 9-0 | 9-11] 9-12
Digit

punches

4 PN | BYP| RES| PF

5 RS |LF |NL | HT

6 UC |ETB|BS | LC

7 EOT| ESC | IL DEL

Fig. 11.4 PTTC hole patterns for control
characters

11.2 TRANSLATION CONSIDERATIONS

From Fig. 11.2, it was noted that zone patterns 12, 11, 0, and ‘‘No-zone”
would appear for the bottom six rows of Quadrant 2 and for the top ten
rows of Quadrant 4. It was decided for purposes of reducing translation

complexity (bit patterns to/from hole patterns) that the zone patterns for
the top ten rows of Quadrant 2 should also be the zone patterns for the

bottom six rows of Quadrant 4. (This decision was later slightly amended,
but the spirit of it was maintained.) Fig. 11.5 represents decisions up to
this point.

180 The Card Code of EBCDIC

Column 0 1 2 3 4 5 6 7

00

00 o1 10 11 00 ot 10 11

ZONES

?

Hole

Pat.
Hole Patterns:

Block | Hole Patterns at:

f
l
)
 &)

Top and Left

Bottom and Left

Top and Right

S
E
E

E
E
E

CG]
2]
(3)
[4]
[s]
[] Bottom and Right

Fig. 11.5 EBCDIC card code, Version 3

This left zone patterns 12-11-0, 9-12-0, 9-12-11, 9-11-0, 9-12-11-0

unassigned. It seemed intuitive that the fourth zone pattern for Quadrant

3 should be one of these five without a 9-zone, that is, 12-11-0.

To meet the criterion above for the top ten rows of Quadrant 2 and

the bottom six rows of Quadrant 4, the zone patterns 12-0, 12-11, 11-0,

12-11-0 clearly could not be assigned, because they had already been

assigned to the top ten rows of Quadrant 3. Also since zone patterns

11.2 Translation Consideration 181

9-12, 9-11, 9-0, 9 were to be assigned to Quadrant 1 (not yet decided if

to the top ten rows, the bottom six rows, or to both the top ten and the

bottom six rows), they could not be assigned to the top ten rows of

Quadrant 2 and the bottom six rows of Quadrant 4. This left only one

choice; zones 9-12-0, 9-12-11, 9-11-0, 9-12-11-0 for the top ten rows of

Quadrant 2 and for the bottom six rows of Quadrant 4. We now had Fig.

11.6.
This now left two choices:

Choice 1

9-12, 9-11, 9-0, 9 for the top ten rows of Quadrant 3.

=» 12-0, 12-11, 11-0, 12-11-0 for the top ten rows of Quadrant 3 and

the bottom six rows of Quadrant 1.

Choice 2

9-12, 9-11, 9-0, 9 for both the top ten and the bottom six rows of

Quadrant 1.

Column) | 0 | al 2 | 3 a 5 6 7 8 | 9 A | B c D | E F

Bit 00 01 10 14

Fig. 11.6 EBCDIC card code, Version 4

182 The Card Code of EBCDIC

=" 12-0, 12-11, 11-0, 12-11-0 for both the top ten and the bottom six

rows of Quadrant 3.

Choice 2 posed a less complex translation relationship (hole patterns

to/from bit patterns) and Choice 2 was decided. This led to Fig. 11.7.

Column

12
Hole

Pat.
Hole Patterns:

Block | Hate Patterns at:

fj
 E]

 B
)

1 1 Top and Left

2 Bottom and Left

Ae
le
l
e
G

A
E
E

E
E
S

Fig. 11.7 EBCDIC card code, Version 5

11.3 8-1 Versus 9 183

11.3 8-1 VERSUS 9

It was now noted (Fig. 11.7) that certain hole patterns appeared twice: for
example, 9 in hex F9 and in hex 30, 9-12 in hex C9 and hex 00. Further,

missing from the set of hole patterns were zone punches combined with

Column 0 1 2 3 4 5

00 01

00 a1 10 11 00 01 10

9
12
il il

0

Hole

Pat.
Hole Patterns:

Block | Hole Patterns at:

[a]

2]

1 1 Top and Left

2 Bottom and Left

B
E
A
L
E

 F
E
A
L

Fig. 11.8 EBCDIC card code, Version 6

184 The Card Code of EBCDIC

8-1 hole patterns. This glitch could be fixed by applying the digit-punch
combinations 8-1, rather than the digit 9, to hex row 9. The result was

Fig. 11.8.
While the card code of Fig. 11.8 would lead to a translation (bit code

to/from card code) of not unreasonable complexity, it was not acceptable.

Column 0 1 2

aa

a0 01 10 11

Hole
Pat.

Hole Patterns:

7] 11 [13] 0-1
[2] Block | Hole Patterns at:

[3] [2] 12-0 [is] 1 3 1 | Top and Left

(4] 11-0 2 | Bottom and Left

[s] No Pch [i] 0-8-2 2 4 3. | Top and Right

[e] 12 {i2] 0 4 | Bottom and Right
Fig. 11.9 EBCDIC card code, Version 7

11.4 Exception Translations 185

The digit-punch combination 8-1 could not be assigned to hex row 9 of
Quadrants 3 and 4, because i, r, z, I, R, Z, and 9 (all of which had the

digit punch 9) were already assigned to that row.
But if hole patterns 9-12-0, 9-12-11, 9-11-0, 9-12-11-0, 9-12, 9-11,

9-0, and 9 are assigned to hex row 9 of Quadrants 3 and 4, then hole
patterns 9-12-0-8-1, 9-12-11-8-1, 9-11-0-8-1, 9-12-11-0-8-1, 9-12-
8-1, 9-11-8-1, 9-0-8-1, and 9-8-1 must be displaced. Since the hole
pattern 8-1 translates in BCD the same as 9, these displaced hole
patterns were assigned intuitively to hex row 9, Quadrants 1 and 2, as
shown in Fig. 11.9. Note that the horizontal line is now staggered as it
crosses between hex columns 7 and 8. |

11.4 EXCEPTION TRANSLATIONS

As shown in Fig. 11.2, there were eight code positions with exception
hole patterns. These are also noted in Fig. 11.9. These eight exception
hole patterns would, of course, displace eight more hole patterns, as

shown in Fig. 11.10. These exception hole patterns, if they had occupied
their “theoretical” code positions in Fig. 11.9, would have occupied
positions as shown as shown in Fig. 11.11.

Thus there were twelve code positions affected directly or indirectly
by the exception hole patterns:

40, 50, 60, 61, 6A, 80, 90, CO, DO, EO, E1, FO

Code-table Exception Displaced
location hole patterns hole patterns

40 No punches 9-12-0

50 12 9-12-11

60 11 9-11-0
61 0-1 9-11-0-1

CO 12-0 12
DO 11-0 11

E6 0-8-2 0

FO 0 No punches
Fig. 11.10 Exception and displaced hole patterns

186 The Card Code of EBCDIC

Exception Theoretical
hole patterns code-table location

No punches FO
12 CO

11 DO
0-1 El

12-0 80
11-0 90

0-8-2 6A
0 EO

Fig. 11.11 Theoretical code-table

locations

In the accommodation of the displaced hole patterns, even more hole-

pattern exceptions were generated, giving rise to a total of 15, as shown

in Fig. 11.12.

The card code shown in Fig. 11.12 became the EBCDIC card code. It

was incorporated into IBM’s Corporate System Standard CSS 2-8015-

002 [11.1], later designated CSS 3-3220-002 [11.2]. The EBCDIC code

chart of that time (1964 October) was completed with the assignment of

the 16 control characters of PTTC (from Fig. 11.4).

11.5 A DIFFERENT BLOCKING

It was subsequently discovered that if the blocking into four blocks was

done in a slightly different way, and if the four zone patterns above block

1 were amended as shown in Fig. 11.13, four of the exception translations

(hole pattern to/from bit patterns) would disappear, namely those in hex

positions 00, 10, 20, and 30. It is to be emphasized that while the tableau

of Fig. 11.13 is different than that of Fig. 11.12, the actual translation

relationship (hole patterns to/from bit patterns) is, in fact, identical for

both tableaux. For both tableaux, the hole patterns for hex positions 00,

10, 20 and 30 are 9-12-0-8-1, 9-12-11-8-1, 9-11-0-8-1, 8-12-11-0-8-1,

respectively.

11.5 A Different Blocking 187

Hole

Pat.
Hole Patterns:

[7] 9-12-0-8-1 ll [13] 0-1 .
(2] 9-12-11-8-1 12-11-0 9-11-0-1 Block | Hole Patterns at:

[3] 9-11-0-8-1 [] 12-0 [is] 12-11 1 3 L_ | Top and Left

[4] 9-12-11-0-8-1 [io] 11-0 2 | Bottom and Left

[s] No Pch [11] 0-8-2 , F 2 4 3 | Top and Right

[e} 12 [12] 0 4 Bottom and Right

Fig. 11.12 Final EBCDIC card code

188 The Card Code of EBCDIC

Hole

Pat.
Hole Patterns:

7] 11 [13] 0-1

2] 12-11-0 9-11-0-1 Block | Hole Patterns at:

[3] fe] 12-0 (15) 12-11 r. 3 1 | Top and Left

[4] 11-0 2 | Bottom and Left

[5] No Pch [1] 0-8-2 2 4 3, | Top and Right

[6] 12 [:2] 0 4 | Bottom and Right
Fig. 11.13 EBCDIC card code, modified tableau

REFERENCES

11.1 IBM Corporate Systems Standard, CSS 2-8015-002, “Extended BCD

Interchange Code,” 1964 October.

11.2 IBM Corporate Systems Standard, CSS 3-3220-002, “Extended BCD

Interchange Code,” 1968 November.

12
The

New PTTC

In Chapter 6, the development of a shifted 6-bit code for paper tape and

for transmission was described. In Chapter 9, how the graphic assignment
of some graphics to hole patterns was changed in order to eliminate duals
was described. The IBM 1050, a terminal implementing PTTC, had been

designed for use with BCDIC computers. The 1050 had an associated

punched card code.

12.1 A NEW 1050

A new model of the 1050 was being designed for use with the then-being-

designed System/360. This new model would also implement PTTC and

have an associated card code. Since some graphic—to—-hole-pattern assign-

ments had been changed between BCDIC and EBCDIC and since the

new 1050 would be used with the System/360, an EBCDIC computer, it

was clear that some corresponding changes would have to be made in the
PTTC card code. There would have to be a new PTTC.

Since the old and new PTTC would be different, it was decided that

they should be distinguished by different names. The old PTTC was

designed for use in the environment of 6-bit, BCDIC computers. The new

PTTC would be used in the environment of 8-bit, EBCDIC computers.

Initially, then, the codes were named

PTTC/6, the PTTC for 6-Bit Environments, and

PTTC/8, the PTTC for 8-Bit Environments.

When these two names were published an unexpected confusion arose.

aon

190 The New PTTC

Some people interpreted PTTC/6 to mean a 6-bit code and PTTC/8 to

mean an 8-bit code. The latter interpretation, of course, was incorrect.

This confusion became manifest to such an extent that it was decided the

names must be changed to eliminate the source of confusion. Eventually,

the two codes were renamed:

PTTC/BCD, the PTTC for BCDIC Environments, and

PTTC/EBCD, the PTTC for EBCDIC Environments.

12.2 CRITERIA

Some criteria were established for the design of PTTC/EBCD:

Criterion 1. PTTC structure

PTTC/EBCD should have the same structure as PTTC/BCD,;; that is, be a

shifted 6-bit code, with Space, 16 shift-independent control positions, and

94 graphic positions.

Criterion 2. PTTC/BCD compatibility

PTTC/EBCD should be as compatible as possible with PTTC/BCD.

Criterion 3. EBCDIC compatibility

The graphic-to-card-hole-pattern assignments for PTTC/EBCDIC

should match those of EBCDIC.

Criterion 4. Monocase/Duocase*

There should be a monocase alphabet set of the 62 graphics of the 029

Keypunch, and a duocase alphabet set of the 88 graphics of EBCDIC.

Criterion 5. Basic/extended card code

There should be a card-code subset of 64 hole patterns that is a subset of

the full set of 111 hole patterns.

* The Monocase Alphabet Set of PTTC/EBCD is so entitled because it contains
only the capital-letter representations of the alphabet independent of whether the
case shift is upper or lower. The Duocase Alphabet Set contains both capital-
letter representations and small-letter representations of the alphabet. A clear
distinction must be kept between the concept on the one hand of small and capital
letters and the concept orf the other hand of lower-case shift and upper-case shift
on a typewriter-like device. Normally, small letters are implemented on the
lower-case shift, and capital letters are implemented on the upper-case shift. This
was the way the 1050 implemented the duocase alphabet for PTTC/BCD. But for
PTTC/EBCD, the Monocase Alphabet Set was implemented on the 1050 with
capital letters in both upper- and lower-case shift (as will be described).

12.5 Monocase and Duocase Sets 191

As with the 1050 implementing PTTC/BCD, the 1050 implementing
PTTC/EBCD used an electric typewriter as the keyboard and printer.

The typewriter forced its arithmetic on the decision for the code.

12.3 TYPEWRITER ARITHMETIC
1.

w
k

Y
N

44 keys, lower-case shift

44 keys, upper-case shift

26 keys, alphabetic in both shifts

10 keys, numeric in lower-case shift, specials in upper-case shift

8 keys, specials in both shifts

The structure of the code also forced its arithmetic on decisions

for the code.

12.4 PTTC/EBCD ARITHMETIC

1.

I
A
M

SY

47 graphic positions in lower-case shift, 3 of which would be non-

printing

47 graphic positions in upper-case shift, 3 of which would be non-

printing

1 Space position, shift independent

16 control positions, shift independent .

64 lower-case shift positions, 17 of them shift independent

64 upper-case shift positions, 17 of them shift independent

111 different characters (94 shift-dependent graphic characters plus 1
shift-independent Space character plus 16 shift-independent control

characters) .

This structure is illustrated in Fig. 12.1.

12.5 MONOCASE AND DUOCASE SETS

In the design of the 1050, there would be two variables that were

essentially independent. The first variable would be the graphic set,

Monocase and Duocase (Criterion 4). The particular set in use at any
particular time would be determined by which printing element the

customer mounted on the 1050. The printing elements for both would

have 88 printing positions. In the case of the Duocase Alphabet Set

element, all 88 graphics would be different, and small and capital letters

192 The New PTTC

Lower Case Upper Case

Bit
————_—_—_—_—_—_—_—_—__—_ P|

Pattern

Hole

Pattern—>|

$16 CONTROLS #

Hole

Pattern

Biock | Hole Patterns at:

1 3 1 Top And Left

Bottom and Left

2

2 4 3 Top and Left

4 Bottom and Left

Fig. 12.1 PTTC structure

would be provided. In the case of the Monocase Alphabet Set, 26

printing positions would provide capital letters, and 26 other printing

positions would also provide capital letters, so that there would, in fact,

be 88—26= 62 different graphics.

12.7 Initial Decisions 193

12.6 BASIC SET AND EXTENDED SETS

The other variable would be the card-code set, which came to be called

the Basic Set and the Extended Set (Criterion 5). The Extended Set

would consist of 111 different hole patterns; the Basic Set would consist

of 64 different hole patterns. The particular card-code set in use on the

1050 would depend on which of the two card-code features the customer

had ordered.

12.7. INITIAL DECISIONS

The code-structure arithmetic spoke quickly to Criterion 5. The 64-

character, Basic Card-Code Set would be assigned to both sets of 64-

character upper- and lower-shift code positions.

1 space character

47 graphic characters

17 control characters

64 characters

Although it would be possible to use the Basic Card-Code Set with the
Ducocase Alphabet Set (as will be described), it is more reasonable to

discuss the Basic Card-Code Set in the context of the Monocase Alphabet

Set.

It was decided that PTTC/EBCD should have not only the same
structure as PTTC/BCD (Criterion 1) but also the same set of control
characters (Criterion 2). Since the positioning of the alphabetics and
numerics was implicit in the structure, the Monocase Alphabet Set would

start as shown in Fig. 12.2.

As described in Chapter 6, it was decided to assign the BCDIC hole

patterns for alphabetics to the lower-case shift, regardless. of whether

these were small or capital letters. This decision was reviewed for

PTTC/EBCD in the context of the Duocase Alphabet Set (as will be
described), but in the context of the Monocase Alphabet Set and the

Basic Card-Code Set, it seemed obvious that these alphabetic hole

patterns should be assigned to the capital letters in both shifts.

Further, it was observed in PTTC/BCD (see Fig..6.6) that the 8

printable graphics

#@/,.—$&

in the lower-case shift had not changed card hole patterns between

BCDIC and EBCDIC. Therefore, it was decided, in view of Criteria 2

and 3, that these specials should have the same bit patterns in

194 The New PTTC

Lower Case Upper Case

Bit I A B BA A B BA
Pattern

Hole

Pattern—>

y

SP SP

1 1 J A J A

2 2 s K B S K B

21 3 tT L Cc T L C

4 4 U M D U M Dd

4 1 5 v N E Vv N E

42 6 W Oo F W 0 F

421 7 x P G xX P G

8 8 Y Q H Y Q H

8 1 9 Zz R I Zz R I

8 2 0 N.P N.P N.P N.P N.P N.P

8 21

84 PN BYP RES PF PN BYP RES PF

84 1 RS LF NL HT RS LF NL HT

842 uc EOB BS LC uC EOB BS LC

8421 EOT PRE IL DEL EOT PRE IL DEL

Hole_—»|

Pattern

N.P. - Non-Printing Positions

Block | Hole Patterns at:

1 3 1 | Top And Left

2 Bottom and Left

2 4 3 Top and Left

4 Bottom and Left
Fig. 12.2 PTTC/EBCD Monocase Alphabet Set, Version 1

PTTC/EBCD as in PTTC/BCD and the same hole patterns as in BCDIC,

EBCDIC, and PTTC/BCD.
Further, in view of Criterion 2, it was decided that the 16 control

characters should have both the same bit patterns and the same hole

patterns in PTTC/EBCD as in PTTC/BCD. (This decision led to the

decision, as described in Chapter 11, that these 16 control characters

12.7 Initial Decisions 195

Lower Case Upper Case

Bit = ______» A B BA A B BA
Pattern :

Hole

Pattern—>} 0 11 12 0 ll 12

2
1 1

SP @ OY - & SP Ly

1 1 l / J A J A

2 2 2 8 K B Ss K B

21 3 3 T L Cc T L Cc

4 4 4 U M D U M D

4 1 5 5 Vv N E Vv N E

42 6 6 W 0 P W 0 F

421 7 7 x P G X P G

8 8 8 Y Q H Y Q H

8 1 9 9 Z R Tr Z R IT

L2] [3] Tal Lz] La] La]
8 2 0 0

8 21 8-3 # , $

84 4 PN BYP RES PF PN BYP RES PF

84 1 5 RS LF NL HT -RS LE NL HT

842 6 UC EOB BS LC UC EOB BS LC

8421 7 EOT PRE TL DEL EOT PRE IL DEL

Hole—p») 9 9-0 | 9-11 | 9-12 9 9-0 | 9-11 | 9-12
Pattern :

Hole Patterns:

[i] 84
(2) 0-8-2 Block | Hole Patterns at:

B] 11-0 1 3 1 Top And Left

4] 12-0 2 Bottom and Left

2 4 3 Top and Loft

4 Bottom and Left

Fig. 12.3. PTTC/EBCD, Version 2, Monocase Alphabet Set,
Basic Card-Code Set

would be assigned in EBCDIC, and with the PTTC/EBCD hole patterns.

This decision, therefore, also satisfied Criterion 3.)

Finally, for the Basic Card-Code Set, it was decided, for the non-

printing graphic code positions (in both shifts), to maintain card-code

compatibility with PTTC/BCD (Criterion 2).

196 The New PTTC

With these decisions, the Monocase Alphabet Set and Basic Card-

Code Set shaped up as in Fig. 12.3. Blank spaces in the code table are for

as yet unassigned graphics. The 64-character, Basic Card-Code Set was

complete.

In the development of PTTC/BCD, as described in Chapter 6, it was

decided for various reasons to assign the BCDIC card hole patterns for

alphabetics to the lower-case shift, regardless of whether small or capital

letters were assigned to that shift. That decision was now reviewed for

PTTC/EBCD.
For the Monocase Alphabet Set, capital letters would be assigned to

both lower- and upper-case shift code positions. For the Duocase Al-

phabet Set, small letters would be assigned to lower-case shift and capital

letters to upper-case shift. (The same decision had been made for
PTTC/BCD.) In assigning card hole patterns for PTTC/BCD, it had been

decided at that time to assign the BCDIC hole patterns for alphabetics to

small letters and another (related) set of hole patterns to capital letters.
Criterion 2 should dictate the same decision for PTTC/EBCD. But for
EBCDIC (Chapter 8) exactly the opposite had been decided. Criterion 3

should dictate the same decision for PTTC/EBCD.

12.8 FURTHER DECISIONS

Since PTTC/EBCD was being designed for a 1050 to operate with the

System/360, an EBCDIC computer, it was decided that Criterion 3,

EBCDIC compatibility, outweighed Criterion 2, PTTC/BCD com-

patibility.

It was also decided for the Duocase Alphabet Set and Extended

Card-Code Set, that the eight specials

#@/.,-$&

should have the hole patterns previously decided for the Basic Card Set,

in order to ensure compatibility with EBCDIC (Criterion 3).
Since no reason could be found not to do so, it was decided to carry

forward from positions *, *, and * in Fig. 12.3 the hole patterns 0-8-2,
11-0, and 12-0 for lower-case shift. This would be in accord with

Criterion 2, PTTC/BCD compatibility.

With these decisions, a beginning was made on the Duocase Al-

phabet Set and Extended Card-Code Set for PTTC/EBCD, as shown in

Fig. 12.4. Blank spaces on the code table are for as yet unassigned

graphics or hole patterns.

12.8 Further Decisions 197

Lower Case Upper Case

Bit A B BA A B BA
Pattern

Hole

Patera 11-0 12-11 12-0 0 Il 12

y

Ly Ls] 184
SP @ - & SP

1 1 1 / By I a J A

2 2 2 s k b S K B

21 3 3 t 1 c T L C

4 4 4 u om d U M D

41 5 5 v n e v N E

42 6 6 w o £ W 0 F

424 7 7 x P g xX P G

8 8 8 y gq h Y Q H

8 1 9 9 z r A Z R I

6 9 8 2 0 0 C3 [se] La

32 7 10
8 21 |] 83 Se a ee

84. 4 PN BYP RES PF J PN BYP RES PF

84 1 5 RS LF NL HI RS LF NL HT

842 6 UC EOB BS LC UC EOB BS LC

8421 7 EOT PRE TL DEL EOT PRE IL DEL

Hole—p| 9 9-0 9-11 9-12 9 9-0 9-11 9-12
Pattern

Hole Patterns:

[i] 8-4 12
{2] 0-1 fe] 12-0 Block | Hole Patterns at:

[3] 0-8-2 12-8-3 1 3 1 | Top And Left

[4] 0-8-3 [32] 8-3 2 Bottom and Left

fs] 11 , 2 4 3 Top and Left

Le] 11-0 4 Bottom and Left

11~8-3

Fig. 12.4 PTTC/EBCD, Version 1, Duocase Alphabet Set,
Extended Card-Code Set

There now remained the question of 18 printable graphic positions

and the 3 nonprinting graphic positions in upper-case shift. In

PTTC/BCD, for the 3 nonprinting graphic positions in upper-case shift,

hole patterns 12-8-7, 0-8-5, and 8-7 had been assigned. At the same

time, hole patterns 8-1, 0-8-1, and 12-8-1 has been assigned to graphics

198 The New PTTC

in printable positions. The typewriter arithmetic referred to earlier would
yield 88 printable graphic positions (hence the 6 nonprintable graphic

positions in the code structure’s 94 graphic positions). Of these 88
graphics, 26 would be small letters, leaving 62 graphic positions for

numerics, specials, and capital letters.

Lower Case Upper Case

Bit A B BA A B BA
Pattern

Hole

Pattern—> 11-0 12-11 12-0 0 11 12

1 5 8
x x4 x x YT x (22 las] 28

1 1 x x L2| x x Ly eal Xx

12
2 2 x x x X hl x x x

13
21 3 x x x x X X x

4 4 x x X X by x x x

41 5 x x x x us| x x
16

42 6 X x x x bg x Xx x

421 7 x x x x by Xx x x

8 8 x x xX x bel x x xX

8 1 9 x Xx x X Lal X x x

3 6 9 20 24 27 0
8 2 0 x yy yl yl bf ey by

32 q Z 10 21 25 28 31 8 21 3-3 x [22] x Ll x Lz x [19] [24 Ls] [2.8] By

84 4 x x x x x x x x

84 1] 5 x x x x x x x x

842 6 Xx X x x Xx x x x

8421 7 x x x x x x x x

Hole—y| 9-0 | 911 | 9-12 9 9-0 | 9-11 | 9-12
Pattern

Hole Patterns: X ~ Assigned Hole Patterns

[4] 8-4 12
(2] 0-1 12-0 Block | Hole Patterns at:

[3] 0-8-2 12-8-3 1 3 1 | Top And Left

[a] 0-8-3 0-8-1 2 Bottom and Left

{s] 11 12-8-1 2 4 3 | Top and Left

[6] 11-0 8-1 4 | Bottom‘and Left

11-8-3 [Be] 8-3

Fig. 12.56 PTTC/EBCD partial card-code assignments

12.9 Alphabetic Extenders 199

During the design of EBCDIC, this same typewriter arithmetic had
been reviewed in the context of the console typewriter for the

System/360. It had been decided that, in EBCDIC, the 62 numerics,

specials, and capital letters would be assigned to the hole patterns of the

62 interpretable graphics on the 029 Keypunch.

It was now decided that these 62 029 Keypunch hole patterns would

be assigned to the 62 printable graphic positions of PTTC/EBCD referred
to above. Since the set of 62 hole patterns included 12-8-7, 0-8-5, and

8-7, these three hole patterns should not be assigned in PTTC/EBCD to

nonprintable positions (as they had been in PTTC/BCD); and since they

did not include 8-1, 0-8-1, and 12-8-1 (assigned to printable positions in

PTTC/BCD), these should not be assigned to printable positions in

PTTC/EBCD. Once again, Criterion 3, EBCDIC compatibility, out-

weighed Criterion 2, PTTC/BCD compatibility. Hole patterns 0-8-1, 12-

8-1, and 8-1 were assigned to the nonprintable positions in upper case

designated by **, 7’, and *° in Fig. 12.5; 12-8-7, 0-8-5, and 8-7 would be
assigned somewhere to printable positions.

The situation on assignment for PTTC/EBCD, Duocase Alphabet

Set, and Extended Card-Code Set is shown in Fig. 12.5, where X
indicates code positions with assigned hole patterns. Eighteen printable

code positions remained for assignment of hole patterns and graphics.

12.9 ALPHABETIC EXTENDERS

At this point another factor was taken into consideration. In EBCDIC,

graphics # $ @ were designated as upper-case alphabetic extenders for

European and South American countries. That is to say, on printing,

display, and interpreting devices, these graphics would be replaced by

alphabetics as required. For example, the German language requires 29

alphabetics—the 26 alphabetics of English-speaking countries and three

more alphabetics, A, U, and O. On equipment designed for Germany,

therefore, A, U, and O would replace # $ @ respectively. Also in

EBCDIC, three graphics " ! ¢ were designated as lower-case alphabetic

extenders, to be replaced, in Germany for example, by 4, u, and 6.

Certainly, provision must be made in PTTC/EBCD for alphabetic

extenders, both lower and upper case. The dilemma was that upper-case

alphabetic extenders were to replace graphics # $ @ which had been

assigned in PTTC/EBCD to lower-case shift. The actual assignment in

PTTC/EBCD was not significant, but the reason for the assignment was.

In accordance with the long-established U.S.A. electric typewriter prac-

tice, # $ @ were in upper-case shift. Which’ should take precedence, the
U.S.A. electric typewriter practice or the alphabetic extender require-

200 The New PTTC

ment for Europe? A very interesting decision was made. For the new

1050s implementing PTTC/EBCD, # $ @ and their respective hole

patterns 8-3, 11-8-3, 8-4 would indeed be in lower-case shift for the

U.S.A. But, for new 1050’s for Europe, modifications would be made so

that the hole patterns assigned to # $ @ in upper case for the U.S.A.

would be in lower case for Europe.

Lower Case Upper Case

Bit A B BA A B BA
Pattern

Hole

Pattern—>

@ ¢

1

2

21

4

4 1

42

421

8

8 1

8 2

8 21 i $ tt Il

84

84 1

842

8421

Hole»

Pattern

Block | Hole Patterns at:

L 3 1 Top And Left

2 Bottom and Left

2 4 3 Top and Left

4 Bottom and Left
Fig. 12.6 PTTC/EBCD alphabetic extender positions

12.11 ““Musical-Chairs’” Phenomenon 201

Clearly, for Europe, one would require that alphabetic extender keys

on the 1050 that provide capital alphabetic extenders in upper case would

provide the equivalent small alphabetic extenders in lower case. Relating

this to the U.S.A., the 1050 keys with # $ @ in lower case must provide
" ! ¢ in lower case. This dictated, for PTTC/EBCD, that ” ! ¢ be in

upper-case code positions corresponding to the lower-case code positions

of # $ @ . That is to say, the PITC/EBCD code positions for # $ @
already having been assigned, ” ! ¢ must be assigned as shown in Fig.

12.6.

12.10 DIFFERENCES WITH PTTC/BCD

As described in Chapter 9, hole patterns 8-7, 11-8-2, and 12-8-2 had

been assigned to ” ! ¢. The assignment of ! (as shown in Fig. 12.6) with

its hole pattern of 11-8-2 coincidentally matched PTTC/BCD (Fig. 6.6),

but the assignment of hole patterns 8-7 and 12-8-2 to graphics " ¢ (as

shown in Fig. 12.6) would displace the PTTC/BCD hole patterns 0-8-7

and 11-8-7 assigned to these positions. Also, as previously noted, the

assignment of 0-8-1, 12-8-1, and 8-1 to positions °*, 7’, and *° (Fig. 12.5)
would displace hole patterns 12-8-7, 0-8-5, and 8-7 from PTTC/BCD

positions '°, '°, and 7? as shown in Fig. 6.6.
In short, five hole patterns had been assigned to PTTC/EBCD

differently than to PTTC/BCD as shown below:

Move 1. 8-7 assigned to *', displacing 0-8-7

Move 2. 12-8-2 assigned to 7”, displacing 11-8-7

Move 3. 8-1 assigned to *°, displacing 8-7

Move 4. 0-8-1 assigned to 7*, displacing 12-8-7

Move 5. 12-8-1 assigned to *’, displacing 0-8-5

(Code table position references above are in respect to Fig. 12.5)

12.11 “MUSICAL-CHAIRS” PHENOMENON

These moves, by the ‘‘musical chairs’? phenomenon, necessarily led to

further moves as shown below:

Move 6. 12-8-7, displaced by Move 4, replaced 0-8-1 in 7°, moved from
75 by Move 4

Move 7. 11-8-7, displaced by Move 2, replaced 12-8-1 in 3', moved from
31 by Move 5

202 The New PTTC

Move 8. 0-8-7, displaced by Move 1, replaced 12-8-2 in 7°, moved from
23 by Move 2

Move 9. 0-8-5, displaced by Move 5, replaced 0-8-6 in 7°

Move 10. 0-8-6, displaced by Move 9,* replaced 8-1 in '7, moved from

'7 by Move 3

Of course, these code positions, having hole patterns assigned to them by

these moves, also took their EBCDIC graphics with them under Criterion

3, EBCDIC compatibility.

No further moves were made. Under Criterion 2, PTTC/BCD com-

patibility, the remainder of the code positions in upper-case shift took the

hole patterns from PTTC/BCD (Fig. 6.6 in Chapter 6), but under

PTTC/BCD PTTC/EBCD

Code Code EBCDIC
Hole pattern Graphic position Graphic position graphic

(Figure 6.6) (Figure 12.8)

8-6 > = =

12-8-4 Hor} [4] < <

11-8-6 [5 |

8-2 b [6 |

0-8-4 % or (% [15] %

8-5

11-8-4 * * "

12.8.5 [((

11-8-5 1 })

11-8-2 ! | |

12-8-6 < + +

Fig. 12.7. PTTC/BCD compatibility

* The author cannot recall why, in Move 9, 0-8-5 displaced 0-8-6 in code position
6 It would seem to have been reasonable for 0-8-5 to have replaced 8-1, moved
from code position *”? in Move 3. Such a move would then have completed the
“‘musical chairs’? moves. However, Move 9 was made, for whatever reason, and

led to Move 10, which did complete the moves.

12.11 “‘Musical-Chairs’”” Phenomenon 203

Criterion 3, EBCDIC compatibility, they took for those hole patterns the

EBCDIC graphics as shown in Fig. 12.7.
This, then, completed the assignment for the Duocase Alphabet Set

and Extended Card-Code Set for PTTC/EBCD, as shown in Fig. 12.8.

Lower Case Upper Case

Bit Pattern A B BA A B BA

Hole

Pattern—>| 11-0 12-11 11-0 0 1l 12

Sp ety _tst , LT op « 22] _ kel, baal

1 1 1 peg a -') ,ks) | A

2 2 2 g k b < 42] g K B

21 3 3 t 1 c 3 Lal T L Cc

1
4 4 4 u m d : U M D

44 5 5 v n e yO} y N E

42 6 6 w o £ 1 Gs W 0 F

421 7 7 * Pp g > ha x P G

18
8 8 8 y q h % el Y Q H

8 1 9 9 Zz r t ¢ hal Z R I

8 2 0 0 [3] Le] L9]) Be [24] 27] Bo

8 2 3-3 4 22 = 3 4 1o , 24 | 25 , Ba _ B4

84 4 PN BYP RES PF PN BYP RES PF

84 1 5 RS LF NL AT RS LF NL HT

842 6 UC EOB BS LC UC EOB BS LC

8421 7 EOT PRE IL DEL EOT PRE IL DEL

4
Hole —y 9 9-0 | 9-11 | 9-12 9 9-0 | 9-11 | 9~12

Hole Patterns

[7] 8-4 12 0-8-4 [a2] 12-8-2 12-8-6

[2] 0-1 12-0 8-5 [23] 0-8-7 8-1 Block | Hole Patterns at:

[3] 0-8-2 12-8-3 0-8-6 0-8-1 [i] 11-8-7 1 3 1 | Top And Left
[4] 0-8-3 fii] 8-6 11-8~4 [5] 12-8-7 [32] 8-3 2 | Bottom and Left
[s] 11 [rz] 12-8-4 12~8-5 0-8-5 2 4 3 | Top and Left
[e} 11-0 [3] 11-8-6 118-5 12-8-1 4 | Bottom and Left
[7] 11-8-3 8-2 [zi] 8-7 11-8~2

Fig. 12.8 PTTC/EBCD, Duocase Alphabet Set, Final Version,
Extended Card-Code Set

204 The New PTTC

The Basic Card-Code Set had been completed (see Fig. 12.3), but

the Monocase Alphabet Set had not. The Monocase Alphabet Set could

now be completed since it, as previously described, would be different

from the Duocase Alphabet Set only in that capital letters would appear
in both lower- and upper-case shift. That is to say, the specials in
upper-case shift for the Duocase Alphabet Set (Fig. 12.8) would also

Lower Case Upper Case

Bit A B BA A B BA
Pattern

Hole

Pattern—>) 0 11 12 0 ll 12

sP @ yy - & SP ¢ by _ +

1 1 1 / ty J A = 2 Bg A

2 2 2 s K B < S K B

21 3 3 T L Cc 3 T L Cc

4 4 4 U M D U M D

4 1 5 5 v N E a v N E

42 6 6 W 0 F ‘ W 0 F

421 7 7 xX P G > xX P G

8 8 8 Y Q H * Y Q H

8 1 9 9 Z R I (Z R I

8 2 0 0 N.P N.P N.P) N.P N.P N.P

8 21 8-3 # : $ " | I =

84 4 PN BYP RES PF PN BYP RES PF

84 1 5 RS LF NL HT RS LF NL HT

842 6 UC EOB BS LC uc EOB BS Le

8421 7 EOT PRE IL DEL EOT PRE IL DEL

Hole——p/ = g 9-0 | 9-11 | 9-12 9 9-0 | 9-11 | 9-12
Pattern

N. P. =~ Non-Printing
Hole Patterns:

[i] 84
[2] 0-1 Block | Hole Patterns at:

1 3 1 Top And Left

2 Bottom and Left

2 4 3 Top and Left

4 Bottom and Left

Fig. 12.9 PTTC/EBCD, Final Version, Monocase Alphabet Set,
Basic Card-Code Set

12.12 Interactions, Basic and Extended Sets 205

appear in upper-case shift for the Monocase Alphabet Set. The final

version of PTTC/EBCD Monocase Alphabet Set and Basic Card-Code

Set, is shown in Fig. 12.9.

At this point it should be emphasized that the 64-character Basic

Card-Code Set and the 63-character Monocase Alphabet Set do not

consist of the same set of characters. The Basic Card-Code Set consists of
the hole patterns for the Space character, 47 graphic characters (3

nonprinting), and 16 control characters. The Monocase Alphabet Set

consists of the Space character (in upper- and lower-case shift), 10
numerics in lower-case shift, 8 specials in lower-case shift, 18 specials in
upper-case shift, and 26 capital letters in upper- and lower-case shift.

12.12 INTERACTIONS, BASIC AND EXTENDED SETS

Some examples are now given to illustrate interactions between the Basic

and Extended Card-Code Sets and the Monocase and Duocase Alphabet

Sets. Applications are straightforward when the 1050 is configured either

with the Basic Card-Code Set feature and the Monocase Alphabet Set or
with the Extended Card-Code Set and the Duocase Alphabet Set. Other

combinations were possible, such as the Basic Card-Code Set feature with

the Duocase Alphabet Set, but ingenuity and a knowledge of the codes

was necessary in such cases in order to make the 1050 produce the
desired result.

In the examples that follow, the ‘‘desired result” is a line of printed
characters, whether produced by reading a punched card on the 1050 card
reader or produced by the operator keying from the 1050 keyboard.

Example 1

This example illustrates the use of the 1050 Basic Card-Code Set feature
to drive the Monocase Alphabet Set, with capital letters, but with

lower-case shift only; that is, no shift characters are required.

Line 1 J L . SPS M I T H SP $ 1... #23

J J J J db vv bo vod 4 tv vd
J J J J db bdvybboviod Ld do vd
J J J J b+veb bo bod , bb vd

Line 2 ml . il . Sook Yoloalis . $ i . |:
Line 3| 11-1] 12-8-3] 11-3 12-8-3 [NP 0-2 thalt2-0 0-3 }12-8 |NP is-3lt 12-8-3|2}3

Note: NP means No Punches. SP means Space

Line 1 is the print line—J. L. Smith $1.23.
Line 2 are the Basic Card-Code Set characters.
Line 3 are the Basic Card-Code Set hole patterns.

206 The New PTTC

Example 2

This example illustrates the use of the 1050 keyboard to drive the

Monocase Alphabet Set, with capital letters but with lower-case shift

only; that is, no shifting is required during the keyboard operation.

Line 1 J LL. SPS M IT H SP ¢$ 1. 23
L 1 1 L, dss L J dD bb vv be
L L J L 4 ' ' J J Db bv bo ibe
| 1 | 1 Mi ’ 1 Lb bt bo bo vob

Line 2| 3 | | | si a H |S $ i _ |2i3
Line 3| B1! A821! B21! A821 SP A2|B4 BABI A21|BA8! SP B821 |1]A821]213

Line 1 is the print line—J. L. Smith $1.23.
Line 2 are the keys.

Line 3 are the PTTC bit patterns.

Example 3

This example illustrates the use of the 1050 Basic Card-Code Set feature

to drive the Monocase Alphabet Set, with capital letters only, but with

upper- and lower-case shift.

Line 1 Z =(KX + YY)*(€ P — D)

Lb lb d 1 1 bid dl Y LJ
—-<«|) Jl L Lvbd id -<« |) <<] J
L J J
t L, vbiod Y L vido’ 1 Log L J

Lb tid J b dd , ie L 4 L J
Line 2 119/ xX | & 01 8|9 — |UC |
Line 3 9-6 lool alo 0-7] 12 oslo 0} 8/9 912-6 11 9-6 [12-410

Line 1 is the print line—Z = (X+ Y)*(P—D).
Line 2 are the Basic Card-Code Set characters.

Line 3 are the Basic Card-Code Set hole patterns.

Example 4

This example illustrates the use of the 1050 keyboard to drive the

Monocase Alphabet Set, with capital letters only, but with upper- and

lower-case shift.

Line 1 Z =(X + Y /j) * (¢ P - D)

Lossy 1 vb od d d 4
-<| 4 ’ J Lsvsvbebood —-<|) <<) |
J Lb, dvlid 1 sevld id J L 4 L of

Tine 3 [2 [ast {1 il atoilpalat |ndir | pasar! p | seal naa lan Line 3 349 A81 | 1 {1] A4211BA/A8] 82/8181! B421 | BA842 842 | BA4 | 82

12.12 interactions, Basic and Extended Sets 207

Line 1 is the print line—Z = (X+ Y)*(P—D).
Line 2 are the keys.

Line 3 are the PTTC bit patterns.

Example 5

This example illustrates the use of the Basic Card-Code Set feature to

drive the Duocase Alphabet Set, with small and capital letters.

Line 1 SP SP S a m a n d J a n

J 4 bebo vod J Lod
<<] W~-<—-) | Lob bobo bo ced «<1 4
t J 4 4b bhbodbobedboaypod d Lb

J J L ‘ ; bbb bVdvid ‘ L od
Line 2 sel | LC | A rhe lan | SP JUC None I |
Line 3 0-2 o-10-6l12-1lti-alwPlraltslizalwplocela-aloinetio alte

Line 1 is the print line—Sam and Jan.

Line 2 are the Basic Card-Code Set characters.
Line 3 are the Basic Card-Code Set hole patterns.

Example 6

This example illustrates the use of the 1050 keyboard to drive the
Duocase Alphabet Set, with small and capital letters.

Line 1 S a SP SP m a n d J a n

1 a d Loy J Lo oo4
<<| -<«tl J did Y dd <<) -<]| J
Lov J Lub diy L J ' / J 1 Loo¢
dod J 4 bboy d J J a Ld

Line 2} UC a n n

Line 31842 lao pasa? BAI | pal sp plBAt B41 padl s ney. | BAs4#2 BAI B41

Line 1 is the print line—Sam and Jan.

Line 2 are the keys.

Line 3 are the PTTC bit patterns.

Example 7

This example illustrates the use of the Extended Card-Code Set feature
to drive the Duocase Alphabet Set, with small and capital letters. Shift
characters are not required.

Line 1 S a m SP oa n d SP J a n

Loy J L od J Lb boy J |
Lod J 4 4 J 4 ov 4 Y J
4 4 1 4 J 4 dod 1 |

Line 2| S a a n d J a n

Line local 1.0-2 12-11-4 NP ht 1.0-2112-11-5111.0-4 NP 11-1111-0-2 112-11-5

208 The New PTTC

Line 1 is the print line—Sam and Jan.
Line 2 are the Extended Card-Code Set characters.

Line 3 are the Extended Card-Code Set hole patterns.

12.13. PTTC AND EBCDIC

One final aspect of PTTC/EBCD needs to be covered—the translation of

the shifted 6-bit PTTC into the unshifted 8-bit EBCDIC.
The translation of a shifted code into an unshifted code, and vice

versa, is an interesting problem. For example, a and A, both have the

same bit pattern, BA1, in PTTC/EBCD, but have different bit patterns,

10000001 and 11000001, respectively, in EBCDIC. Of course, whether
BA1 means a or A in PTTC/EBCD depends on whether it was preceded

in the data stream by BA842, lower case, or by 842, upper case. Another

complication is that in the EBCDIC data stream equivalent to a

PTTC/EBCD data stream, the UC and LC bit patterns should not be

present.

The solution, for the 1050 and System/360, was to transform the

PTTC/EBCD data stream first into an intermediate 8-bit data stream,

with shift characters replaced by “‘shift bits’ in each 8-bit byte, and then
to translate this string of 8-bit bytes into a string of EBCDIC bytes. The
transformation process from shifted to intermediate form was effected by

hardware (by the IBM 2701 Data Adapter Unit, which stood between

the data transmission lines and the System/360). The translation from the

intermediate form, which was called the “‘System/360 Oriented Form’’ in

IBM literature, was effected, if necessary, by software in the System/360.

PTTC/EBCD as actually transmitted was a 9-bit byte as follows:

Stat B A 8 4 2 1 C Stop

The start-stop bits are deleted by the 2701 on receive operations and

inserted on transmit operations. The C-bit is a ‘“‘check bit,” actually an

odd-parity. check.

The transformation process of the resultant 7-bit byte (start and stop
bits deleted) into the 8-bit “‘System/360 Oriented Form’’ proceeded as

follows:

S BA 8421 C

As the data stream goes through the transformation process, UC bit

patterns are removed from the data stream, and a one-bit is set into the S

bit position of each succeeding 8-bit byte until an LC bit pattern is

detected (and removed from the data stream). Then a zero-bit is set into

the S bit position of each succeeding 8-bit byte until a UC bit pattern is

detected, and so on.

12.13 PTTC and EBCDIC 209

The bit positions of a System/360 8-bit byte are numbered as

follows:

0 123 4 5 6 7

Then the S-bit as described above, the 6 bits BA9421, and the check-bit

C of the PTTC/EBCD byte are set into the System/360 byte as follows:

SBA 8421C
$b bud dd
a
012 34567

The resulting code table, PTTC/EBCD, System/360 Oriented, is shown in

Fig. 12.10. The six shaded code positions come from the six nonprinting

code positions of PTTC/EBCD.

The System/360 Oriented Form of PTTC/EBCD could then be

translated (if necessary) by software. The “‘if necessary” aspect should be
noted. There are applications, store and forward, for example, where

translation into EBCDIC would be unnecessary.

Column 0 | 1 2 3 4 | 5 | 6 | 7 8 | 9 | A | B c | Oo | E | F

Bit 00 01 10 11 4

Pat.”
00 01 10 117 00 01 10 11 00 01 10 11 00 01 10 11

Row

0 |o000 8 @ ~ h * ¢ _ H

1 |0001] sp y q & SP Y Q + 7

2 |0010 1 Z r a = Z R A

3 |oot1i 9 / j t ¢ ? J I
_

4 10100 2 b < B

6 10701 0 s k) S K

6 |0110 it t 1 . " T L 7

7 |o111 3 : $ c ; | ! Cc

8 ;10007 4 BYP RES | d : BYP RES | D
4

9 |1001 PN u ™m PF PN U M PF

A {1010 RS Vv n HT | RS Vv N HT
-

B jTo1te 5 LF NL e % LE NL E

c |1700 uc Ww ° LC UC W 0 LC

D j1701) 6 EOB BS £ - EOB BS F

E ;1110) 7 PRE IL g > PRE IL G 1

Foya4it EOT, x P DEL EOT} X P DEL
Fig. 12.10 PTTC/EBCD, System/360 Oriented Form

210 The New PTTC

A similar, but opposite, process took place on transmitting from the

System/360 to a 1050. A string of bytes of the System/360 Oriented

Form was processed through the 2701. The first byte was inspected for its

S-bit. If S-bit is one, a UC bit pattern is injected. If S-bit is zero, an LC

bit pattern is injected into the data stream. S-bits of succeeding bytes

were inspected for a change: if a change was from zero to one, a UC bit

pattern is injected; if a change was from one to zero, an LC bit pattern is

injected into the data stream. For all bytes, the S-bit was deleted, yielding

PTTC/EBCD bytes. Of course, start-stop bits were appended to each

PTTC/EBCD byte before transmission from the 2701.

12.14 DIFFERENCES, PTTC/BCD AND PTTC/EBCD

As has been pointed out, there were a number of differences between

PTTC/BCD and PTTC/EBCD. These stemmed mainly from changes

going from BCDIC to EBCDIC and from different principles for assign-

ment of card hole patterns to the small and capital alphabetics. Before the

design of either PTTC, the well-established hole patterns for alphabetics

had been assigned to capital letters, the only kind of letters then available

on monocase data processing equipment. The use of a duocase electric

typewriter for PTTC/BCD and for PTTC/EBCD introduced the capabil-

ity for both small and capital letters. The principles established for

PTTC/BCD and for PTTC/EBCD were as follows:

PTTC/BCD. The card hole patterns previously associated with mono-

case alphabetics will be assigned to the lower-case shift (of the typewri-

ter), regardless of whether small or capital letters appear in that case shift.

PTTC/EBCD. The card hole patterns previously associated with mono-
case alphabetics will be assigned to capital letters, regardless of whether

capital letters appear in upper- or lower-case shift.

The principle for PTTC/BCD had as its objective maximum simplicity of

the logic circuitry between the keys of the keyboard and the hole patterns

of the punched card. The principle for PITC/EBCD had as its objective

unvarying (for the future) hole patterns for small and capital letters, even

though this would increase the complexity of the logic circuitry between

the keys of the keyboard and the hole patterns of the punched card.

13
The Size

and Structure
of ASCII

During the late 1950s, the need was recognized for a standard code for

the communications industry not only in the U.S.A. but also in Europe

and in Japan. Internationally, the development work was carried out in

ISO/TC97/SC2. In the U.S.A., the work started under the auspices of

E.I.A. (Electronic Industries Association). With the formation of the X3

Committee under the auspices of the A.S.A. (American Standards As-

sociation) to develop standards for the data processing industry, the X3.2

Subcommittee was established to develop a standard code, standard

media (magnetic tape, punched cards, paper tape), and the representation

of the standard code on those media.

13.1 NAME OF THE CODE

Since a code was to be developed as an American Standard, it would be

called the American Standard Code. It was thought well to qualify the

name of the code, according to its purpose, and it came to be titled the

American Standard Code for Information Interchange. From the initials

of this title emerged the acronym ASCII. Later the American Standards

Association changed its name to the United States of American Standards

Institute (U.S.A.S.I.). The code then came to be titled the United States

of America Standard Code for Information Interchange, from which

emerged the acronym USASCII. Both acronyms, ASCII and USASCH,

enjoyed currency and were eventually written into the standard itself as

co-equal “‘standard”’ acronyms. Then U.S.A.S.I. once again changed its

name, to the American National Standards Institute (A.N.S.I.). Needless

to say, the code again changed its name, to the American National

211

212 The Size and Structure of ASCIl

Standard Code for Information Interchange. However, the suggestion

that the third acronym, ANSCII, be adopted, met with opposition, and

was rejected. The code is now commonly referred to as ASCII, the

acronym USASCII having fallen into disuse.

During the initial development of ASCII, the developers went

through the same process that the developers of PTTC/BCD went

through (see Chapter 6). The first thing to determine was the functional

requirements of the code, how many graphic characters and how many

control characters. It was at this time that the American Telephone and

Telegraph Company stated its official requirements on the code. There

should be an all-zeros character, Null, and an all-ones character, Delete.

13.2 GRAPHIC REQUIREMENTS

The standards committee first tackled the question of graphic characters.

Existing codes were studied.

CCITT #2 had 26 alphabetics, 10 numerics, 3 code positions for

national use, and 11 specials

2 = C) oF 2 fF =

for a total of 50 graphics.

The Western Union Telegraph Company, using equipment from the

Teletype Corporation, had substituted

wr
; for = +

The punched card code of the day commonly (there were some

variations) provided 52 graphics; 26 alphabetics, 10 numerics, 6 unique

specials ., * $ / — and 10 specials as duals:

%y H & F @

(yes!
Fieldata, a code developed by the United States Army (later to be-

come a military standard) for telecommunications, had 10 numerics, 26

alphabetics, and 19 specials:

» * $ Jf = () + =

~— < > 3; +: ? $ 7" ?

BCDIC had 10 numerics, 26 alphabetics, and 32 specials (5 dual

pairs)

> * / $ ~ \ % (mw) S&L

A

= @
>! 2,]# # # By ' > <

+

J

13.3 Control Function Requirements 213

for a total of 68. Of these 68 specials, 7 were for the representation of

control functions, leaving 25 as true graphics.

It seemed, therefore, that widely used codes of the day had a
requirement for 10 numerics, 26 alphabetics, and from 11 to 25 specials.

A total across these codes comes out as follows:

Punctuation and correspondence yop EOL 9

Bracketing ()[] 4
Commerical &%H@%% 4 6
Mathematical +—- =x*/\< > . 8

27

From this preliminary survey then, there appeared to be a requirement

for at least 46 graphics and maybe for as many as 64 graphics. Other

graphics in wide use were fractions } and 5, commonly provided on

electric typewriters, and small letters (as well as capital letters).

13.3. CONTROL FUNCTION REQUIREMENTS

It began to appear that upward of 64 graphics should be provided in the

standard code for information interchange. The standards committees

were also studying the requirements for control characters.

CCITT #2 had provided 7:

Space Letter Shift

Carriage Return Answer Back

Line Feed Audible Signal

Figure Shift

Fieldata had provided 9 specific control characters and code positions

for 64 unspecified control characters:

Master Space Space
Upper Case Stop

Lower Case Special

Line Feed Idle

Carriage Return

BCDIC provided 7:

Record Mark Mode Change

Group Mark Word Separator

Tape Mark Substitute Blank

Segment Mark

214 The Size and Structure of ASCII

The standards committee working on data transmission was studying
the question of characters purely for data transmission control. A require-

ment for about 10 data transmission control characters seemed to be

emerging.

13.4 MORE THAN 64 CHARACTERS!

Putting the two tentative requirements for graphic and control characters
together, one fact seemed to be very clear. More than 64 characters

would be required for a code to span the needs of computing and of
communications. The figure 64 was a key figure because it pointed at a
code of more than 6 bits—at least 7 bits. This fact was very significant
because nearly all the computers of the day had essentially a 6-bit

architecture. In order to implement the standard code for information
interchange, therefore, it was very desirable that it be 6 bits (or less). But

try as it could, the standards committee could not reduce the character
requirement to 64 or less.

13.5 SHIFTED CODES

At this point, the possibility of a shifted or precedence code was raised.
The concept is explained in Chapter 2. The world-wide telegraphic code,
CCITT #2 (see Chapter 3), was a shifted 5-bit code. IBM had made a

decision to provide a shifted 6-bit code (see Chapter 6, the Size and
Structure of PTTC).

The great virtue of a shifted code is the capability of providing more

characters than the byte size of a code would normally permit. The

formula (given in Chapter 2) for the number of different characters is

Qxtl _ y

where x is the number of bits in the code byte and y is the number of

shift-dependent characters.

CCITT #2, a shifted 5-bit code, provided 58 different characters.

PTTC, a shifted 6-bit code, provided 111 different characters. It ap-

peared, therefore, that the character requirements for the standard code

for information interchange would be accommodated by a shifted 6-bit

code.

A strong argument arose against adopting the concept of a shifted or

precedence code for the code. In those days, telecommunication lines

were not wonderfully reliable. A phenomenon known as a “‘hit’’ occurred

not infrequently. When a one-bit was hit, it turned into a zero-bit. When

a zero-bit was hit, it turned into a one-bit. If an individual graphic bit

13.6 7 Bits or 8 Bits? 215

pattern was hit, the individual graphic would be garbled, but the word in

which it appeared would generally be intelligible to a human. For
example, suppose the bit pattern 11101 for Q was hit and turned into

11001, the bit pattern for W. Then a word REQUIRE would be received

and printed as REWUIRE. But, from context of the sentence and

message in which REWUIRE appeared, it would usually be possible for

the recipient to reason out that REQUIRE had been intended.
If the graphic bit pattern that was hit was a numeric, and it was in

consequence turned into another numeric or into a special, it was virtually

impossible to reason out from context what the numeric had been.

Indeed, if a numeric was changed into another numeric, it was not even

evident to a human reader that a hit had taken place. To compensate for

this, telegraphists would commonly take all numerics that had occurred in

a telegram and rekey them in sequence at the end of the message.

Provided there were no hits on this sequence of numerics, a comparison

by the recipient showed what numerics, if any, had been hit in the

message.
Consider an example using CCITT #2 with its two shift characters,

FS for Figure Shift and LS for Letter Shift. Consider a data stream

[LS|x|X|xX|FS|x|xX|LS|x|xX|xX|xX|FS|xX|X|, ete.

where X stands for a 5-bit graphic bit pattern.

If a hit occurred in the bit pattern of either a Figure Shift character

itself or a Letter Shift character itself, the message would generally be so

garbled as to be incomprehensible, and retransmission would have to be

requested.

There were two situations then. If a graphic bit pattern were hit, the

individual graphic would be garbled, but could sometimes be reasoned

out. If a Figure Shift or Letter Shift bit pattern were hit, the message or a

portion of the message was generally incomprehensible.

The first controversy on the standards committee was the economy of

a shifted code versus the potential occasional garble of a message on the

telecommunication lines. Giving more weight to reliability than to cost,

the standards committee decided against the concept of a shifted or

precedence code. (Interestingly, much later, the committees nevertheless

did decide to place two shift characters in the code, Shift In and Shift
Out.)

13.6 7 BITS OR 8 BITS?

However, at that time, the consequence of the decision against a shifted

code was that the code would apparently require at least 7 bits. At this

216 The Size and Structure of ASCII

point, it was proposed that the code should be 8 bits. The central basis of

this proposal was the efficiency of representation of numerics. Each of the

10 numerics can be represented by 4 bits (the BCD representation). The

26 alphabetics can be represented by 5 bits. A 36-character code set

consisting of the numerics and alphabetics requires 6 bits. But consider. If

4 bits can represent numerics, but numerics are represented by 6 bits,

then there are 2 bits of ““overhead.” Two bits more than strictly necessary

are used to represent numerics, and this is clearly inefficient. The al-

phabetics also, then, are inefficiently represented, with 1 bit of overhead.

At the time the standard code was being developed, it was estimated

that 75 percent of the data in data processing operations was numeric

data. In short, 75 percent of the data was inefficiently represented. And

now it was being suggested on the standards committees to use a 7-bit

code. This would bring about 3 bits of overhead for numerics and 2 bits

of overhead for alphabetics—even more inefficiency than in 6-bit rep-

resentation.

Into an 8-bit byte, two 4-bit bit patterns can be packed; that is, two

numerics can be represented in an 8-bit byte. And there is zero overhead.

An 8-bit byte provides optimum efficiency of representation of numeric

data. Of course, the consequent 3 bits of overhead for alphabetics is more
inefficient than the 2 bits of a 7-bit representation.

The argument for an 8-bit byte, therefore, was that numeric data, 75

percent of all data, could be represented with optimum efficiency.

There were arguments against an 8-bit byte. One argument was a

cost argument. In those days of relay logic and vacuum-tube logic, a ‘‘bit”’

cost an appreciable amount. Seven-bit registers were appreciably more

costly than 6-bit registers, and 8-bit registers were appreciably more

costly than 7-bit registers. Also, given a data communications line speed

of a fixed number of bits per second, it would take more time to transmit

1000 8-bit characters than 1000 7-bit characters. And time of use of data
communication lines bears directly on cost of use of the lines.

Another argument bore on the reliability of perforated tape. A

common perforated tape of the day was 1-inch, 8-track. Representing a

7-bit byte on such perforated tape meant 7 tracks for data, 1 track for

parity. Representing an 8-bit byte on such tape meant 8 tracks for data,

and no parity track. In short, a 7-bit byte could be represented more

reliably on 8-track perforated tape than could an 8-bit byte.

13.7. A 7-BIT CODE!

The arguments for a 7-bit byte—cost of communications products, cost of

data communication, and reliability of perforated tape—were weighed by

the committee against the argument for an 8-bit byte—efficiency of

13.7 A 7-Bit Code 217

representation of numeric data. This technical controversy was decided,

as all technical controversies on standards committees are decided, by the

democratic process of taking a vote. The majority voted for the 7-bit

byte. The decision was thus made that the standard code for information

interchange would be a 7-bit code. The words set down by Subcommittee

X3.2 are interesting (set down after the character set had been developed,

but essentially justifying the 7-bit decision):

Consideration led the Subcommittee to a seven bit code set providing

128 combinations. This character set contains a graphic subset ade-

quate for both data processing and communication purposes. The

character set also provides control characters for use in controlling

transmission terminal equipment and input/output devices; data de-

limiting characters for segregating and formatting data; and selected

characters for special purposes.

The Subcommittee recognizes that computer manufacturers are un-

likely to design computers that use 7-bit codes internally. They are

more likely to use 4-bit, 6-bit, and 8-bit codes. There is no wide-

spread need at present for interchange of more than 128 separate

and distinct characters between computers, and between computers

and associated input/output equipment. However, an eight bit code

structure does have distinct advantages in that two 4-bit numeric

characters can be packed into an 8-bit frame. And larger code sets

reduce the number of multicharacter symbols required for problem

definition and programming.

The Subcommittee concluded that a set larger than seven bits should

not be recommended as a standard. Some of the primary factors

which led to this conclusion were as follows:

a) The 128 combinations available in a 7-bit set satisfy the infor-

mation and control interchange requirements for the large ma-

jority of users.

b) Utilizing an 8-bit set which provides 256 combinations would

require recording and transmission of 8-bits by all input-output

and transmission systems even though the great majority of

requirements are satisfied by a code of fewer bits.

c) A redundancy (parity) bit is employed in most read/write opera-
tions and may be used in transmission of data for error control

purposes. 8-bits (7 coded bits plus one redundancy bit) are the

maximum that can be recorded in a single frame or character

position on one inch perforated tape under present recording
practices.

218 The Size and Structure of ASCII

13.8 STRUCTURE OF THE CODE

With the decision on size out of the way, the standards committee now

went on to consider the structure of the code. The first decision to be

made was more of an administrative than of a technical nature. How

should the code be exhibited in documents? The committee opted for a

matrix or tableau of eight columns and sixteen rows. The three high-order

bits of the seven bits 000, 001,..., 111 would be used to distinguish the

eight columns. And the four low-order bits 0000, 0001, ...,1111 would

be used to distinguish the sixteen rows.

The next administrative decision was how to name or number the

seven bit positions. It was decided to name them

b7, b6, b5, b4, b3, b2, b1

from high-order bit position to low-order bit position.

These administrative decisions are shown in Fig. 13.1.
Some facts were now reviewed.

1. AT&T had stated a functional requirement for an all-zeros character,

Null, and an all-ones character, Delete.

2. The Subcommittee’s surveys had shown a requirement for 10

numerics, 26 alphabetics, and up to 27 specials; that is, up to 63

graphic characters.

3. There might or might not be a requirement for small letters, as well

as for capital letters.

4. From the data transmission standards committee was emerging a

requirement for 10 or more data transmission control characters.

5. There was a requirement for a number of format-effector characters,

such as Space, Carriage Return, Line Feed, New Line, Horizontal

Tab, Vertical Tab, Form Feed.

6. There was a need for data-delimiter or information-separator charac-

ters. How many would be required was far from clear.

7. Looking to the future, it would be wise to include characters, such as

Escape, Shift In, Shift Out, that could be used to extend the

repertoire of control and graphic characters without increasing the

byte size of the code.

8. There would be a requirement for a number of specific or general

control characters to control either devices or functions of devices.

Two conclusions were drawn from these facts.

Conclusion 1. About 64 graphic characters might be adequate.

Conclusion 2. More than 16 control characters would be needed.

13.8 Structure of the Code 219

Bit b7 | Q 0 0 0 1 1 1 1

Pattern b6 0 0 1 1 0 0 1 1

b5 0 1 0 1 0 1 0 1

b4 b3 b2 b1

0000

Fig. 13.1 Matrix representation of 7-bit code

The numbers 64 and 16 (above) were used because the standards com-

mittee was beginning to think of the code in terms of the code table (see

Fig. 13.1) with its 8 columns of 16 characters each—16 and 64 are

multiples of 16.

At this point, the first criterion relative to the structuring of the code

emerged.

220 The Size and Structure of ASCII

Column 0 1 2 3 4 5 6 7

Bit b7/ 0 0 0 0 1 1 1 1

Paver b6 0 0 1 1 0 0 1 1

b5 0 1 0 1 0 1 0 1

Row b4 b3 b2 b1

0 0000

1 0001

2 0010

3 0011

4 0o1aqaq

5 0101

6 0747170

7 01% 1

8 1000

9 1001

10 107170

11 1011

12 17100

13 17101

14 1110

15 1111
Fig. 13.2 7-bit code table

13.8.1. Criterion 1

Control characters and graphic characters should not be intermingled.

Control characters should be grouped contiguously, and graphic charac-

ters should be grouped contiguously.

Conclusion 3. A further review of facts 4, 5, 6, 7, 8 above led to the

conclusion that more than 16 control character positions were needed,

but 32 positions (that is, two columns) might be sufficient.

13.8 Structure of the Code 221

At this point, for purposes of easy reference, another administrative

decision was made—to number the code columns 0, 1, 2,...,7, and to

number the code rows 0, 1, 2,..., 15, as shown in Fig. 13.2.

Conclusions 1 and 3 said that four columns of graphics and two
columns of controls should be assumed as an initial basis for structuring

the code. There were then twelve possibilities, as shown in Fig. 13.3,

where

Cc stands for a column of control characters,

g stands for a column of graphic characters, and

x stands for a column of as yet undefined function.

Table

Columns—> 0 t 2 3 4 5 6 7

Possibilities J

1 c c g g g g xk xX

2 c c x g g g g x

3 c c x x g g g g

4 x c c g g g g x

5 x c c xX g g g g

6 x xX c ¢c g g g g

7 ge g¢ g g@ ¢ ¢ x xXx

8 eg g g g@ xX € ¢C x

9 ge g g gg kK xX ¢ ¢€

10 xX g g @ 8 € C xX

11 x g 2 g g x ¢€c ¢

12 x xX g 8 g g ci c¢

Figure 13.3

Some of these possibilities were eliminated because of the require-

ment for a control character of all-zeros, Null, and because of Criterion 1

(not intermingling controls and graphics). The committee put two in-

terpretations on Criterion 1.

Interpretation 1. Within a column, there should not be both controls

and graphics.

Interpretation 2. A column of controls should not be positioned be-

tween columns of graphics, and a column of graphics should not be

positioned between columns of controls.

Given Null, a control character, in column 0, Interpretation 1 ruled out

possibilities 7, 8, and 9.

All possibilities satisfied Interpretation 2. But if the x columns

ultimately were defined to be graphic columns, possibilities 4, 5, and 8
were ruled out, and probably 10. And if the x columns ultimately were
defined as control columns, possibilities 2, 4, 10, and 11 were ruled out.

222 The Size and Structure of ASCII

Essentially, then, all possibilities with separated single x columns

were ruled out, leaving possibilities 1, 3, 6, 12 with the two x columns

always appearing as contiguous column pairs.

The four remaining possibilities each gave rise to two possibilities,

depending on whether both x columns were defined as controls or as

graphics, as shown in Fig. 13.4.

Table

Columns> 0 1 2 3 4 5 6 7
Possibilities |

la c c g g g g € Cc

1b c ¢ 8 £8 &€ 8 gg 8

3a ec c c ¢c¢ g g g g

3b c c g g g g g- g <ruled out same as 1b

6a c c c c g g gg. g <ruled out same as 3a

6b 8 g ¢ ¢ g g gB 8B

12a c c g g g gcc «<ruled out same as la

12b € g€ € € 8 8B ¢ C

Figure 13.4

We see that 6b and 12b were ruled out by Interpretation 1 and Null, a

control character, in column 0; 3a was ruled out by Interpretation 1 and

Delete, a control character, in column 7.

Strictly speaking, the ruling that ruled out 3a also should rule out 1b,

leaving only 1a as a possibility. However, the standards committee was

reluctant, at this time, to rule out possibility 1b. The committee wanted to

retain the possible configuration ccggg¢gxx, with xx not yet decided as to

controls or graphics. To rule out 1b would rule out the graphic possibility

for xx for configuration ccggggxx, and the committee was not yet ready to

decide to rule that possibility out. However, possibility 3a was ruled out,

for another, somewhat more torturous reason.

The Space Character

One character that was definitely going to be included in the final set was

the Space character. But was the Space character a contro! character or a

graphic character? Is it the nonvisible or nonprinting graphic in a set of

graphics or is it the control character that moves the carriage of a serial

printer one character position forward? It is, of course, both. However,

13.8 Structure of the Code 223

from the point of view of a parallel printer, it is only one of these things,

the invisible graphic. By this rather hair-splitting reasoning, the standards

committee persuaded itself that the Space character must be regarded as

a graphic character; that is, it must be positioned in a column of graphics,

not in a column of controls.

Now an interesting conclusion could be drawn. It was a well-

established data processing practice that in sorting and collating opera-

tions, the Space character should collate low to all other graphic charac-
ters, specials. numerics, and alphabetics. Consider then the two Pos-

sibilities 1 and 3:

13.8.2 Criterion 2

The Space character should collate low to all graphic characters.

For Possibility 1, the Space character would clearly be positioned in

column 2, row 0, thus preceding all graphics, and this precedence would

hold regardless of whether the two x columns were subsequently decided

to be graphic or control columns. But for Possibility 3, the situation was

different. The Space character would be positioned in column 4, row Q,

thus preceding all graphics. If the x columns, columns 2 and 3, were

subsequently decided to be control columns, the precedence would still

hold. But if the x columns, columns 2 and 3, were subsequently decided

to be graphic columns, then the graphics in these two columns would

collate low to the Space character, thus violating Criterion 2; that is to

say, this possibility would be ruled out. In short, positioning the two x

columns as columns 2 and 3 preempted the choice that the x columns

might in the future be decided to be graphic columns.

The standards committee did not at this time want the future choice

of the two x columns as graphic columns or control columns to be

preempted. Possibility 3 would really preempt this decision in advance (as

outlined in the preceding paragraph). Therefore, the committee ruled out

Possibility 3. This left Possibility 1 as the committee’s decision for

structure of the code: |

The basic structure of ASCII had now been decided. See Fig. 13.5.

224 The Size and Structure of ASCII

! Column 0 Toy 2 3 4 5 6 7

Bit b7 | 0 0 0 0 1 1 1 1

Pavers b6 0 0 1 i 0 0 1 1

b5 0 1 0 1 0 1 0 1

Row b4 b3 b2 bi

0 0000

1 0001

2 0010

3 o01mt

4 0100

5 0101

6 0110

7 074171

8 1000

9 1001

10 101090

1 10171

12 1100

13 110 1

14 1171310

15 711771

Fig. 13.5 ASCII structure

The
Sequence

of ASCII

In the previous chapter, the basic structure of ASCII was defined:

Controls in Columns 0, 1; Graphics in Columns 2, 3, 4, 5; Undefined for

Columns 6, 7. The Null character would be in code position 0/0, the

Space character in code position 2/0, and the Delete character in code

position 7/15. The standards committee now turned to the definition of

ASCII in finer detail.
During the discussion of ASCII structure, four kinds of control

characters had been discussed; Transmission Controls, Formal Effectors,

Device Controls, and Information Separators. As a preliminary step, the

committee decided to apportion the 32 control code positions equally

among these four categories. It was recognized that it was very unlikely

that, in the final analysis, there would be exactly eight of each kind of
control character. It was also recognized that there were control charac-

ters, such as Escape, Shift In, Shift Out, that would not fit into any of the

four categories. Nevertheless, it was decided to make this preliminary
categorization of control characters, as shown in Fig. 14.1, and see what
would befall.

Attention now focused on the question of collating sequence of

graphics. As described in the previous chapter, Space, by being positioned

in code position 2/0, would collate low to all graphics.

Column 2 was chosen for specials for two reasons:

1. Numerics could not be located in this column, because if so, ‘‘0”

would require the row 0 position, and this was already preempted by

the Space character.

225

226 The Sequence of ASCII

Column 0 1 4 5 6 7

Bit b7/ 0 0 1 1 1 1

Pattern 1 b6 0 0 0 0 1 1

[lbs 0 0 1 0 1

Row b4 b3 b2 bt

0 0000 NUL

1 0001

2 0010

3 0071

4 0100 TC pc

5 0101

6 0110

7 ott 1

8 1000

9 1001

10 1010

11 107 1 FE Is

12 1100

13 4101

14 1110

15 1117

Fig. 14.1 ASCII, basic structure

TC - Transmission Controls

FE - Format Effectors

DC Device Controls

TS - Information Separators

2. Alphabetics should not be in Column 2, because if so, specials in

columns 3, 4, or 5 would then necessarily collate high to alphabetics.

But there were some specials, such as period and hyphen, which

should collate low to all alphabetics in sorting operations on names

of people.

14.1 Separate or Interleaved Alphabets? 227

14.1 SEPARATE OR INTERLEAVED ALPHABETS?

This apparently left columns 3, 4, and 5 for numerics and alphabetics. But
other questions had to be settled first. In the event that it was eventually
decided to include both small and capital letters, should the two alphabets
be separate, or interleaved? And if separate, should small letters collate

low to capital letters or vice versa?

The question of separate or interleaved alphabets was approached
first. Two possibilities were apparent for interleaving:

Possibility 1 Possibility 2
a A
A a
b B
B b

Zz Z

Z Z

The choice between these two possibilities was clear, and stemmed from
the very reason for having interleaved alphabets. In sorting names, it is
conventional for capital letters to precede small letters. Thus, the AA
Company precedes the Aardvark Company. But in sorting names of

peoples, the rules become more subtle and complex. Does MacKenzie

precede Mackenzie? In some telephone directories, yes, but in other

telephone directories, the capitalization or noncapitalization of the K will
be ignored in MacKenzie and Mackenzie—such names being blocked
together, and ordered on the basis of the first names or initials. Indeed,

the proponents of alphabet separation cited the fact that different tele-

phone directories had different rules as evidence that alphabet interleav-
ing would really not accomplish anything tangible.

In any event, there was a more compelling argument against inter-
leaving. In columns 2, 3, 4, and 5 there are 64 code positions, sufficient to

accommodate the Space character, specials, numerics, and alphabetics;

that is to say, a graphic set sufficient for most data processing applica-

tions. And this set of 63 graphics and Space is derivable from the 7-bit
code by dropping b6. The four columns 2, 3, 4, and 5 then form a 6-bit

subset.

If, however, the alphabets were interleaved, then it would clearly

take columns 2 through 7 to contain Space, specials, numerics, small

228 The Sequence of ASCII

letters, and capital letters. With the alphabets interleaved, the derivation
of a 64-character, 6-bit subset containing Space, specials, numerics, and
capital letters, would require more complex logic. Suppose, for example,
that Fig. 14.2 exhibits a 7-bit code with interleaved alphabets, and Fig.
14.3 exhibits the 6-bit, 64-character subset to be derived. Let the bit

positions of the 6-bit subset be named a6, a5, a4, a3, a2, al from
high-order bit position to low-order bit position. Then the transformation
equations, from 7 bits to 6 bits, are as follows:

a6 = bTA b1

aS = (b7 A b6 A BS) ¥ (b7 A BOG A 1)

a4 = (b7 A b6 A b4) v (b7 A DS A 1)

a3 = (b7 A B6 A b3) v (b7 A b4 A 1)

a2 = (b7 A b6 A b2) v (b7 A b3 A D1)

al = (b7 A b6 A b1) ¥ (b7 A 62 A D1)

The consideration of a 6-bit, 64-character graphic subset was important
to the standards committee. If the ultimate decision was that columns 6
and 7 would be for graphics, then columns 2 through 7 would contain
Space, 94 graphics, and Delete. But, even with the code providing 94
graphics, a major assumption of the standards committee was that data

processing applications would, for the foreseeable future, be satisfied with
a monocase alphabet (that is, a 64- or less graphic subset) as they had in
the past—that 64-character printers would predominate. So it was impor-
tant to be able to derive a 64-character, monocase alphabet, graphic
subset from the code by simple, not complex, logic.

It was this consideration that weighted the decision against inter-

leaved alphabets. Interestingly, consideration of this example led to

another, and unexpected, conclusion. In the example, the capital alphabet

was contained in two columns. Clearly, two alphabets, small and capital

letters, could be contained in four columns; that is, the two undefined

columns, 6 and 7, could contain an alphabet of small letters, if it was

eventually decided to include that alphabet.

14.1 Separate or Interleaved Alphabets?

Row

Column 0 1 2

Bit b7] 0 Q Q

Pattern | b6 0 0 1

bb 0 1
b4 b3 b2 b1

0000 NUL SP

10

11

12

13

14

15 DEL

Fig. 14.2 Interleaved alphabets

229

230 The Sequence of ASCII

Row

Column

Bit

Pattern t

b7

b6

bS
b4 b3 b2 b1

0000 SP

10

11

12

13

14

15
Fig. 14.3 6-bit subset

14.2 THREE COLUMNS FOR ALPHABETICS?

But consider the kind of code structure where the alphabet is contained in

three columns (see Fig. 2.29). In order to provide two alphabets, small
and capital letters, as in EBCDIC (see Fig. 2.28), six columns are

required. And to provide two alphabets and also a column for numerics,

seven columns are required.

14.2 Three Columns for Alphabetics 231

Column 2 3 4 on)

Row |

9 SP t t 0

1 A J t 1

2 B K s 2

3 c L T 3

4 D M U 4

5 E N V 5

6 F 0 W 6

7 G P X 7

8 u Q y 8

9 I R Z 9

10 t t + +

"1 t t t t

12 t t t t

13 + t t t

“4 + t + t

18 + + t t

t+ - Special

Fig. 14.4 BCD arrangement

Even if it was eventually decided to assign graphics to columns 6 and

7, there would be only six columns available for graphics. Given the basic

structure of ASCII, as defined in Fig. 14.1, two alphabets structured

noncontiguously, as in BCDIC and in EBCDIC, and a column of

numerics could not be accommodated in the 7-bit code table. At least an

8-bit code table is necessary to accommodate a column of numerics, three

columns of small letters, and three columns of capital letters. And the

232 The Sequence of ASCII

standards committee had already decided for a 7-bit code and against an

8-bit code.

The conclusion of the preceding paragraph is based on the assump-

tion that two alphabets, small letters and capital letters, would be in-

cluded in the 7-bit code and that decision had not yet been made. If the

decision was ultimately made that columns 6 and 7 would contain

controls, then small letters would not be included in the 7-bit code.” If

only capital letters were to be included in the code, it would be quite

feasible to have a BCD arrangement, such as shown in Fig. 14.4, for the

graphic subset. Such an arrangement was, in fact, proposed to the

standards committee, but it was rejected because it intermingled specials

with alphabetics, and the subcommittee deemed this to be unwise, for

collating reasons.

The standards committee at this time made a fundamental decision.

The 26 letters of the alphabet should be grouped contiguously in the code

and should occupy two contiguous columns.

The standards committee had, as described above, decided that column

2 would contain specials. With respect to the assignment of numerics and

alphabetics, there were two possibilities:

Possibility 1. Numerics in column 3

Alphabetics in columns 4 and 5

Possibility 2. Alphabetics in columns 3 and 4

Numerics in column 5

14.3 EXISTING COLLATING SEQUENCE

The committee recognized that an existing collating practice was that

alphabetics collate low to numerics. So Possibility 2 seemed the clear

choice. But there was an argument against this choice.

If the ultimate decision for columns 6 and 7 was for graphics, then

there would be two choices for the graphics: specials, or small letters.

Suppose the choice was for small letters. Then the two possibilities above

became as shown in Fig. 14.5. Assume, for purposes of discussion, that

the alphabets are positioned as shown. Then, for Possibility 1, the bit

patterns of the capital letters and the bit patterns of the small letters have

a single bit difference, b6, for all corresponding small and capital letters.

For Possibility 2, three bits, b7, b6, b5, are different and the bit differ-

ences between A and a, for example, are not the same as the bit

differences between Q and q.

* If the committee did decide for controls in columns 6 and 7, it is still likely that
they would have wanted an alphabet of small letters to be provided. Presumably,
the small letter alphabet would then have been provided by a caseshift approach.

14.3 Existing Collating Sequence 233

Columns | 2 | 31415] 6 17 2134415 16)7

b7 | o}oliliti4a4 o]/of1/141]1
bo |1}1f/ofol1]14 1}/a;olol1 4
bd |olilo{1loj4 o/i{toli{ol1

SP} 0;A/]Q];alq SP| AJQ|]O]ajq

1}/Bi/Riolr BiRiilolrc.
21C1S fects C/Si2jctis

3/p|Tla]t piT/3{al|t

Possibility 1 Possibility 2

Fig. 14.5 Positioning of alphabetics

Clearly then, in order to keep open the choice for columns 6 and 7

between graphics and controls, and between small letters and specials,

Possibility 1 was preferable.

Possibility 1, of course, would provide a collating sequence, specials,

numerics, alphabetics, from low to high, contrary to the existing practice,

specials, alphabetics, numerics. But to the standards committee the argu-

ment above, keeping choices open at this time, was more compelling.

The committee rationalized the decision against accepting the exist-

ing collating sequence somewhat along the following lines:

If it is necessary to achieve the de facto collating sequence (specials,

alphabetics, numerics), it may be achieved, during comparison opera-

tions, by inverting b7 if b6 = b5 = 1. That is, the three high-order

bits of the column of numerics would then become 111, which would

make them collate high to the alphabetics, with high-order bits of

100 and 101.

Out of this discussion, the committee established a major criterion.

Criterion

There should be a single bit difference between capital and small letters.

The standards committee had now made its final decision with

respect to the sequence of ASCII. The result was as follows:

Jojr | 2 | 3 | 4]5 | 647 |
| Controls | Specials | Numerics | Alphabetics | Undefined |

We have, then, a code structure as shown in Fig. 14.6.

234 The Sequence of ASCII

Column 0 1 2 3 4 5 6 7

Bit b7 | 0 0 0 0 1 1 1 1

Pattern b6 0 0 1 1 0 0 1 1

b5 0 1 0 1 0 1 0 1

Row b4 b3 b2 b1

0 0000

1 0001

2 0010

3 00171

4 0100

5 0101

6 0110

7 01411

8 1000

9 100 1

10 7010

11 10141

12 1100

13 1101

14 1110

15 1141 DEL

TC - Transmission Control

FE ~ Format Effector

. DC - Device Control

Fig. 14.6 ASCII structure IS - Information Separator

14.4 CRITERIA

Up to this point, the standards committee had made a number of

decisions, based on criteria. Three of those criteria have been stated so

far in this chapter. In fact, the committee formulated 20 criteria. It should

be noted that some of these criteria are conflicting, so not all can be met.

14.4 Criteria 235

Criterion 1. All bit patterns in the code should consist of the same

number of bit positions.

Criterion 2. The structure of the code should be such that logically

related subsets or supersets are derivable simply; that is, by simple bit

dropping, bit adding, or bit inversion.

Criterion 3. All possible bit patterns of the code should be considered
valid. For illustration, on 7-track magnetic tape with even parity, the

all-zeroes 6-bit bit pattern was considered invalid, as being indistinguisha-

ble from unrecorded tape, with the recording practice used at that time.

Criterion 4. The code size, that is, the number of different possible

character positions, should be sufficient to accommodate alphabetics,

numerics, specials, and control characters needed for information inter-

change.

Criterion 5. The numerics 0 through 9 should be contained in a 4-bit

subset.

Criterion 6. The numerics should have bit patterns such that the four

low-order bits shall be the binary coded decimal representation of

numerics.

Criterion 7. The intermingling of control and graphic characters should

be avoided. The bit patterns of control characters should be distinguisha-

ble from those of graphics by some simple test of the high-order bits.

Criterion 8. The meaning associated with a bit pattern should depend

on only the bit pattern itself, and not on any preceding bit patterns.

Criterion 9. The alphabetics A through Z, and some code positions

contiguous to the code position of Z, should be contained in a 5-bit

subset.

Criterion 10. The alphabetics should have contiguous bit patterns.

Criterion 11. Such control characters are as required for communication

and data processing should be included.

Criterion 12. An Escape character, to allow for code extension, should

be included.

Criterion 13. The class of specials, the class of numerics, and the class of

alphabetics should be distinguishable one from the other by simple binary
comparison tests.

Criterion 14. The Space character should be positioned so as to collate
low to all other graphics.

236 The Sequence of ASCII

Criterion 15. Specials that are in
tions should be positioned so as {

alphabetics.

Criterion 16. Specials should be

for example, punctuation and math

Criterion 17. Graphics that are n

should differ only in a common sin

Criterion 18. The graphics of th

should be included.

Criterion 19. The bit patterns of
common, distinguishing subpattern

Criterion 20. The all-zeroes chara

Delete, should be included.

14.5 DECISIONS FROM CRITER

Up to this point in the deliberati

committee had made some 17 decis

parentheses, the criteria which affe

Decision 1. There would be at le

(Criterion 4).

volved in sorting and collating opera-
to collate low to both numerics and

brouped according to their functions;

ematical symbols.

ormally paired on typewriter keytops

gle bit position.

ne principal programming languages

all control characters should have a

of bits.

cters, Null, and the all-ones character,

IA

ons of the standards, the standards

ions. These are now presented, and in
cted the decisions.

ast 64 graphic characters in the code

Decision 2. There would be a total of more than 64 characters in the

code (Criterion 4).

Decision 3. There would be upw

code (Criterion 11).

Decision 4. The code would be an

bits (Criterion 8).

ards of 16 control characters in the

unshifted code—therefore, at least 7

Decision 5. The code would not be 8 bits—therefore, 7 bits.

Decision 6.

columns and 16 rows. (b) Columns

(c) Rows would be numbered 0, 1,

(a) The code table would be exhibited in a tableau of 8

would be numbered 0, 1, 2, 3,..., 7.

2, 3,..., 15. (d) Bit positions would

be named b7, b6, b5, b4, b3, b2, b1, from high to low.

Decision 7. There would be ani all-zeroes character, Null, and an

all-ones character, Delete, in the c

Decision 8. Tentatively, more th

ode (Criterion 20).

an 16, but less than or equal to 32

control characters would be sufficient (Criterion 11).

14.5 Decisions from Criteria 237

Decision 9. Columns 0 and 1 would be for control characters, columns

2, 3, 4, and 5 for graphic characters, and columns 6 and 7 undefined at

this time (Criteria 7, 13, 19).

Decision 10. The Space character would be in code position 2/0 (Criter-

ion 14).

Decision 11. Tentatively, code positions would be reserved for 8

Transmission-Control characters, 8 Format-Effector characters, 8 Device-

Control characters, and 8 Information-Separator characters (Criterion

11).

Decision 12. Column 2 would be reserved for Specials (Criterion 13).

Decision 13. Small and capital letters, if provided, would be provided as

separate alphabets, not as interleaved alphabets.

Decision 14. A 6-bit, 64-character graphic subset should be collapsible

out by dropping one of the seven bits (Criterion 2).

Decision 15. The 3-column BCD arrangement for alphabetics is re-

jected (Criteria 9, 10).

Decision 16. Alphabetics would be contiguous (Criterion 10).

Decision 17. The structure of the code would be

Columns 0 and 1, controls

Column 2, specials

Column 3, numerics

Columns 4 and 5, alphabetics

Columns 6 and 7, undefined at this time.

As stated above, the standards committee had decided that the al-

phabet(s) would be contiguous and positioned in two contiguous columns
of the code. For English-speaking countries, there are 26 alphabetics.

There are 32 contiguous code positions in two columns. The first letter,

A, could therefore be positioned in any of seven positions of column 4,

as shown in Fig. 14.7.

The standards committee noted that in Fieldata (see Fig. 3.3) the

contiguous alphabet had been positioned with A in 4/7 down to Z in

5/15. One factor precluded the position of the alphabet of the standard

code into the Fieldata positions. The alphabets of some European coun-

tries (Germany, Sweden, Norway, Denmark, Finland) require 29 letters—

the 26 letters of the English-speaking countries and 3 diacritic letters.

The Portuguese and Spanish languages require one or more diacritic

letters. The French and Italian languages require accented letters.

238 The Sequence of ASCII

14.6 NATIONAL USE POSITIONS

It was generally recognized by American manufacturers marketing

equipment in Europe that these additional diacritic or accented letters

must be provided. It was a natural decision, therefore, to provide code
positions in the standard code to meet such requirements. In some of the

continental ‘European countries, from a collating sequence point of view,

the diacritic letters are interspersed among the other letters. But in

Sweden they follow the letter Z. It was a natural decision, therefore, to

assign the three code positions following the code position of Z to

accommodate the alphabetic extender requirement. These three code

positions came to be called National Use positions.

It should be noted that this consideration rules out the last three
possibilities shown in Fig. 14.7. In any event, the Fieldata positioning was
ruled out by this consideration. But this still left four possibilities—
positioning the letter A in code positions 4/0, 4/1, 4/2, or 4/3. Which of

these should be chosen?

The American standards committee decided on position 4/1 for the

letter A because that code position had been decided for a draft British

Standard and also for a draft ECMA Standard being developed at that

time. So the American decision was based on the sensible desire for

international accord on this point. (But the author does not know on what

factors the British and ECMA decision was based.) This decision, Decision

18, then, was the first on the specific positioning of graphics.

al 4 4 4 4 4 4 4

0 A
1 B A
2 C B A
3 C B A
4 C B A
5 Cc B A
6 C B A
7 C B
8 Cc
9

Fig. 14.7. Positioning of A

14.7 Positioning of Numerics 239

14.7, POSITIONING OF NUMERICS

Decision 19. The next decision of the standards committee had to do
with the positioning of the numerics. It had already been decided to

position the numerics in column 3. Criterion 6 clearly required that the
numerics 0 through 9 should be in code positions 3/0 through 3/9,

respectively. The specifics of the code were now beginning to shape up, as

shown in Fig. 14.8.

Column 0 1 2 3 4 5 6 7

Bit b7/ 0 0 0 0 1 1 1 1
Pattern b6 0 0 1 1 0 0 1 1

tI b5 0 1 0 1 0 4 0 1

Row b4 b3 b2 b1

0 9000 NUL SP) P

1 0001 1 A Q

2 0010 2 B R

3 0011 3 C g

4 0100 4 D .

5 010 1 5 E U

6 0141 ~0 6 F Vv

7 01171 7 G W

8 1000 8 u x

9 1001 9 L Y

10 1010 J Zz

11 10141 K

12 1100 L

13 11041 M

14 1110 N

15 14111 oO DEL
Fig. 14.8 ASCII, initial specifics

240 The Sequence of ASCII

14.8 ASSIGNMENT OF SPECIAL CHARACTERS

Decision 20. The standards committee now turned its attention to

assignment of specials. After much discussion, the standards committee

decided on the 27 graphics to go in the available code positions in

columns 2, 3, 4, and 5. The specials are classified by function.*

Punctuation and Correspondence .,:;!2'" 8

Commercial Usage #$% & @ 5

Bracketing (Programming) ()C] 4

Mathematical (Programming) +—-*/\= <> 8

Flow Charting (Programming) ti 2

Clearly, Criteria 4 and 18 bore on this decision.

Decision 21. The standards committee now considered specific code

positions for these specials. A number of criteria bore on this decision,

Criteria 13, 15, 16, and 17. Actually, Criterion 13 was of little signifi-

cance here, because the sets of available bit patterns had already been

established by previous decisions on the positioning of Space, numerics,

and alphabetics.

It was soon evident that Criterion 16, which spoke to grouping of

specials by function, would conflict with Criteria 15 and 17, which spoke

to collating considerations and to typewriter-keytop-pairing considera-

tions. Criterion 16 was considered to be of less importance than the other

two.

Criterion 17 spoke to positioning graphics in the code table to

correspond to their positioning on typewriter keys. From this criterion,

some decisions stemmed easily.

The specials # $ % were positioned 2/3, 2/4, 2/5, respectively, in
correspondence with 4, 5, 6 in 3/3, 3/4, 3/5, respectively, thus providing

the typewriter-keytop pairing. The specials / and ? were positioned in

2/15 and 3/15, respectively, thus providing correspondence with

typewriter-keytop pairing.

14.8 Period and Comma

On electric typewriters both the period and the comma appear in both

lower and upper-case shift. It was decided to correspond these two

* Note that these classifications are not mutually exclusive. Bracketing symbols,

the hyphen, and the asterisk are used in business correspondence. Period, comma,

semicolon, apostrophe are used in programming languages. And so on.

14.8 Assignment of Special Characters 241

graphics with two others that typewriter manufacturers would reckon

were unneeded in normal business correspondence; that is, the period

and the comma in one case shift would be replaced. The specials < and

> seemed to fill the bill. Accordingly, it was decided to pair , and < and

to pair . and > in the code, but it was not yet clear where these four
should specifically go.

It was noted that the specials , . — frequently appear in sorting or

collating situations. Under Criterion 15, then, these should be positioned

so as to collate low to numerics and alphabetics. Clearly, this meant they

would have to be positioned in Column 2. Of these three specials, it had

been decided, as related in the previous paragraph, to pair ,. with < >.

To satisfy these two conditions, specials ,. < > were positioned in code

positions 2/12, 2/14, 3/12, 3/14, respectively.

14.8.2 Left and Right Parentheses

The graphics (and) are paired with 9 and 0 on electric typewriters. But
no graphic could be paired with 0 in the code, since the Space character

had already been assigned to the pair position of 0. It was decided to pair
them in the code with 8 and 9 because then, if the code were im-

plemented on a keyboard, they would be located as close as possible to

their usual electric typewriter positions; that is, paired with 9 and 0. Also,

on many European typewriter keyboards, (and) appear paired with 8
and 9, Therefore, (and) were positioned in 2/8 and 2/9, respectively.

It was now pointed out that in the United Kingdom the monetary
system required not only the numerics 0 through 9 but also 10 and 11.
Clearly, if these numerics were provided in the code for implementations

for the United Kingdom, they would occupy the two code positions in the
column of numerics under the 9; that is, code positions 3/10 and 3/11. It

was deemed wise to assign to these two code positions graphics that could

be replaced in the United Kingdom with minimum anguish. Eventually,

the standards committee decided to assign : and ; to code positions 3/10

and 3/11, respectively.

14.8.3 Alphabetic Extenders

Attention was now focussed on the three code positions 5/11, 5/12, 5/13

that, as was explained above, would receive alphabetic extenders in

European implementations. As in the preceding paragraph, the search

was for graphics whose replacement would cause minimum anguish. The
standards committee decided for [\ | for code positions 5/11, 5/12, 5/13,

respectively.

242 The Sequence of ASCII

14.8.4 Further Special Characters

There now remained 10 specials to be assigned:

! ron & @ + * = t <_

It seemed apt to position = in the code position between those occupied

Column i) 1 2 3 4 5 6 7

Bit b7| 0 0 0 0 1 1 1 1
Peven| b6 0 0 1 1 0 0 1 1

b5 0 1 0 1 i) 1 0 1

Row b4 b3 b2 b1

0 0000 NUL DCO SP 0 @ P

1 0001 TCL DCL \ 1 A Q

2 0010 TC2 DC2 ' 2 B R

3 0011 Tc3 DC3 i 3 Cc 5

4 0100 TC4 DC4 $ 4 D T

5 0101 TC5 DCS % 5 E U

6 07110 TC6 DC6 & 6 F Vv

7 0o1i%41 TC7 DC7 ' 7 G W

8 1000 FEO Iso (8 H x

9 1001 FE1 Isl) 9 I Y

10 1010 FE2 182 * : J Zz

"1 1011 FE3 Is3 + ; K c

12 1100 FE4 Is4 : < L \

13 1101 FES Is5 - = M J

14 1110 FE6 186 . > N +

15 1111 FE7 187 / 2 0 +

TC - Transmission Control

FE - Format Effector

DC - Device Control

IS - Information Separator

Fig. 14.9 ASCII, sequence of 63 graphics

14.9 Control Characters 243

xy < and >. Thus these three mathematical symbols would be in code
equence < = >, which might aid human beings to remember their

ode positions. Therefore, = was assigned to 3/13.

Because the special @ is not used in continental Europe, it seemed

ikely to be replaced with an accented letter a in France and Italy. This

etter should be in proximity to other letters in the code table. Code
osition 4/0 filled the bill, and @ was assigned thereto.

For the eight specials remaining, no reasons could be found for any
articular code position, They were therefore positioned in the remaining
sight code positions, more or less arbitrarily. The code table now looked
ike that shown in Fig. 14.9. .

14.9 CONTROL CHARACTERS

Ihe standards committee responsible for coded character sets discussed

with the standards committee responsible for data communications the
control characters necessary for data transmission control.

Nine functions were identified as being required for data transmis-
sion control:

SOM Start of Message

EOA End of Address

EOM End of Message
EOT End of Transmission

WRU Who Are You?

RU Are You...? .

DCO Device control reserved for Data Link Escape

SYNC Synchronous Idle

ACK Acknowledge

When it came to decisions to position these characters in the code table,

the concept of ‘““Hamming distance’? came into play. On transmission lines

transmitting binary digital data, what was called a “hit” could occur. If a
0-bit was hit, it changed into a 1-bit. If a 1-bit was hit, it changed into a
0-bit.

As a result of hits, with resultant changes to bit patterns, changes in

meaning could occur. Consider the following:

Graphic

meaning Bit pattern

B 1000010
C 1000011

If the bit pattern 1000010 meaning B received a hit in its last bit,

changing it to 1000011, the meaning would be C. Hits on graphic bit

244 The Sequence of ASCII

patterns would result in garbled messages. But if hits occurred to data
transmission control characters changing them into other data transmis-
sion control characters, the transmission system could go out of control.
This was clearly to be guarded against to the maximum extent possible.

Consider two bit patterns:

b7 b6 b5 b4 b3 b2 bl

1 0 0 0 0 1 0

0 1 0 1 1 0 0

Column 0 1 2 3 4 5 6 7

Bit b7] 0 0 0 0 1 1 1 1

Pattern b6 0 0 1 1 0 0 1 1

| b5S 0 1 0 1 0 1 0 1

Row b4 b3 b2 b1

0 oo090 DCO

1 000171 SOM

2 0010 EOA

3 0011 EOM

4 0100 EOT

5 0101 WRU

6 0110 RU SYNC

7 0111

8 1000

9 1001

10 1010

11 1011

12 1100 ACK

13 1101

14 1171710

15 141714721
Fig. 14.10 Data transmission control characters

14.9 Control Characters 245

For these two bit patterns, b7, b6, b4, b3, and b2 are different. That is to

say, five hits would have to occur to change one bit pattern into the other.

The number of bits different between two bit patterns is known as their
“Hamming distance.”

Clearly, to minimize the possibility of one data transmission control
character being hit and turning into another data transmission contral

character, the Hamming distance between the two characters must be

maximized. The set of data transmission control characters, therefore,

should be positioned in the code table to. maximize the hamming dis-
tances between and among them. .

Many combinations were studied and, ultimately, agreement was
reached to position them as shown in Fig. 14.10.

The standards committee eventually came into agreement to include
the following control characters:

Format Effectors

HT/SK Horizontal Tabulation, Skip (punched card)

LF Line feed

VT Vertical Tabulation

FF Form Feed

CR Carriage Return

FEO Format Effector

Device Control Code Extension

DCc1 Device Control 1 ESC Escape

DC2 Device Control 2 SO Shift Out

DC3 Device Control 3 SI Shift In

DC4 Device Control 4

Information Separators Miscellaneous

SO Separator 0 BELL Audible Signal
S1 Separator 1 ERR Error

S2 Separator 2 NULL Null

S3 Separator 3 DEL Delete
S4 Separator 4 @ Unassigned Control
S5 Separator 5
S6 Separator 6
S7 Separator 7

The final ASCII code table, as of 1963, is shown in Fig. 14.11.

246 The Sequence of ASCII

Column 0 1 2 3 4 5 6 7

Bit b7 | 0 0 0 0 1 1 1 1
Pattern | bG 0 0 1 1 0 0 1 1

bS 0 1 0 1 0 1 0 1

Row b4 b3 b2 bi

0 0000 NULL DCO SP 0 @ P

1 0001 SOM DCL ! 1 A Q

2 0010 EOA DC2 " 2 B R

3 0011 EOM DC3 # 3 Cc S

4 0100 EOT DC4 $ 4 D T

5 0101 WRU ERP % 5 E U

6 014110 RU | SYNC & 6 F Vv x

A:

7 0111 RELL | LEM ' 7 G W .
re

8 1000 FEO | 80 (8 H X

E

9 1001 HT/sK| si) 9 I Y D

10 1010 LF $2 * : J Z

1 1011 VI $3 + ; K C

12 1100 FF S4 ; < L \

13 11071 CR 85 - = M]

14 v110 so sé |. > N +

15 taad SI S7 / 2 0 «

Fig. 14.11 ASCII, 1963

14.10 ASCII, 1967

At the first meeting of ISO/TC97/SC2 in 1963 October 29-31, a resolu-
tion was passed that the lower-case alphabet should be assigned to
columns 6 and 7. Of course, with the assignment of three code positions
7/11, 7/12, 7/13 for National Use, this meant that ACK must be removed

from code position 7/13.

14.10 ASCIll, 1967

Coturnn 0 1 2 4 5 6 7

Bit b7 0

Pattern b6 0 0 1 0 0 1 1

b5 0 1 1 0 1

Row b4 b3 b2 b1
L1] a

0 0000 NUL DLE SP @ P * P

‘TL
1 0001 SOH DC1 1 A Q a q

Ly
2 0010 STX DC2 " B R b r

Dy
3 60011 LTX DCc3 if Cc Ss e s

[2]
4 0100 EOT DC4 $ D T d t

L3] yy
5 0101 ENO NAK % E U e@ u

L3]
6 01410 ACK SYN & F Vv f v

12]
7 0111 BEL ETB ' G W g w

2 L2]
8 100 0 BS CAN (H _ x h x

[222
9 1001 HT EM) L Y L y

Lal
10 1010 LF SUB * 3 Z j Zz

L3| 2
11 1011 VT ESC + K [k {

L2] 2
12 1100 FF FS ; L \ 1

[4 2
13 1101 CR GS - M J m }

[2] L2 2
14 11106 SO RS N “ n ~

[2] Lal
15 111471 SL us / oO ° DEL

Change of name

[2] New character

i] Moved character

Fig. 14.12 ASCII; 1967 and 1968

247

This decision was in due course accepted by X3.2 for ASCII.
Interaction between members of X3.2 and delegations at ISO/TC97/SC2
ultimately led to further changes in ASCII. The final code table, as

embodied in USAS X3.4—-1967, is shown in Fig. 14.12.

248 The Sequence of ASCII

Changes were of four kinds:

= Changes of name. For example, Start of Message (1963) became
Start of Header (1967).

=" Characters moved. For example, Escape, in position 7/14 (1963),
was moved to position 1/11 (1967).

* Introduction of new characters. For example, grave accent and the

opening brace {. For example, SUB (Substitute), CAN (Cancel).

= Deletion completely of some characters. For example, RU (Are
You...?) and ERR (Error) in the 1963 version are not in the 1967

version at all.

[5
Which

Bit First?

Following the approval of the American Standard Code for Information

Interchange (ASCII) in 1963, the data transmission standards committee

turned its attention to determining the bit sequence in which the bit

patterns of ASCII should be transmitted for serial-by-bit-serial-by-

character data transmission. The committee soon decided that the ASCII

bit patterns should be transmitted consecutively. As well as considering

problems of character framing and parity on data transmission lines

(which problems are not discussed in this book), the committee consi-

dered the problem of whether the ASCII bit patterns should be transmit-

ted high-order bit first or low-order bit first.

15.1 SPECIFIC CRITERIA

The committee developed a set of ten specific criteria* pertinent to the
decision of bit sequencing. Not all of the criteria were satisfied by the

committee’s final decision. Some of the criteria are conflicting. The final

decision on bit sequencing was based on a detailed analysis and weighting

*The ten Specific Criteria are reproduced with permission from American Na-
tional Standard for Bit Sequencing of the American National Standard Code for
Information Interchange in Serial-by-Bit Data Transmission, X3.15-1966,

copyright 1966, by the American National Standards Institute at 1430 Broadway,
New York, New York 10018. The Criteria are reproduced from Appendix A2 of
the Standard X3.15-1966. The Standard is available from the American National
Standards Institute at 1430 Broadway, New York, New York 10018.

249

250 Which Bit First?

of the criteria. The Specific Criteria follow:

1. The transmission bit sequence should be in consecutive numerical

order (ascending or descending) in terms of ASCII nomenclature.

2. The transmission bit sequence should minimize the amount and

complexity of existing and future hardware.

3. The transmission bit sequence should be selected to minimize ad-
verse consequences of equipment or system malfunction.

4. The transmission of a binary bit stream should not be precluded.

GN . The transmission of encrypted material should not be precluded.

6. There should be a correspondence among media track (channel or

row) designation, ASCII bit number, and transmission bit sequence,

in order to minimize training and reduce confusion of operating,
maintenance, and engineering personnel.

7. The transmission bit sequence should allow a logical extension of

supersets of ASCII.

8. The transmission bit sequence of any subset or superset of ASCII
should provide that any designated bit be immutable in its position in

the transmission sequence as well as in its logical order and media

representation.

9. The character parity bit should be positioned to allow it to be

generated ‘“‘on the fly,” following the data bits.

10. The transmission bit sequence should allow maximum design flexibil-

ity in future systems utilizing ASCII.

The two bit-sequencing choices, high-order bit first, or low-order bit first,

were then investigated to determine their influence on data interchange

from the following points of view:

a) flexibility of hardware design,

b) hardware efficiency,

c) ease of maintenance,

d) contraction of ASCII to subsets,

e) expansion of ASCII to supersets, and

f) system reliability.

The arguments that were advanced to the committee are now reproduced.

It is to be emphasized that the author does not testify to the validity or

significance of the arguments. He merely reports the arguments. The

arguments are grouped under the last five of the above points of view. In

15.3 Ease of Maintenance 251

parentheses after each argument is indicated whether the argument was in

favor of transmission high- or low-order bit first.

15.2 HARDWARE EFFICIENCY

1. Although the bit sequence is immaterial in a great majority of

today’s applications, nevertheless specific cases were considered in

which either one or the other bit order was advantageous.

2. When ASCII is transmitted high-order bit first, it is possible to
determine, by the first two or three bits received, the general use of
the character and, in certain classes of equipments, thereby know the

routing and final disposition of the remaining bits. In particular, this

can reduce the necessary bit storage in I/O typewriters where reduc-

tion in bit-storage requirements can be a reasonably significant

portion of the total cost. (high)

3. The problem of mapping the 7-bit ASCII code into a 6-bit data
processor character code can be simplified if the high-order bit is

placed first. .
In particular, the first two bits received may be sufficent to

generate an “‘escape’’ character prior to reception of the complete

ASCII character, thus allowing a considerably longer effective time

upon completion of reception of the ASCII character with conse-

quent increase in traffic handling capacity for a given equipment.

(high)
4. Time (clock) codes are transmitted low-order bit first and low-order

character first so that the fine detail will appear earlier, and the

redundant, infrequently changing coarse portions will appear later in

each time code group. If it is desired to intersperse time codes in

general interchange data, less confusion should arise, and less hard-

ware should be required, if the interchange data is also transmitted

low-order bit first. (low)

15.3 EASE OF MAINTENANCE

1. With low-order bit transmitted first, the first data pulse can corres-

pond to ASCII bit b1, the second to bit .b2, etc. Thus “third’’ will
mean third pulse as well as bit b3. It can also mean third track (or

channel or row) in media. This extremely simple relationship among

media track number, pulse number, and bit designation number is

highly desirable in the maintenance of communication equipment,

especially in discussions between remote technicians or between

technicians and engineers. (low)

252

2.

Which Bit First?

This correspondence argument was at least partially offset in asyn-

chronous systems where serially received bits are accompanied by

synchronization bits. Thus the received ASCII bit b1 could actually

be the second received bit, bit b2 could be the third received bit, etc.

(high)

15.4 CONTRACTION TO ASCII SUBSETS

1. Logic for serial recognition of characters limited to specific coding

groups of the 7-bit ASCII is expected to be implemented with less

total hardware where transmission is sequential with high-order bit

first. (high)

. If subsets of ASCII, such as a 4-bit numeric subset or a 6-bit graphic

subset, are used, then the low-order-bit-first arrangement allows

high-order bits to be appended ‘‘on the fly,” according to logical

rules, for transmission of the full 7-bit ASCII. (ow)

Equipment receiving the full 7-bit ASCII, but operating on only a

subset, may, with the low-order bit first, obtain the subset by simply
ignoring bits received after the prescribed number for each ASCII

character received. (low)

15.5 EXPANSION TO ASCII SUPERSETS

It has not been decided just how the 7 bits (b7 through b1) of ASCII will

be represented in an 8-bit environment. If a superset takes the form of an

8th bit which is higher in order than bit 7, then

1. In the expansion and contraction between both 7- and 8-bit sets and
6- and 8-bit sets, only the data contained in the high-order bits will

be needed to determine the transformation. The transmission of

high-order bit first provides the maximum time to convert between

the sets. (high)

With low-order bit transmitted first, compatibility between terminal

equipments using ASCII and terminal equipments using an 8-bit

superset of ASCII may be simplified, and transmission switching

equipment may more readily handle either mode of transmission.
(low)

15.6 RELIABILITY

1. Asynchronous transmission of characters results in a greater proba-

bility of error in the later bits transmitted.

15.6 Reliability 253

2. If low-order bits are transmitted first, an error in the later bits would

tend to convert some graphics to control characters. (high)

3. If high-order bits are transmitted first, numerics may be converted to

other numerics, and control characters to other control characters.

(low)

After many committee meetings, long discussion, and the considera-

tion of over seventy technical papers on the subject, the standards

committee decided in favor of low-order bit first for serial-by-bit—serial-
by-character data transmission.

Author’s Note

All data is transmitted high-order character first, and it may be observed

that similar arguments for order-of-character transmission could be made
as for order-of-bit transmission. That is to say, it might have been argued

that since similar reasons could have been advanced for order-of-
character transmission but that nevertheless high-order-character trans-
mission is universally practiced, it would seem to be logical to conclude that
high-order-bit transmission first should become the practice. This argu-
ment, however, was not introduced into the discussion.

16
Decimal ASCII.

After the bit code ASCII became an approved American National
Standard in 1963 (actually termed “American Standard” then), the
attention of the standards committee turned to developing standards for
the representation of the code on the principal media, perforated tape,
magnetic tape, and punched card.

16.1 PERFORATED TAPE

The representation for perforated tape presented no technical problems.

A common form of perforated tape of the day was one-inch, eight-track

paper tape. It was soon agreed

a) To number the tracks of the tape 1, 2, 3, 4, 5, 6, 7, 8.

b) To record the seven bits of the code:

b1 in track 1

b2 in track 2

b7 in track 7.

c) To use track 8 as a parity track.

16.2 MAGNETIC TAPE

The problem for magnetic tape was not quite so simple. First, the
committee decided to reject as a candidate the existing magnetic tape of

255

256 Decimal ASCII

the day—half-inch, seven tracks. One of the seven tracks was dedicated
to parity—odd parity for some computing systems, even parity for other
computing systems.

If a track were to be dedicated to parity for the standard on magnetic
tape, and the standards committee agreed that it should be, then only six

tracks would remain to record the seven bits of the code. While it is
feasible to devise a theoretical scheme for recording the 128 characters of
a 7-bit code on 6 tracks (and, indeed an ISO Recommendation for just
such a scheme was eventually approved), the American standards com-

mittee deemed such a scheme unacceptable for an American standard. As
described in Chapter 20, the standards committee proposed a recording

format of nine tracks, and eventually, the representation of ASCII on
magnetic tape became an approved American standard.

16.3 PUNCHED CARDS

The problem of deciding how to record ASCII on punched cards turned
out to be extremely troublesome.

The most common form of punched cards in use in the U.S.A. at the
time used a 12-row, rectangular-holes representation (which came to be

called the Hollerith Card Code in the U.S.A.). A less common representa-

tion, provided by the UNIVAC Division of the Sperry-Rand Corpora-
tion, used a punched card of virtually the same size, and twelve rows of

punching, but the holes were circular. The initial draft American standard

specified both the rectangular-hole and circular-hole representations.

Eventually, the standards committee voted to exclude the circular-

hole representation from further consideration, for an interesting reason.

The circular-hole card had 45 columns of punching. The encoding format
divided the twelve rows into two tiers of 6 holes per tier. The card was
visualized as having 90 columns, and was frequently called the 90-column
card (the rectangular hole card had 80 columns of punching, and was
frequently called the 80-column card). But these 90 columns had only 6
punchable rows per column and therefore could record a maximum of 64
different characters. The problem with the 90-column card was the same
as the problem for magnetic tape (6 data tracks plus 1 parity track). How
could the 128 characters of ASCII be recorded on the 6 rows of the card?
Of course, physically, the card had 12 rows. The alternatives for the

circular-hole card were

a) Using the 12 rows as necessary, record all 128 characters of ASCII,

but then have a capacity of only 45 columns per card.

b) Record only 64 characters of ASCII, and have a capacity of 90

columns per card.

16.4 Binary Representation 257

c) Use 90 columns, record all 128 characters of ASCII by some
complicated recording scheme involving the concept of a shifted or

precedence code.

None of these alternatives was attractive, and the committee dropped
the circular-hole card from further consideration.

Attention then focused solely on the rectangular-hole card. Inciden-
tally, the “name” of this kind of card enjoyed some changes. During the
discussion of the circular-hole card, it was necessary to differentiate
between the two kinds of cards. “‘Circular-hole card’”’ and ”rectangular-
hole card” were two differentiating names; “‘90-column card”’ and “‘80-
column card” were more commonly used differentiating names (both
kinds of card had 12 rows, so this characteristic could not be used to

differentiate). After the circular-hole card was dropped from further
consideration, the remaining card was referred to as the 80-column card
for a while. But it was pointed out that this name was a misnomer, because

different lengths of the card (that is, different numbers of columns) were

available in the market. At this point, therefore, the standards committee
began to refer to the rectangular-hole card as the 12-row card (12 rows

being a characteristic of such cards regardless of length). The ISO
Recommendations on punched cards refer to the card as the 12-Row

Card.

16.4 BINARY REPRESENTATION

The standards committee now focussed on the 12-row card. At first, the

problem seemed simply solvable. The card has twelve rows, commonly

named the 12-row, the 11-row, the 0-row, the 1-row, the 2-row,..., the

9-row, as shown in Fig. 16.1. Some members of the standards committee

= Card rows (horizontal) ——————>

12-row

11-row

0-row

1-row

2-row

3-row Card columns (vertical)
4-row

5-row

6-row

7-row

8-row

9-row J m
M
o
n
o
n
o
n
o
n
m
n
o
o
o

Fig. 16.1 Punched card

258 Decimal ASCII

suggested that the code be recorded according to a very simple algorithm:

a) bl would be recorded in the 1-row,

b2 would be recorded in the 2-row,

b3 would be recorded in the 3-row,

b4 would be recorded in the 4-row,

b5 would be recorded in the 5-row,

b6 would be recorded in the 6-row,

b7 would be recorded in the 7-row.

b) When a bit of the bit pattern is 1, punch a hole.
When a bit of the bit pattern is 0, leave the hole position unpunched.

This proposed representation on punched cards came to be called the

Binary Representation (and later came to be called the Direct Binary

Representation). The advocates of the Binary Representation pointed out

its advantages:

1. It was a simple, direct representation (no translation required).

2. If it became necessary some day in the future to expand the 7-bit
code to an 8-bit code, the eighth bit of such a code could be recorded
in the 8-row.

3. The 12-row, 11l-row, and 9-row would be available so that error-

checking, and even error-correcting, schemes could be implemented,
a facility not previously available with the punched card medium.

The initial argument against the Binary Representation was that it
was completely different from the existing Hollerith Card Code. This

argument was discounted by the Binary Representation proponents.
After all, they argued, ASCII was different from any existing code; the
representation of ASCII on magnetic tape would be different from any
existing magnetic tape code; the representation of ASCII on paper tape
would be different from any existing paper tape code. So what was
alarming about the suggestion that the representation of ASCII be
different from the existing punched card code? While the opponents of

the Binary Representation grappled with this argument, a much more
telling objection emerged.

16.5 NUMBERS OF HOLES

Observe, said the Direct Binary opponents, what happens when the
numerics of ASCII are recorded on the punched card under such a

scheme (see Fig. 16.2).

16.5 Number of Holes 259

/ UlLes4s67a4)

DODNDOFODODONDDDDNDNDDNADDDNDNTNDNNDONOOONNDDDDDOOHAODODODNDODONAOOOON0N0
9
I

UHL 12 1314 18 16 17 16 19 20 24 22 29 24 25 26 27 28 29-30 31 32 33-34 35 36-37 36 39 40 AE A243 44 45 AG AT 48 49 50 S152 $3 54 55 S657 SB 59 G0 6) 8263 64 65 G6 67 6869 7071 72 73 74 75 7677 7879 80

BUMPED TTT EAT TET aa

22 ee2kklklk Hee em eto k kkk kkk kk 28222

3933933333333339MMMM333393939999393333339393339339393939393393339399999993999993

BAGAAAAAAAAAAAAAAARABMAAAALABAAAA GAARA AAAAAAA AAA AAA A AAAAAAA AAA AA AAA AAA aaa aaa

Coe ae ea eee eee eee ooo oo ooo ooo ooo eo oo oo ooo ooo oo ooo eS S555 SHS SSS 55SS

CKCK CECE CCE CHMMRURBRMR GCG CG CECE EE CECE CEE C ECE CE CG CECE CE BE GEG EGS GCECRGGCGSG6EG6GG6GE6

DUVTT TTT TTT TTT

SRRCURGAGARARARAABR RAG HH ARERHRRARK ARB BA BRERSRRARARABEERBRABBA SAB RABHGBBEHSRR ARE

99
\ 2.3.4.5 G7 8 9 COTE IZ 13 1415 16 17 1B 19 20-21 22 23 24 25 26 27 28 20 30-31 32 33 34 35 36 37 3B 39 40 A 42 43 44 AS AG 47 40 49 $0 51 5259 54 $5 56 S7 5859.60 61 62 63 G4 6S 66 G7 GB 69 70 7t 12 73:74 75.1677 787980)

to CRGETY

0
2

I

2

Fig. 16.2 Numerics, Binary Representation

Two facts emerge with respect to numerics:

1. 0 requires 2 holes; 1, 2, 4, and 8 require 3 holes; 3, 5, 6, and 9

require 4 holes; 7 requires 5 holes; this gives an average of 3.5 holes

per numeric.

2. For all numerics, both the 5-row and the 6-row have punched holes.

These two facts contrast with the equivalent facts for the Hollerith

Representation of numerics (Fig. 16.3).

1. Each numeric requires exactly one hole.

2. There is a different row punched for each different numeric.

0
a
| i

)

22k kkk lm kkk kkk kkk kkk tk 2 kkk kkk kkk 22222 klk 2222 kk 2228222

333939333935390333939333933393933393993933399333939333333939393393939333939939333

MAMA AA AAA GAGA GAMMA Ada GAA AAA GAG ddd ddd ddd ddd ddd ddd ddd d ddd dad ddddagggaaaaaga

Boe e a aoa ao ooo oo ae ooo ooo oo ooo ooo oo ooo ooo oo oo ooo oo ooo TUFF USF T SSH SSS H SSS

CEGBECEC CECE CRG BEBE CEG SCEGE EGR CEG GCC ERG CCGG EGBE SEG CCGG EG GEGEGE CEG GSEE BEG ECEGEEGEE

DUTT TUTTE TTT TTT

BRGLORBARHA RRB RA BRIM ARAB RAGA TRU RE RA SHR AR BRR RRA RABE BAS HS ARBRE SH BARROS ASABE RAB ESS

99999999999999999999M9999999999999999IITIIITIITIIIIFIITIFIIGIIIIIIIIIISIIIIIGI GY
V2 3&5 6 7 GF WGN 1213 14 15 16 07 18 19 20 21 22 23 24 25 26 27 28 29 30 Bt 32 93 34 35 36 3F 38 39 40 4h 42 43 44 45 46 AT 43 49 50 51 52 53 54 56 96 ST 58 S960 61 62 83 G4 55 G6 B7 GB GS 7070 7273 1475 78 77 78 79 80

\ 1M

Fig. 16.3 Numerics, Hollerith Representation

260 Decimal ASCII

The significance of fact (1) is that if more holes are required per

character, the dies that punch the holes will wear out sooner, and thus

maintenance costs will be higher. The statistics above for fact (1) relate to

numerics only. Consider the statistics for all 64 characters in columns 2,

3, 4, 5 of the code:

2 characters require 1 hole = 2

10 characters require 2 holes = 20

20 characters require 3 holes = 60

20 characters require 4 holes = 80

10 characters require 5 holes = 50

_2 characters require 6 holes = 12

64 224

{I

The average is 224/64 = 3.4 holes per character.

By contrast, consider the Hollerith Card Code associated with BCDIC

(see Fig. 16.4):

1 character requires 0 holes = 0

12 characters require 2 holes = 24

35 characters require 2 holes = 70

16 characters require 3 holes = 48

64 142

The average is 142/64 = 2.2 holes per character.

We have, then, average number of holes per character, as shown

below:

Kind of Binary Hollerith
characters | Representation | Representation

Numerics 3.5 1

All 64 3.4 2.2

characters
For numeric data, which was estimated at that time to constitute 75

percent of all data punched, we have 3.5 holes per character compared to

1 hole per character. For the 64 graphic characters, we have 3.4 holes per

character compared to 2.2 holes per character.

16.6 Lacing 261

Pattorn rd A B BA

Hole

Pattern—> 0 11 12

SP 5 bo - & or +

1 1 1 / 5 A

2 2 2 s K B

21 3 3 v L CG

4 4 4 U M D

4 1 5 5 Vv N E

42 6 6 W 0 F

421 7 7 x P G

8 8 8 Y Q H

8 1 9 9 z R I

8 2 0 0 + le ! 9

8 21 8-3 # or = ; $

84 8-4 @ or ' % or ¢ * Wor)

84 1 8-5 Y 1 c

842 8-6 > \ ; <

8421 8-7 J * A 4

Hole Patterns:
SP - Space

[1] 8-2
[2] 0-8-2

Fig. 16.4 BCDIC, Hollerith Card Code

Fact (1) led to the conclusion that the Binary Representation would

result in higher maintenance costs for punched card equipment than the

existing Hollerith Representation. And, it is important to note, this would

not be a one-time conversion cost (because of converting from one code to

another); it would be a continuing cost.

16.6 LACING

Fact (2), however, led to an even more compelling argument against the

Binary Representation. Observe Fig. 16.5. For numeric data, for all

numerics, rows 5 and 6 are punched. If a card was punched with numeric

262 Decimal ASCil

 ~\

00
1223-45 GF 8 8 FONE 1213 14 18 16 7 UE 19 20 20 22 23 24 28 26 27 28 29 38 31 32 33 34 35 38 97 38 30 40 Al 42 43 4d 45 AG 47 48 49 S051 5253 54 55 56 ST 58 58 606) 62 63 64 GS G6 EF GAGS TO 71 7273 7475 7677 78 79 80

He

22M 22M 22220 2200 2222022222 2 222 2 2 2 22 2 22 22

PRER) 1 RERERE) 11 ERRREE | 1] RERERE) 111 EREREE) | 1] REEERE! 1 RERREE 11] EREERE) 11 RE

reveverel | CRETEVER) | REQECEVE! | POVEREET) | CUORUREY | LEREROTS! | PEROT OR | PEeITEre! ||

TTT Ee ET

Ne eeeeee eae e eee URC ERAN E UR UR RAGS OR ORORORDERTDER CRORE DORGROE

TUTTUV TTT TTT ATT TTT TUTTE TTT TTT TTT TTT TTT TTT

QRGRHRBHBASSR CARAS HRSG SAS RSGBEC ROHR SH SSBGH SREB US ERSSSRBURSRSABSSRHRRRGHRORSRORRS

999999999999 999999999999 9899999999 9999 999999999999999999999IIII 9999999999
a 1294S G7 8 9100 191415 16 17 1818 2021222526 2528 2282 HU 29995 T3838 A244 5 46 a8 82 59 5455 85 959606 262646 BT 6D TT rennersreniersan}

Fig. 16.5 Laced card

data only, the rows 5 and 6 would be punched completely across the
length of the card. The technical term used for this phenomenon is
“lacing.” For the Binary Representation, the card would be ‘“‘laced”
completely across two rows for numeric data.

The punched card is unique among the physical recording media in
one very significant aspect, the way in which it is handled by human
beings. Of course, reels of magnetic tape are also handled by human
beings. And rolls of paper tape or lengths of paper tape are also handled
by human beings. But these human beings are operators in a computing-

room environment who handle the magnetic tape reels, or the paper tape,
with some care. Punched cards, by contrast, go out of the computing-

room environment into the hands of people who, not infrequently, treat
the card with considerable roughness. The punched card is used for pay
checks, for insurance premium billing, for utility billing, etc. In many
cases, the punched card goes to people outside the computing-room

environment, and is then subsequently returned for further computer

processing. The cards may be folded, crumpled, wetted, scraped, torn,

spindled, etc. (The famous phrase, “Do not spindle, fold, or mutilate”

was devised by Mr. Charles A. Phillips in the hope that people, so
advised, would treat cards more carefully.)

The punched card is made of a fairly stiff paper stock. To some
extent, it resists folding, wrinkling, tearing, etc. The presence in a
punched card of two rows laced across the length of the card clearly make
it much more susceptible to damage when casually or roughly treated by

human beings. The thrust of this argument was that the Binary Represen-

tation would make the card unreliable. On the standards committee,

16.7 Modified Binary Representation 263

manufacturers of punched card equipment were unanimous in their op-

position to the Binary Representation; partly because of the potential
increase in continuing maintenance costs but mainly because of the
potential unreliability of the punched card which would result.

The proponents of the Binary Representation offset the cost argu-
ment with a counter argument on cost. A hardware translator to translate
ASCII to/from the Hollerith Representation would be very much more
costly than a hardware translator to translate ASCH to/from the Binary

Representation. But the reliability argument could not be offset. At first,
it was suggested that using the 12- and/or 11-rows for error checking or

error correcting would partly compensate for the unreliability aspect. But,
punching 12 or 11 rows would add even more holes per character, which
would worsen the maintenance cost situation.

16.7 MODIFIED BINARY REPRESENTATIONS

The reliability defect of the Binary Representation stemmed from the
lacing phenomenon, which stemmed from the three high-order zone bits
of ASCII. This defect could clearly be removed if the numerics had no
zone bits. The solution now advanced by the Binary Representation
proponents was to modify the binary representation as punched on the
card by modifying the zone holes. Two representations were proposed for
consideration—the Modified Binary Representation and the Optimum
Modified Binary Representation. In both these representations, the
numerics had no zone punches in the 5-row or 6-row, so the lacing
phenomenon disappeared for numerics.

The zone bits for the three binary representations are shown in Fig.
16.6. The three binary representations and the Hollerith Representation
are compared in Fig. 16.7, which shows the average number of holes per

numeric and the average number of holes for the 64 characters of

table-columns 2, 3, 4, and 5 of ASCII.

While the Optimum Modified Binary Representation came the clos-
est to Hollerith in average number of holes per numeric or character, it
suffered from some other defects:

1. A 64-character, 6-bit subset from columns 2, 3, 4, and 5 of the 7-bit

code cannot be generated by simply dropping one bit.

2. The translation algorithm, ASCII to/from Representation, is some-
what complex (although not as complex as the one to/from Hol-

lerith).

If the three high-order bits of the Optimum Modified Binary Representa-
tion are bj, bg, bs and the three high-order bits of ASCII are b7, b6, b5,

264 Decimal ASCII

Table column

0} 1) 2) 3) 4) 5] 67
Representation

0/0} 0) 0} 1) 1} 1) 1)b7
Direct Binary 0/0} 1) 1; 0} 0) 1}1}b6

0} 1/0} 1)0}1]/0}1)b5

1} 1)010}0}0/1]1/b7
Modified Binary 1/0) 1/0}0/ 1/0} 1/b6

1/0) 1)0)1/0)1)0)]b5

1/0) 1/0/0}0)1/1}b7
Optimum Modified Binary 1} 1/0} 0/0) 1/0] 1) b6

1/1}0/0)1/0)1/0)b5

Fig. 16.6 Binary representation

Average number of holes per character

Representation Numerics Ali 64 characters

Direct Binary 3.5 3.4
Modified Binary 1.4 3

Optimum Modified Binary 1.4 2.7
Hollerith 1 2.2

Fig. 16.7. Average number of holes per character

then the translation equations are

bi = (b7 A bS) v (b7 A b6)

bi = (b7 A b6) v (b7 A bS)

bi = (b7 ~ b6) v (b7 A bS)

With respect to all three Binary Representations, two more problems

arose, which came to be called the Null/Space/Blank Problem, and the

Plus and Minus Zero Problem.

16.8 Null/Space/Blank Problem 265

16.8 NULL/SPACE/BLANK PROBLEM

In punched card applications, a blank card column, with no holes

punched, represented one of three things, depending on the application:

1. A card column not used in the application.

2. Acard column not punched in the initial keypunching operation but
punched in a subsequent card-punching operation.

3. A space; that is, if the card is listed on either serial or parallel
printers, blank card columns would be represented by unprinted
printing positions on the paper.

In practice, the blank card column was equated to the Space character. In
keypunching, blank card columns are created by depressing the Space
bar, or by skipping the card to a subsequent card column, or by ejecting

the card. These operations are precisely analagous to the typing opera-
tions of Space, Horizontal Tabulation, and Carriage Return. The format
of data on the punched card is precisely analogous to the format of data
printed from the card.

Observe, however, the hole patterns for Null, Space, and Zero in the

Binary Representations (Fig. 16.8).

Representation Optimum
Direct Modified Modified

Character Binary Binary Binary

Null Blank column | 7-6-5 punches | 7-6-5 punches

Space 6 punch 6-5 punches 7 punch

Zero 6-5 punches Blank column | Blank column
Fig. 16.8 Null/Space/Zero hole patterns

The blank card column is associated with the Null character in the Direct
Binary Representation, and with the Zero character in the Modified and

Optimum Binary Representation. In no case is blank card column as-

sociated with the Space character.

At first, the Binary proponents took the following lines:

For the Direct Binary Representation. In the future, associate the blank

card column on punched cards with the Null character. On keypunches

266 Decimal ASCII

the “‘old’? Space bar would now have to be called the Null bar, but a

change in nomenclature should not be too distressing to users.

The Binary opponents held that this proposal would be unacceptable.
The proposal might be acceptable purely in the context of the

punched card environment. But punched cards do not exist in a vacuum.
A common punched card application is to read a deck of punched cards
into a card reader, translate the data to a transmission code, and then

transmit the data to some other location for further processing. But it was
known that some communications products, when receiving the Null
character, would not transmit it further. Also, it was known that, for

various reasons in some data transmission systems, Null characters are
injected into the data stream.

In short, Null characters might be injected into, or removed from,

the data stream. In the context of the punched card used in a data
transmission application, if the Null character was equated to a blank card
column, this would mean that, under data transmission, blank card

columns would be added to, or removed from, the punched cards. Even

the Binary proponents had to concede that such a consequence would be

intolerable.

For the Modified and Optimum Modified Binary Representations. In

the future, associate the blank card column on punched cards with the

Zero character.

The Binary opponents held that this proposal would be unacceptable.
The proposal to equate the blank card column with the zero charac-

ter would lead to a dilemma. Consider a card punched as shown in Fig.
16.9. Card-columns 1, 2, 4, 7, 12, 13, 16, and 19 are punched with

fo a4 ol 6 >)

0
a

0 000000000 000000 00000000 000
a 44 42 43 444546 47 48 49 53 54 55 S6 $7 58 69 64 65 65 67 GB 69 70 710 9

00
34
1

80
56
HH —

a
e

w
e
 0 0000000000000 00000000000000000000 000 000 6000 0

2 7809 101112434415 1617 1619 26-25 26-27 24-29 30 3b 32 33-34 35 96.37 30.39 40 44 4243 505152 60 8182 8 nian "
I Brrvisrtamads TUT TUTETTPT ITED PEAT EET ETAT TTT ETE

week eek kkk kkk kk kkk kkk kkk kkk kkk

33393333333933939339393333339933933339393933339339393993939939393939993993339393993333

AGAAAAGAAAAAMAGA GAMA AGAMA AAS AAA GAMA AMAA AMAA AA AAAA AAA AAA AAA ddA addenda

Boo a oe ooo ooo ooo ooo ooo oo ooo ooo ooo 5555555 5555555555 5655555555558 5 Saba

CCB ECE GEC HECH EERE CME SCE CEE CC ECCS GCG EBE ESR ECO ECG ECG E CBG EG ECHB EGG EG EEG GCG CEG GESEE

TUTTTTTTT TTT TTT

BRRGARSRR RK KRAGRASREKRHCHH RARE AGARRHH AR SHRHRRARHHARSARARSCHRHARARRGAARARASH ABAD

999M995999999999999999
V2 34S 6 TB 81H 212 95 151718 1 202422 25.2425 2 212829 O31 323993536 7 30394 AE AD A 548A A435 St 82535455 9657S 5860 I 62636 5686 668 707 risnisieninn)

§
20
1 —
R
e
 0000000 0

96 97 30.39 40 41 42 58
Thdtdd I

~~

m
-
S

—
-
a
o

—
-
s
z
O

—
3
0

Fig. 16.9 Card with blank columns

6.8 Null/Space/Blank Problem 267

1umerics. Card-columns 3, 5, 6, 8, 9, 10, 11, 14, 15, 17, 18 and 20

hrough 80 are blank. This punching represents numeric fields 12809001
n card-columns 1 through 8, and 24001006 in card-columns 12 through

L9.
The dilemma is how to list such a card. Card-columns 3, 5, 6, 14, 15,

7, and 18 were Zeros in the data, and should be listed as Zeros. But

ard-columns 8 through 11 and 20 through 80, although blank card

olumns, should not be listed as Zeros, but as Spaces. And there is no

vay for a printer to tell when a blank card column means Zero, and when
t means Space.

The Binary proponents responded that the problem is that card
olumns 8 through 11 and 20 through 80 should not have been blank
‘ard columns, which is equated to the Zero character, but should have
xeen punched whatever hole pattern would be associated with the Space

‘haracter.
The Binary opponents labeled this unacceptable for two reasons:

1. Card-columns 8 through 11 would normally be created as blank card
columns in keypunching by skipping, and card-columns 20 through
80 by ejecting. Now, while it might be feasible to modify keypunches
so that they would create the specific hole pattern for the Space
character on skipping or on ejecting, the modification would reduce
the relatively fast card motion of skipping or ejecting to the relatively
slow card motion of punching. That is to say, the consequence of
such a keypunch would be a substantial reduction in keypunch
productivity.

2. How would one provide the traditional capability of leaving certain
card columns unpunched (blank card columns) during keypunching
to be filled with punched data on subsequent card processing opera-

tions? Such card columns would, in fact, have to be created by

punching the Zero character that is equated to blank card column. In
normal keypunching operations, such card columns are created by
spacing, skipping, or ejecting. Under this proposal, then, the rela-
tively fast card motion of skipping or ejecting would be replaced by

the relatively slow card motion of manual keying by an operator. As
in the previous argument, key punching productivity would be sub-
stantially reduced.

After much discussion, it was accepted that none of the Binary
Representations, as shown in Fig. 16.6, would be viable, because of the

Null/Space/Blank Problem. The Binary proponents then made some new
proposals. Under these proposals, the zone hole patterns shown in Fig.

268 Decimal ASCII

Table column

Representation

—
 So

Oo

—

©

o

—

_
 Direct Binary b6

b7
b6

_

—

©

Oo

So

—

—

Modified Binary

o
o
 =

So

P
O
S

—_

~~

—
 So

b6
b5

Optimum Modified Binary 1/1 o
o
o
 an

=—
oO

e
o

o
r

Fig. 16.10 Row 0

16.6 would hold for rows 1 through 15 of the code table, but for row 0 of

the code table, some changes should be made, as shown in Fig. 16.10.

Note, in Fig. 16.10, that for all three Binary Representations, the
Space character, which is Column 2, Row 0 of the ASCII code table, is

equated to blank card column. The three high-order bits in Fig. 16.10

have been chosen to preserve the desirable characteristics of each of the

Binary Representations and, at the same time, to minimize the translation
complexity—ASCII to/from Binary card-code representation.

This proposal would, of course, introduce translation complexity into

the translation of ASCII to/from Binary card code. And translation

simplicity, or requirement for no translation at all, was the primary and in

fact the only argument in favor of a binary card-code representation over

the de facto Hollerith card-code representation. The Binary opponents
pointed out this undesirable consequence.

The Null/Space/Blank Problem in the context of Binary Representa-

tion was not resolved by the standards committee, for a reason that will

emerge later in this chapter.

16.9 PLUS AND MINUS ZERO PROBLEM

The capability to store greater and greater quantities of data has been a

requirement since the very beginning of data processing. Insufficient

memory capacity, data records overrunning magnetic tape reels or paper

tape reels, etc., have plagued, and will probably always plague, the data

16.9 Plus and Minus Zero Problem 269

processing industry. Punched cards as a medium for storing data are not
exempt from, and in fact are particularly prone to, this aggravation. How
many readers of this book have experienced the aggravation of trying to
squeeze 81 characters into an 80-column card? Indeed, most modern
schemes of packing or compacting data had their forerunners in punched

card applications.
One very common “trick”? was to make a single card column do

double, triple, or multiple duty. This was particularly evident in statistical

applications. For example, the 12-punch could be used to signify male or
female; the 11-punch, married or single; and the numerics 0 through 9
could be used to specify some other statistical characteristic.

A widespread convention was the use of a 12-punch, an 11-punch, or
neither of these, to signify positive, negative, or absolute numerics,
respectively. Usually the units position of a numeric field on a card was
the sign position. Either the 12- or 11-punch was punched over the
appropriate units position of a numeric field (as well as punching the
actual digit for the units position). Since 12- and 11-punches, in conjunc-

tion with numeric punches, also had the meanings of alphabetics, the

result was dual meanings for these hole patterns, as shown in Fig. 16.11.
A crucial aspect of this convention for signed numerics was that they

must be keypunchable by the technique of overpunching. A skilled
keypunch operator, being required to keypunch —3, for example, would

Meaning Meaning Meaning

Hole Hole Hole
pattern | Alphabetic Numeric | pattern | Alphabetic | Numeric | pattern | Alphabetic | Numeric

0 0 12-0 * +0 11-0 * -0

1 1 12-1 A +1 11-1 J -1

2 2 12-2 B +2 11-2 K —2

3 3 12-3 Cc +3 11-3 L -3

4 4 12-4 D +4 11-4 M -4

5 5 12-5 E +5 11-5 N -—5

6 6 12-6 F +6 11-6 Oo —6

7 7 12-7 G +7 11-7 P -7

8 8 12-8 H +8 11-8 Q -8

9 9 12-9 I +9 11-9 R -9

*In BCDIC, 12-0 and 11-0 have the meanings of ? and !, respectively. In EBCDIC, they
have the meanings of { and }, respectively.

Fig. 16.11 Overpunched numerics

270 Decimal ASCII

know that this was equivalent to the alphabetic L, and would depress the
L key. However, a less skilled operator would use the multipunch key
that had the function that, when depressed, would allow further key

depressions of alphabetic, numeric, or special keys that would generate

the appropriate hole patterns in the card, but the card would not advance

longitudinally until the multipunch key was released; that is to say,

multiple punches could be created in a single card column. The operator,

then, being required to generate the 11-3 hole pattern, for —3, would

depress the multipunch key, would then depress the 3 key, then depress

the — key (which generates an 11-punch), then release the multipunch

key. Similarly to generate the hole pattern 12-3 for +3, the sequence

would be depress multipunch key, depress 3 key, depress + key (which

generates a 12-punch), release multipunch key.*

The requirement that signed numerics be keypunchable in this fash-

ion places an interesting constraint on hole patterns for signed numerics.
The hole pattern for positive, or for negative, must not conflict with the
hole patterns for numerics. In the case of the Hollerith Card Code, where

numerics had hole patterns 0 through 9, this constraint was met by the
hole patterns for numerics. In the case of the Hollerith Card Code, where

respectively.
What would this constraint say with respect to a Binary Representa-

tion? Given that the numerics are represented by BCD equivalents, that
is, punches in rows 1, 2, 3, 4 of the card, the hole patterns for positive and

negative must be restricted to rows 5, 6, 7, that is, to the zone rows.

Further, if the same convention would be used—minus sign for negative

zone and plus sign for positive zone—then the hole patterns for plus sign

and minus sign must not have any holes in card rows 1, 2, 3, 4, for they

would then conflict with hole patterns for numerics. But this constraint
cannot be met, since ASCII plus sign and minus sign are in table-rows 11
and 13; that is, they would have hole patterns in card-rows 1, 2, 3, 4.

There is, then, no way in which the sign-overpunch-numeric conven-
tion can be incorporated into a Binary card code, unless the minus sign
and plus sign had zone bits only, no digit bits; that is, plus sign and minus
sign to be in row 0 of the ASCII code table. Such a change to ASCII itself
was not acceptable.

The Binary proponents proposed that this problem be solved by

making the problem go away. They proposed that, with a Binary Rep-

resentation, algebraic sign be represented not by overpunching but by

carrying the algebraic sign in a separate card column. The Binary propo-

* Whether the sequence was first 3 key and then — key or first — key and then 3
key was immaterial.

16.10 Translation Simplicity 271

nents then were proposing not only that the user change his card code,
from Hollerith to Binary, but also that he give up the widespread practice
of overpunching numerics for algebraic sign.

This problem, as with the Null/Space/Blank Problem, was not resol-
ved, for a reason that will emerge later in this chapter.

In the remainder of this chapter, various card codes are illustrated
and described. Some of these card codes have 128 hole patterns and are
taken in conjunction with a 7-bit code. Other card codes have 256 hole
patterns and are taken in conjuction with an 8-bit code. Both the
Null/Space/Blank Problem and the Plus and Minus Zero Problem

emerged with respect to some of these codes, and they became major
points of technical controversy on the standards committees.

16.10 TRANSLATION SIMPLICITY

An aspect of these card codes that became crucial in discussions was the
translation relationship, card code to/from bit code. The relative simplic-
ity or complexity of translation became a factor for decision between
candidate card codes. Boolean equations for the various card codes are
set down in this chapter, using the notation described in Chapter 2. When
comparing equations, the three simplifying assumptions of Chapter 2
(repeated here for emphasis) are made.

Assumption 1. The circuit complexity is equal to implement each of the
four Boolean operators:

AND

Inclusive OR

Exclusive OR

IDENTITY lh
t
<
 >

Assumption 2. The circuitry which generates a bit generates the inverse
of a bit with no additional complexity.

Assumption 3. Given two sets of Boolean equations representing two sets

of translation relationships, the relative circuit complexity of implement-
ing the relationships is proportional to the number of Boolean operators
in the equations.

It should be understood that, to implement a hardware translator, bit

code to/from card code, two sets of equations are necessary; the equa-

tions for deriving bit patterns from hole patterns, and the equations for
deriving hole patterns from bit patterns. However, in order to compare
two card codes for relative complexity, one set of equations is sufficient.

272 Decimal ASCII

Accordingly, in this chapter, we set down only the equations for deriving

bit patterns from hole patterns.
At this point it must be stated that the equations for deriving

EBCDIC bit patterns from EBCDIC hole patterns (to be given later) are
not necessarily the actual set of equations used in implementing hardware
translators. The equations for EBCDIC were derived by the author
purely for purposes of illustration and comparison in this chapter. The

Column 0

Hole
Pat.

Hole Patterns:

[7] 9-t-z-8-1 [7] £ [73]. 2-1

[2] 9-T-E-8-1 T-E-Z 9-E-Z-1 Block | Hole Patterns at:
[3] 9-E-2-8-1 [2] T-z [is] T-E 1 3 1 | Top and Left

(4] 9-T-E~z-8-1 E-Z 2 | Bottom and Left

(s] No Pch [ii] 2~8-2 2 4 3 | Top and Right

[e] T fiz] Zz 4 | Bottom and Right
Fig. 16.12 EBCDIC, 1963

16.11 Bendix Prime 273

optimization of Boolean equations is an art. It is quite possible that the
EBCDIC equations given here could be optimized further. However, they
are adequate for the purposes of this chapter.

During the early part of 1963, the author had been evolving the bit
code and card code that came to be called EBCDIC. As described in
Chapter 8, two criteria were of major importance; the embedment of
BCDIC collating sequence in the EBCDIC collating sequence, and up-
ward compatibility of the BCDIC card code to the EBCDIC card code.
These two requirements together resulted in less than optimal simplicity
in the translation relationships, EBCDIC card code to/from bit code. In

consequence, at that time, the EBCDIC card code had not been adopted

in IBM. The EBCDIC bit code and card code then under consideration
are shown in Fig. 16.12.

16.11 BENDIX PRIME

The author had been requested to review a card code provided on some
card equipment by the Bendix Corporation, to see if it might lead to a
card code with simpler translation relationships to EBCDIC. Also, the
“Bendix card code” did not suffer from the defects described above for
binary card codes.

The “Bendix card code,” per se, will not be described in this book.
However, the principle of the Bendix card code is interesting and will be
described. It will be called “Bendix Prime’’ for purposes of reference.

12-row ~

11-row Tier 1

0-row

Tier 2)

1-row

2-row

3-row

7-row

8-row

9-row

Tier 4

4-row —~

5-row Tier 3

6-row

Fig. 16.13 Bendix card

274 Decimal ASCII

There are twelve punching rows in the punched card. In Bendix
Prime, these are grouped in four tiers of three rows each, as shown in
Fig. 16.13.

Within a tier within a card column, only one of the three rows may
be punched, or none may be punched. For example, within a card
column, in the third tier, there are four possible hole patterns; 4-hole,
5-hole, 6-hole, or no holes. There are therefore four possible hole
patterns for each tier, and there are four tiers. Hence, within a card
column, there are 4 x 4 x 4 x 4 = 256 different possible hole patterns.

That is to say, the Bendix Prime card code could be used to represent
256 characters.

One possible Bendix Prime representation is shown in Fig. 16.14.
For convenience, the twelve-, eleven-, and zero-rows are represented by

Fig. 16.14 Bendix Prime

Bendix Prime 275 6.11

E0O=Ev Z

El=Tv Zz

E2=2 v3

B3=1v3

F4=5 v6

E5=4v¥6

E6=8v9

E7=7v9

Fig. 16.15 Bendix Prime equations

Common expressions

A=2v3

R=4y75

C=6v77

D= 9anA8aAl1

F=AvRvC

GH=(TAEAZ)vV(TAEAZ)¥(TAEAZ)v¥(TAEAZ)

G=(TAEAZ)¥(TAEAZ)V¥(TAEAZ)¥(TAEAZ)

J=(TABAGAyv Z)

L=TAEAZA8A2A9

K=(1AFA8ATAZ)AQ=E)

U=1F

Equations

E0 ={(FaA9 ATA AG) v BADE v {Aa F) AO v 8)}

ey{LUNOA8)¥(BAGHEV{QOATAEAZALARYL

EL =f9n8alaARv {Ov Ga{Falvy 8]lv US v (Ga F)

ATOABA I ¥ OABA I)

E2 ={{((Ta BE) v (Ea Za (Ea D) v US v {(F a D)

A{Ea Z)v-(Za 1) A(T = BD}

E3={{TAB)v(TADSaA{FaBbv Div lha8a9)v UP v (Fa DI]

A{(EaZ)v[Ea(Tv Z)}}

B4={FaA[BAUAA Gh v (8 ATA [9v (Ta EAZ}

YIRA(B¥ Rv Cly[2,AGnTAEAZ)M

BE5=RvC

BE6={3v6v 7] v[2ZAQa8aATAEAZRVIDAFATAEAZ

E7=3v75v77Iv{Fa{ia[Bv¥ 8AG)]v[A8~ If}

Fig. 16.16 EBCDIC equations

276 Decimal ASCII

T, E, Z, respectively. The bits of an 8-bit byte are named EO, El,

E2,...,E7, from high to low order.

Using Boolean notation, the translation equations may be derived as

shown in Fig. 16.15. These translation relations for Bendix Prime card

code to/from EBCDIC bit code are considerably less complex than those

for EBCDIC card code to/from EBCDIC bit code, which are shown in

Fig. 16.16.

16.12 EBCDIC PRIME

While the author was reviewing Bendix Prime, it occurred to him that it

would be useful to have some basic card-code-to-bit-code relationship

against which other relationships could be compared for simplicity or

complexity. Such a basic relationship is shown in Fig. 16.17. It is called

Column 0 1 2 3

00

00 01 10 11 a0

Hole

Pat.
Fig. 16.17 EBCDIC Prime

16.13 Comparison of Bendix Prime and EBCDIC Prime 277

=BCDIC Prime for purposes of reference. The letters T, E, and Z are
ised to represent the 12-row, 11-row, and 0-row. The Boolean relations
‘or EBCDIC Prime, card code to bit code, are shown in Fig. 16.18.

It may be noted, then, that Bendix Prime equations and EBCDIC
Prime equations both require 8 Boolean operators.

Common expressions

A=2¥3

B=4¥5

C=6v77

Equations

EO = 9

El = T

E2=E

E3=Z

E4 = 8

E5=BvC

F6=AvC

E7=1v3v5v7

Fig. 16.18 EBCDIC Prime equations

16.13 COMPARISON OF BENDIX PRIME AND EBCDIC PRIME

The possibility of using either Bendix Prime or EBCDIC Prime, or some
version of them, as the card code for ASCII was then considered. Neither

card code manifests the undesirable trait of lacing. In order to arrive at
figures of comparison for the average number of holes per character, we

observe that the figures in Fig. 16.7 were in terms of 64 characters; that

is, we would have to decide which 64 characters of Bendix Prime, or of

EBCDIC Prime, were to be considered. If we want to optimize on the

minimum number of holes per character, for Bendix Prime (Fig. 16.14),

we would select table-columns 0, 1, 2, and 3; and for EBCDIC Prime

(Fig. 16.17), we would select table-columns 0, 1, 2, and 4. For these

selections, the figures for 64 characters are as follows:

Average number of holes per character

Bendix Prime 1.12

EBCDIC Prime 0.98

278 Decimal ASCII

Both Bendix Prime and EBCDIC Prime, for 64 characters, have an

average of far fewer holes per character than do the Binary Representa-

tions (Fig. 16.7).

It is to be noted that Figs. 16.14 and 16.17 do not represent codes

per se; that is, a set of meanings assigned to a set of bit patterns or hole

patterns. Figures 16.14 and 16.17 show a relationship between a set of

hole patterns and a set of bit patterns.

These sets of hole patterns for Bendix Prime and EBCDIC Prime

have interesting characteristics in contrast to the Binary Representations

described above:

1. No card lacing.

2. On the average, fewer holes per character than Binary Representa-
tions.

3. Simple translation relationships, bit patterns to/from hole patterns,
although slightly more complex than the Binary Representations.

16.14 THE PLOMONDON PROPOSAL

Such a card code would seem to be the obvious candidate for the card

code for ASCII. In November 1963, a card code based on the principle of
EBCDIC Prime was proposed for study to the standards committee by

E. E. Plomondon. This card code (although not this actual version) came
to be called Decimal ASCII.

The Plomondon proposals were for a 128-character version and a
256-character version, shown in Figs. 16.19 and 16.20, respectively. It
should be noted that the 256-character proposal is, strictly speaking, not

the one that was actually made. As described in Chapter 20, the al-
gorithm for embedding the 7-bits of ASCII in an 8-bit byte had not

actually been decided at that time by the standards committees. The

algorithm E6 = b7 had been implemented on the System/360.

Ultimately, the standards committees decided for the algorithm

E8& = 0. The actual embedment algorithm does not affect any of the

discussion that follows in this chapter. In consequence, since the E8 = 0

algorithm was the one chosen, the author has used that algorithm in this

chapter, even though the actual proposal at that time assumed the

E6 = b7 algorithm. What is meant by the E8 = 0 algorithm is that the 8

columns of the 7-bit ASCII code table were embedded in the first 8

columns, the high-order bit, EO, is zero; hence the algorithm was

characterized as E8 = 0.

16.14 The Plomondon Proposal 279

Column 0

000

Hole
Pat.

Hole Patterns:

[7] z81 T

[2] 81 E
(3) No Pch [2] 9281

[4] z 981

[s] 12

[e} Ez

Fig. 16.19 Decimal ASCII-128, Plomondon proposal

280 Decimal ASCII

Hole

Pat.
Hole Patterns:

[4] z81 T [i3} T81 QTEZ

[z] 81 E E81 OTE Block | Hole Patterns at:

[3] No Pch [9] TEz81 ffs) Tz81 1 | Top and Left

[4] z TE81 EZ81 1 2

{s] 12 [uu] TEZ [7] 9281 2 | Top and Right
[e} Ez fiz} TE 981

Fig. 16.20 Decimal ASCII-256, Plomondon proposal

16.15 Decimal ASCII, Versions 1 and 2 281

16.15 DECIMAL ASCII, VERSIONS 1 AND 2

It was pointed out, in connection with these proposals, that the 9-punch

was functioning as a zone punch. In the 128-character proposals, the 9 as
a zone punch was assigned to columns 0 and 1 of the code table; that is,

to control characters. And this was cited as desirable with respect to
circuitry in terminals where a clear differentiability between control
characters and graphic characters would be desirable.

Column 0 1 2 3 4 5 6 7

000; 601,010] 011/100{101

Pat.
Hole Pattarns:

[2]
[3] No Pch

[4] z

{s]

Fig. 16.21 Decimal ASCII-128, Version 1

282 Decimal ASCII

Another member of the standards committee (Task Group X3.2.3)

suggested that it seemed preferable to use the 9-punch, when used as a

zone punch, to differentiate between the E8 = 0 and E8 = 1 halves of the

8-bit code table, as shown in Fig. 16.22. If a distinguishing punch (or

punches) was desirable for control characters, then the 12-11 combina-

tion could serve as well as the 9 proposed by Plomondon. This suggestion

Hole

Pat.
Hole Patterns:

oH [a 781
2] E81 Block | Hole Patterns at:

[3] No Pch [9] TEZ81 [is] 1281 1 | Top and Left

[4] z TES81 EZ81 1 2

[5] [1] 281 2 | Top and Right

Es) [i] 81
Fig. 16.22 Decimal ASCII-256, Version 2

16.16 The Null/Space/Blank Probiem (again) 283

seemed good, and was accepted by the standards committee. The result

was Version 1, 128 characters (Fig. 16.21) and Version 2, 256 characters

(Fig. 16.22).
Versions 1 and 2 were superior to the initial Plomondon proposal in

one respect. The translation equations (which are shown later in this
chapter), card code to/from bit code, are less complex.

16.16 THE NULL/SPACE/BLANK PROBLEM (AGAIN)

For Version 1, as for the IBM 128-character proposal, the No punches
hole pattern was assigned to code position 2/0 (the Space character), and
the Zero hole pattern was assigned to code position 3/0 (the zero
character). (This is a reflection of the Null/Blank/Zero Problem referred

to previously in this chapter.) In the Plomondon proposal and in Versions
1 and 2 the assignment of No punches to Space was made. This later
became a matter of contention in the standards committee because, if No

punches had been assigned instead to code position 3/0, and if Zero
punch had been assigned instead to code position 2/0, the translation
relationships, card code to/from bit code, would have been simpler. And
simplicity of translation relationships was desirable. The assignment,
however, was ultimately accepted by the committee.

It should be borne in mind that, at the time Decimal ASCII was

proposed, there were two contenders for standardization—a Binary Rep-
resentation of one kind or another and Hollerith Representation.

The following comparison of the merits of Decimal ASCII and of
Binary Representation shows clearly that Decimal ASCH suffered from

none of the defects previously described for the Binary Representations,

and enjoyed a reasonably simple translation relationship, to/from ASCII.
If

A = complexity of translation, Binary card code to/from ASCII bit code,

and if

B = complexity of translation, Decimal ASCII card code to/from ASCII

bit code.

and if

C = complexity of translation. Hollerith card code to/from ASCII bit

code,

then
A<B<C,

And in fact, A and B are very much less than C.

284 Decimal ASCII

Technically, then, Decimal ASCII appeared to the standards com-
mittee as superior to Binary Representations. Indeed, the standards com-

mittee soon dropped Binary Representations from further consideration.

(Recall that the Null/Blank/Zero Problem and the Plus and Minus Zero

Problem were previously stated not to have been resolved for Binary
Representations. The reason, of course, is because the Binary Represen-
tation card codes were themselves dropped from further consideration.)

16.17 EUROPEAN CARD CODES

There was another important point in favor of Decimal ASCII. In
Europe, three manufacturers of punched card equipment, IBM, ICT

(now ICL), and Bull, employed card codes in their equipment radically
different one from another (see Fig. 16.23). In the European standards

committee responsible for codes, ECMA/TC1, card code standardization

was at an impasse.
Each of the three manufacturers advocated his own code as a

candidate for standardization. More significantly, if the punched card code

of one manufacturer was accepted for standardization, then that manufac-
turer could enjoy an advantage in the market place. The other members

of ECMA/TC1 felt that, until the three punched card manufacturers

came into agreement on some proposal, it was useless to try to arrive at a
consensus on a standard card code.

These European card codes deserve comment. Their common area of
agreement is the original Hollerith numerics. The card codes used by
IBM and by ICT also agreed on alphabetics. But the method of extending
the repertoire of hole patterns beyond this point was different. For the
IBM card code, the extension was achieved by using the 8-punch as a
zone punch. As has been described elsewhere in this book, this had the
merit of preserving the BCD characteristic of the code. By contrast, the
ICT card code was extended by using the 1-punch as a zone punch.

And for the Bull code, to extend the repertoire of hole patterns
beyond the numerics, the 7-, 8-, and 9-punches were used as zone
punches. This undoubtedly had to do with the method of feeding a card
through a card reader. If a card is fed 12-edge first (IBM), then punches

toward that edge of the card (12, 11, 0) serve best as zone punches. But if

the card is fed 9-edge first (ICT), then punches toward that edge of the
card (7, 8, 9) serve best as zone punches.

Not long after E. Plomondon proposed Decimal ASCII to X3.2.3,
W. F. Bohn proposed it to ECMA/TCI1. It was perceived that Decimal
ASCII was not implemented on any equipment. In consequence, all three

16.18 The Plus and Minus Zero Problem (again) 285

IcT BULL

NEW HOLLERITH 300 SERIES
Fig. 16.23 European card codes

manufacturers could begin to design and develop Decimal ASCII card
equipment from an equal start. Decimal ASCII was seen by ECMA/TC1
as a proposal which would remove the impasse, and Decimal ASCII was
accepted. Decimal ASCII was now accepted in principle both by
ECMA/TCI and by ASA X3.2.

16.18 THE PLUS AND MINUS ZERO PROBLEM (AGAIN)

The Plus and Minus Zero Problem now arose to plague the committees.
It will be observed in the original Plomondon proposals (Figs. 16.19 and

286 Decimal ASCII

16.20) that, although the general translation relationship for the code
table would have prescribed T, E, TZ, and EZ for code positions 4/0, 5/0
6/0, and 7/0, respectively, hole patterns TZ, EZ, T, and E, respectively,

were assigned instead.
It will further be observed that in the Decimal ASCII Version 1

proposals (Figs. 16.21 and 16.22) these translation exceptions were
removed. What was behind this?

The intent behind the Plomondon proposals was to provide the
overpunched numeric capability in Decimal ASCII. Hole patterns T1
through T9 are assigned to code table positions 4/1 through 4/9, and E1
through E9 to 5/1 through 5/9. Assuming that the overpunched numeric
convention prevalent with Hollerith punched card applications would be
continued by users in Decimal ASCII punched card applications, it would
be necessary also to provide for plus zero and for minus zero. And the TZ
hole pattern must correspond to the same ASCII bit code table column as
T1 through T9, and the EZ hole pattern must correspond to the same
table column as El through E9. This would displace, in the 0-row of the
code table, T and E, which would be moved to code positions 6/0 and

7/0.
These four translation exceptions were the solution to the Plus and

Minus Problem in the Plomondon proposals. But they were not provided

in the Decimal ASCII Version 1 Proposals. Why not?
They were not provided precisely because they were translation

exceptions. For those members of the standards committees who felt that
translation simplicity was the primary criterion, it had been hard to accept
the two previously mentioned translation exceptions to solve the
Null/Blank/Zero Problem. And these members would not accept four
more translation exceptions, as proposed by IBM to resolve the Plus and
Minus Zero Problem.

16.19 DECIMAL ASCII, VERSIONS 3 AND 4

Representatives to the standards committee did urge the solution of the

Plus and Minus Zero Problem, and submitted proposals incorporating the

solutions, Decimal ASCII Version 3 (128 characters) and Version 4 (256

characters), as shown in Figs. 16.24 and 16.25, respectively.

The arguments for Versions 1 and 2 versus Versions 3 and 4 then
centered on the relative importance of translation simplicity versus provi-

sion for Plus and Minus Zero.

16.19 Decimal ASCII, Versions 3 and 4 287

Column

Hole
Pat.

Hole Patterns:

(2) T
2] E
[3] No Pch

{a} z

TZ

[es] Ez

Fig. 16.24 Decimal ASCII-128, Version 3

288 Decimal ASCII

Column 0 1 2 3 4

00

00 o1 10 11 00

T T T

E

Hole

Pat.
Hole Patterns:

[t] T [13] T81

{2] E E81 Block | Hole Patterns at:

[3] No Pch [2] tTEz81 [is] 1281 1 | Top and Left

[4] z TE81 EZ81 l 2

[3] TZ fi] 281 2 | Top and Right

[e] Ez [v2] 81
Fig. 16.25 Decimal ASCII-256, Version 4

16.20 DECIMAL ASCII PRIME

In order to assess the relative translation complexity/simplicity of Ver-
sions 1 and 2 versus Versions 3 and 4, Boolean equations are derived. To

have a base against which comparisons can be made, Decimal ASCII,

16.20 Decimal ASCII Prime 289

Columa Q 1 2 3 4 5 6 7

000) 001] 010} 011] 100] 707 | 110 | 71171

Hole
Pat.

Hole Patterns:

G]
@]
G]
(4)
(3)

[e]

Fig. 16.26 Decimal ASCII-128, Prime

Prime (128 characters) and Decimal ASCII, Prime (256 characters) are

shown in Figs. 16.26 and 16.27, respectively. There are no translation

exceptions in these latter two card codes, neither the exceptions to solve

the Null/Blank/Zero Problem nor the exceptions to solve the Plus and

Minus Zero Problem.

290 Decimal ASCII

Hole

Pat.
Hole Patterns:

Block | Hole Patterns at:

1 Top and Left

ll
 E
E
)

2 Top and Right

B
E
E

E
E
L
 G)

[2]
[3]
[4]
(3]
[s]

Fig. 16.27 Decimal ASCII-256, Prime

16.21 TRANSLATION EQUATIONS

The translation equations for Decimal ASCII Prime, the original Plomon-
don proposal, Versions 1 and 2, and Versions 3 and 4, for both 128

characters and 256 characters are set down in Figs. 16.28 through 16.35.

16.21 Translation Equations 291

Using the three simplifying assumptions previously noted, Boolean
operators are counted for these equations. The results are summarized in
Fig. 16.36. Results for EBCDIC are also shown for purposes of
comparison.

Common expressions

A=2¥3 F=AvJIvC

J=4y¥5 H=TvE

C=6v7 P=QOAD¥ [FAR AO¥ 1]

Equations

A7=H»”P

A6=[((TA EB) v (Ha Z)]AP

AS ={(T a Z) ¥ [((T¥ Z) a E}}a P

AZ4=TALOA8 AQABA PF]
A3=Jv Cc

A2=Av¥C

AL=B75v77)¥ [BAO ¥ 1)]

Fig. 16.28 Decimal ASCH-128, Prime

Common expressions

A=2¥3 K=TveE

J=4¥%5 R=9A(8=1)AF

C=6¥7 U=1AF

F=AvJIvC W=FvU

Equations

AS =[AAPF)AOv8)] ¥ ada (8v FP]

A7 = K”aW

A6=[((TA BE) v (Ka Z)]AW

A5 = {Ta Z) v [((Tv Z) a E} a W

A4=(8A1)vR

A38 =JvC

A2=A¥C

A1l=[B v5 7] v {Fa {8a 1 v 9) v {1 a OFF

Fig. 16.29 Decimal ASCII-256, Prime

Common expressions

A=2¥3 P=(Q9A

J=4¥%5 S=FAD

C=6¥77 U=1AF

D=9A8a1 K=TaAE

F=AvJIvC X=Kv(9~AH)

H=TveE

Equations

A7=HaAP

A6 =[K¥ (HA Z)ACFAD AB DI¥ OAB8a I} vy (FA 9}

v {KK v (H A Z)] A S}

AS ={KA{(Z =D)a Flv (Za UP v {TA E~ P}

A4=(KA9OA8) ¥ (TAB) ATA[(On 8) ¥ OA8A FI]

A3 =X A(KvC)

A2=Xa(AvC)

AL ={X a[1a8v Bv5v 7)

¥f9OARAAA8a Kv (Aa8a(Ta B)}

Fig. 16.30 Decimal ASCII-128, Plomondon Proposal

Common expressions

A=2¥3 N = [9 v 8) a 1] ¥ Oa 8)

J=4+¥75 R=9A(8=1)AF

C=6¥7 U=1AF

F=ArvJIvC W=FvU

K=TveE D=9A8al

L=[9¥v 8)a 1] v Oa 8)

Equations

A8 =(TAEAW) ¥{Ka[(Fa L) ¥ 9a UD}

A7T=K”aAW

A6 ={KA[(FAN)¥ Oa UD} v (Ka {LF a (Z¥ D)] ¥ (Za UB

AS =(TAB)A (Fa (Z =D) ¥ [ZA U} v {Ea (TAZ) AW

A4=(8A1)vR

A3=JI¥C

A2=AvC

Al =[Bv5v7)v¥ R]v¥ BALAF)

Fig. 16.31 Decimal ASCII-256, Plomondon Proposal

7a0a9

16.21 Translation Equations 293

Common expressions

A=2v¥3 Q=9al

J=4¥%5 B=(FA8A90v1)

C=6v7 P=QvB

F=AvJv¥C G=[Oa(Fv8)|vB

H=TvE S=FA9A8A1

Equations

A7 =HaP

A6=[(Ta BE) v (Ha Z)] AP

AS5={((TaA Z)v (Ea Z)aSbv (Ta Z) v (Tv Z) a Ea GS

A4=1A[OA8)AQ0A 8a FI]

A3=JvC

A2Q=AvC

Al=B375¥7)¥[8BA(9 ¥ 1)]

Fig. 16.32 Decimal ASCII-128, Version 1

Common expressions

A=2¥3 R=9A8=1AF

J=4¥%5 U=1AF

C=6v7 W=FvU

F=AvJIvC K=TveE

D=9A8a1

Equations

A8=[L1A PF) AGOv8]¥ Mada bv PJ

A7=K”AW

A6=[(TA EB) ¥ (KA Z)] AW

AS =[EA(TAZ) A(Fv Uv {TAB} a {Fa (Z=D)]v (ZA UD}

A4=(8A1)¥R

A3=JvC

A2=AvC

AL=Bv5v 7] v {FA (8a 1 v OR v {10 9}

Fig. 16.33 Decimal ASCII-256, Version 2

294 Decimal ASCII

Common Expressions

A=2¥3

J=4y¥5

C=6v¥7

F=AvJ¥C

H=TveE

Equations

AT=HaP

Q=9al

B=(FA8)aA(Q9 v1)

P=QvB

G=[QaA(Fv8)|v B

S=FA9A8AI

AGB =(TAE AP) v{Hal((Za S) v (ZA GJ}

AS ={(TAZ) v (Ea Za Sbv (Ta Z)v (Tv Za Ea G

A4=TaAl[Oa 8a 9a 8a F)]

AZ =JIvC

A2=AvC

Al=B3 7577) ¥[BAQO¥ 1]

Fig. 16.34 Decimal ASCII-128, Version 3

Common expressions

A=2¥3

J=4yv¥5

C=6¥77

F=AvJIvC

D=9aA8al

Equations

R=9A(8=1)AF

U=1aAF

W=FvU

H=TvE

A8=[{A1aAPF)aA Ov] v[La9a Bv FP]

AT=KAW

A6=(TAE AW) v¥{KAZa Ul] v[Fa(Zv D)}}

AS =[EA(TAZ)A(F¥ Uv {TA BJ a[Fa(Z=D)]v (Za UD}

A4=(8al)vR

A3=JIvC

A2=AvC

Al =[3Bv5v7 7] v {Faia v Dv {1 a 9H

Fig. 16.35 Decimal ASCII-256, Version 4

16.22 Anomaly of Boolean Equations 295

Common

Proposal Size _ | expressions | Equations} Total

Prime 128 11 22 32

256 11 29 40

Plomondon 128 18 52 70

Proposal 256 21 38 59

Version 1 128 17 27 44

Version 2 256 13 35 48

Version 3 128 17 30 47

Version 4 256 13 39 52

EBCDIC 256 43 110 153

Fig. 16.36 Counts of Boolean operators

16.22 ANOMALY OF BOOLEAN EQUATIONS

Before discussing the comparative complexities, what seems to be an
anomaly should be explained. For the Plomondon proposals, for Versions
L and 2, and for Versions 3 and 4, the count of Boolean operators for the

256-character version is less than the count for the 128-character version,

whereas the opposite might have been expected. One aspect of the
optimization of Boolean expressions is that very often the more terms
‘there are initially, the more combinations and condensations will result.

And there are more terms initially in the 256-character cases than in the
128-character cases.

In the routine work of simplifying Boolean expressions, it is quite
valid to

a) treat A A B as AB,

b) treat Av Bas A+ B,

c) manipulate the Boolean variables as if they were algebraic variables
with algebraic operations.

Thus A v (B A C) can be treated as if it were A + BC.

Example

[n the derivation of Version 1 and Version 2, certain terms are found in

conjunction with T E Z and TE Z.

296 Decimal ASCII

Version 1

(TEZ + TEZ)(F981 + F981 + F981 + F981 + F981 + F981)

= (T + T)EZ[F(981 + 981 + 981 + 981) + F(981 + 981)]

= EZ[(F + F)(981 + 981) + F(981 + 981)]

= EZ[(9 + 9)81 + F9(81 + 81)]

= EZ[81 + FO(8 + 1)]

=(ENZ)A(8a Iv (FAI aABbv DI

to put it back into Boolean form.

Version 2

(TEZ + TEZ)(F981 + FO81 + F081 + FO8T + FO81 + FORT
+ F981 + F981 + F981 + F981 + F981 + F981)

Inspection reveals that of the 16 possible terms involving F, 9, 8, 1, four

are absent:

F981 + F981 + F981 + F981

We have

(T + T)EZ(F981 + F981 + F981 + F981)

= EZ[F1(98 + 98 + 98 + 98)]

= EZ(F1)

= (E ~ Z) a (FA 1) to put it back into Boolean form.

We see therefore that, although we started with more terms in Version 2

than in Version 1, after combination and condensation, this part of

Version 2 requires only three Boolean operators, whereas Version 1

requires six.
It is clear that Versions 1, 2, 3, and 4 are less complex than the

initial Plomondon proposals, and therefore preferable.
The increments from Decimal ASCII Prime are revealing:

128 Characters 256 Characters

Prime 32 | Prime 40

Version 1 44 | Version 2 48

Version 3 47 | Version 4 52

For the 128-character versions, the perturbation from Prime to solve the

Null/Blank/Zero Problem, an increment of 12, was greater than the

16.23 Sic Transit Gloria Decimal ASCII 297

perturbation to solve the Plus and Minus Zero Problem, an increment of

4. For the 256-character versions, the perturbation to solve the

Null/Blank/Zero Problem was an increment of 7, while the perturbation

to solve the Plus and Minus Zero Problem was an increment of 5. And, of

course, compared to EBCDIC with a Boolean count of 153, these
increments were really negligible. .

However, the positions on the standards committees hardened; the

issue being between minimum complexity versus provision for Plus and

Minus Zero.

Plus and minus zero proponents. The increase in complexity to provide
for Plus and Minus Zero is very small.

Minimum complexity proponents. Since positive and negative numeric
fields on punched cards can be provided in other ways than overpunching

(namely, carry the algebraic sign in a separate card column), no increase
in complexity is justified, however small.

Technical issues on standards committees are resolved by the demo-
cratic process of a majority vote. In this case, the minimum-complexity
group had more votes, and Version 1 and 2 became the draft American
National Standard. Version 1 became an approved ECMA Standard.

16.23 SIC TRANSIT GLORIA DECIMAL ASCII

As the draft American National Standard moved through the various
committee levels, users became very concerned. As they saw it, the
consequences of Decimal ASCII becoming an approved American Na-
tional Standard were that

existing card files would have to be converted to the new card code;

s §€existing card equipment would have to be modified or replaced with

new Decimal ASCII card equipment.

These two consequences would be immensely costly to users and they
rose in opposition. IBM felt it must support its customers in this matter,
reversed its position, and also came out in opposition.

At the X3 level, Decimal ASCII failed to obtain a majority, and was
deemed to have failed. Ultimately, the ECMA Standard was withdrawn.

The standards committee turned back to a consideration of the Hollerith
card code, as will be related in Chapters 17, 18, and 20.

17
Which
Hollerith?

\s described in Chapter 16, the Decimal ASCII Card Code was proposed
or study at the end of 1963 to ASA Subcommittee X3.2 (now ANSI
¢3L2). It was initially very successful in the standards committees, but
echnical controversies arose which delayed its final acceptance. In April
964, opposition to the draft standard arose in Subcommittee because of
ts substantial incompatibility with the Hollerith card code in common
ise. Support for a standard based on the Hollerith card code increased,
nd in September 1964, Subcommittee X3L2 voted to prepare a draft

American Standard Hollerith card code.

While it is correct to say that “the” Hollerith card code was in
‘common use, in fact there were many versions in actual use, versions

lifferent between different manufacturer’s equipment, and even different

rersions on different equipments of the same manufacturers. Which

tollerith card code to incorporate into the draft American Standard

yecame the question which vexed Subcommittee X3.2. It took four years

ind many proposals, submitted by members of Subcommittee X3.2, to

‘esolve this question. .

Since there were many versions in common use, it was clear that the

inal ‘“‘standard”’ version, whatever it was, would necessarily be different

rom most versions in common use, very possibly different from all of

hem. It was realized, therefore, that the final standard version would

mply economic impact both to users and manufacturers of punched card
squipment. One or another of three economic principles was considered
»y the members of the standards committee:

1. To minimize the impact across all users and manufacturers.

2. To equalize the impact between all users and manufacturers.

299

300 Which Hollerith?

3. To minimize the impact on the users of equipment of a particular
manufacturer.

It was clear to the standards committee that no single solution could

satisfy all principles.
It should be realized that these economic principles, although they

undoubtedly influenced the judgments of individual members, were not a

subject of discussion at the meetings of the committee. Technical factors
were the subject of discussion.

17.1 TECHNICAL CRITERIA

During the earlier committee discussions on candidate card code stan-
dards, which considered various binary representations as well as versions
of Hollerith, technical criteria emerged and were formalized by the
committee. Since some of these criteria were conflicting, no candidate
card code could satisfy all of them. The criteria that are grouped below
accordingly as Binary Representation, Decimal ASCU, or Hollerith did
or did not satisfy the criteria. The word ‘“Hollerith,” in the discussion
below, is used generically, and covers any or all versions of Hollerith then

is use.

17.1.1 Satisfied by Binary Representation, Decimal ASCII,

and Hollerith

Criterion 1. The code should represent the full ASCII character set.
(Note: Some of the Hollerith proposals put before the standards commit-

tee did not, in fact, satisfy this criterion.)

Criterion 2. The code should provide for logical and orderly expansion

to larger sets.

Comment. Eventually the standards committee realized that until “logical
and orderly expansion” was defined, this criterion was not useful. It was

claimed for all candidates that they did satisfy this criterion, but they

clearly satisfied it in different ways, and according to some particular
interpretation of the criterion.

Criterion 3. The code should not decrease the present character storage
capacity of the card.

Comment. In fact, no candidate was proposed which violated this criter-
ion. This criterion was a carryover from codes for other kinds of media,

where what were called shifted or precedence codes required more than
one consecutive bit pattern per character. Such a code would decrease the
character storage capacity of a card, but none such were proposed.

17.1 Technical Criteria 301

This criterion would have ruled out the UNIVAC card code which
had 45 card columns, but actually two tiers per card column, giving a card
capacity of 90 characters. However, this code was a six-row code, and
could accommodate a maximum of 64 characters. To extend it to 128
characters (for ASCII) would have resulted in a twelve-row code, but

then it would have a capacity of only 45 characters per card.

Criterion 4. No more than one card column should be used to represent

one character.

Comment. This was a criterion intended to rule out shifted or precedence
codes.

Criterion 5. Character representation should be independent of card
column locations.

Comment. All proposals satisfied this criterion.

Criterion 6. All hole patterns in the set should require the same number
of punchable positions.

Comment. Again, this was a criterion intended to rule out a shifted or
precedence code.

Criterion 7. The code must be capable of being implemented in the
standard card.

Comment. The “standard card” was (nominally) 3% inches by 73 inches. A
standards proposal at that time under study by a different standards
committee implied a card of 33 inches by 83 inches, a size which would
not have satisfied this criterion.

17.1.2 Satisfied by Decimal ASCII and Hollerith;

' Not Satisfied by Binary Representation

Criterion 8. The code, when punched in a card, should not appreciably

weaken the card; that is, the code should cause a minimum number of

holes to be punched. Another way of stating. this is that the code should
be designed for

a) minimum hole density per unit area of the card,

b) minimum hole density per column, and

c) minimum hole density per row.

Comment. This is a relative criterion, not an absolute criterion. That is to
say, it is always possible to consider two candidate card codes and decide
which satisfies the criterion better. For example, Decimal ASCII and

Hollerith certainly satisfy it better than a Binary Representation. As is

302 Which Hollerith ?

discussed in Chapter 16, the Modified Binary Representation satisfied it

better than the Direct Binary Representation, with respect to the special,

numeric, and alphabetic characters in columns 2, 3, 4, and 5 of ASCII.

Criterion 9. The code should be capable of being used with existing
equipment.

Comment. “Existing equipment,” of course, accommodated the Hollerith
card code. The set of 64 hole patterns assigned to columns 2, 3, 4, and 5

of ASCII (the so-called graphic subset) for Decimal ASCII were the same
set of hole patterns accommodated by much punched card equipment of

the time, albeit with different graphic meanings. Thus if care was exer-
cised within a punched card application to bear in mind the differently

mapped graphic meanings of Decimal ASCII and Hollerith, it was

contended that Decimal ASCII could ‘use’? some of the punched card

equipment of the time.

Criterion 10. The codes for the numerics should be readily sight

readable.

The phrase “readily sight readable” in the above criterion is an

example of jargon, with a well-understood meaning to members of the

X3.2 Subcommittee. The phrase “‘sight readable” conveys the meaning of

readability by human beings, as contrasted with readability by

input/output card readers. The adverb ‘“‘readily” conveys a qualification,

as covered in the two examples below:

Example 1

The hole patterns assigned to numerics in the Decimal ASCII card code
were the same as those in the Hollerith card code; that is, punches in card

rows 0, 1, 2,...,9 for numerics 0, 1, 2,...,9. These would be held to be

“readily sight readable”’.

Example 2

The hole patterns for numerics in the Direct Binary Representation card

code were as follows:

Numeric Hole Pattern

0 No punches

1 1

2 2

3 2-1

4 3

5 3-1

6 3-2

7 3-2-1

8 4

9 4-1

7.1 Technical Criteria 303

‘hese hole patterns, while certainly “sight readable,” would require

ither training or mental calculation on the part of the human to associate

yem with the numerics, so they were held not to be “readily” sight

eadable.

7.1.3 Satisfied by Decimal ASCII and Binary Representation;

Not Satisfied by Hollerith

‘riterion 11. The code should require minimum translation to and from

\SCII.

“omment. This also was a relative criterion, not an absolute criterion.

“he essential design feature of Decimal ASCII was minimum translation

o/from ASCII, but in the sense of being less than the translation of

{ollerith to/from ASCII. Clearly the Direct Binary Representation would

equire even less translation than Decimal ASCII to/from ASCII.

17.1.4 Satisfied by Binary Representation;

Not Satisfied by Decimal ASCII or Hollerith

Sviterion 12. The code should provide for error detection (parity).

Comment. In the concept of the Direct Binary Representation where bits

| through 7 of ASCII would be punched in card-rows 1 through 7 of the

card, card-rows 12, 11, 0, 8, and 9 would then be available, if needed, for

yarity-row schemes. With Decimal ASCII and Hollerith, since all 12 card

‘ows of the card are required for hole patterns of the code, no card rows

are available for parity schemes.

17.1.5 Satisfied by Hollerith;
Not Satisfied by Decimal ASCII or Binary Representation

Criterion 13. The code should be compatible with the common existing

standard domestic code (Hollerith).

Criterion 14. The code should be such as to require the minimum

1umber of passes in mechanical sorting.

Comment. By “‘mechanical sorting” was meant the mechanical sorters of

the day without logic circuitry. Schemes were devised, involving multiple

passes per card column, to sort Decimcal ASCII and to sort Binary

Representation, but such schemes would clearly require more than the

minimum number of passes required by Hollerith.

Criterion 15. The code should be compatible with international card

standards.

Comment. This criterion was not really applicable because, at the time,

there were no international card standards.

304 Which Hollerith?

Criterion 16. The code should preserve the logical arrangement of the
ASCII columns.

Comment. The standards committee was never able to agree what, if

anything, this criterion meant.

The 16 criteria above, while meaningful in inter-code discussions on
Hollerith, Decimal ASCII, and Binary Representation, were of no use in
trying to decide “which Hollerith?’” A survey conducted in November
1964 of various card equipments provided by eight manufacturers (Bur-

roughs, CDC, GE, Honeywell, IBM, NCR, RCA, and UNIVAC) showed

there was complete unanimity on the hole patterns for the alphabetics,

numerics, the Space character, and six specials . , * / — $ but, for other

special graphics, there were 21 versions of Hollerith, different to a greater

or lesser degree.

The time frame in which the Hollerith discussion began and con-

tinued is significant. In April 1964, the IBM System/360 computing

systems were announced, with an 8-bit architecture. Up to that time,

computing systems had prevailingly been of 6-bit (or homomorphically

6-bit) architecture. Card-code sets that had consisted of up to 64 charac-
ters would need to be extended to 128 characters for ASCII, and had

been extended to 256 characters by the System/360’s code, EBCDIC.
As well as the problem of different versions of Hollerith, there was

also the problem that there were no “common existing standard Hollerith
codes” (Criterion 13) for the control characters of ASCII, and for the

lower-case alphabetic characters of ASCII. Indeed, ASCII as then pub-

lished (ASA X3.4-1963) did not have the lower-case alphabetics assigned

to columns 6 and 7, and many of the control characters were not defined

specifically.
However, when the first proposed American Standard Hollerith

Representation of ASCII was drafted in September 1964, ASA Subcom-
mittee X3.2 had agreed internally on specific definitions for all 32 control
characters of ASCII, and had assigned the lower-case alphabetics and five
special graphics to columns 6 and 7 of ASCII.

17.2 PROBLEMS OF DECISION

At this time, or before final approval in 1968, there were eight problems
(apart from the many extant versions of Hollerith) that made consensus

on “which Hollerith?” difficult.

Problem 1

No commonly used card hole patterns for lower-case alphabetics (al-
though assignments had been made in EBCDIC for the System/360).

7.2 Problems of Decision 305

’roblem 2

Jo commonly used card hole patterns for the control characters of ASCII

although about half of these control characters had been assigned in

4BCDIC).

7roblem 3

[wo special graphics, @ (Commercial At) and , (Grave Accent) seesawed

yack and forth between code positions 4/0 and 6/0 of ASCII at successive

neetings of ISO/TC97/SC2. A hole pattern for Commercial At was in

‘common use. The question was whether this hole pattern should be

issigned to code position 4/0 or 6/0.

Problem 4

Graphics for code positions 5/12, 7/12, and 7/14 changed and inter-

hanged. While none of the various graphics had commonly used card

10le patterns, two of them were assigned in EBCDIC.

Problem 5

There was a continuing debate on whether the final Hollerith card code

and the EBCDIC card code should or should not be compatible. This was

complicated by the fact that ASCII had graphics not in EBCDIC, and

EBCDIC had graphics not in ASCII.

Problem 6

Two graphics, — (Logical NOT) and | (Logical OR), were in and out of

ASCII, and in different code positions of ASCII, at different times

between 1963 and 1967. Both these graphics had assigned hole patterns

in EBCDIC.

Problem 7

Code position 1/10 at the inception of the Hollerith debate was SS (Start
of Special), but was subsequently changed to SUB (Substitute). This was
really an administrative problem, not a code problem, but it did lead to

different looking code charts.

Problem 8

As described in Chapters 4, and 9, the so-called A- and H- duals were

broadly implemented in different punched card equipment as shown

below:

Hole pattern 8-4 8-3 12 12-8-2 0-8-4

A-graphic @ ff & Hf %
 H-graphic ' = +) (

306 Which Hollerith?

In EBCDIC, the decision had been made to provide unique bit patterns
and hole patterns for all ten of these graphics, and to replace the
(lozenge) with the < (less than), as follows:

Graphic Hole pattern

@ 8-4
8-3

& 12

< 12-8-4

% 0-8-4

‘ 8-5

= 8-6

+ 12-8-6

) 11-8-5

(12-8-5

That is to say, the A-graphics (but replacing 4 with <) were assigned

their existing hole patterns, but the H-graphics were assigned new hole

patterns. On the standards committee, the same question arose:

Should the A-graphics retain existing hole patterns and the H-
graphics receive new hole patterns, or should the H-graphics retain
existing hole patterns and the A-graphics receive new hole patterns?

On the standards committee, there were protagonists for the former, and

protagonists for the latter. Problem 1 was soon resolved (hole patterns for
lower-case alphabetics), but the other problems were resolved only after
many discussions and ballots, and were the source of many different

proposals for a standard Hollerith card code.

Resolution of Problem 1. In deciding on hole patterns for the lower-
case alphabetics, two principles were applied:

A) Each lower-case alphabetic hole pattern should bear some logical

relationship to the corresponding upper-class alphabetic hole pattern.

B) The number of holes in lower-case alphabetic hole patterns should

be minimum.

17.2 Problems of Decision 307

The obvious way to apply Principle A was to include the hole pattern for
the upper-case alphabetic in the hole pattern for the lower-case alphabe-

tic, and then to distinguish between them by adding a zone punch.
Indeed, there is no other solution than the addition of a zone punch

either 0, 11, or 12. In the full set of 256 hole patterns, both the 8-punch
and 9-punch act as zone punches in some hole patterns. But neither they
nor indeed any numeric punch 1 through 9 could act as zone punches for
the alphabetics, since they act as digit punches for the alphabetics.
Ideally, it would be nice if the additional zone punch could be the same
additional zone punch forall letters. But this was not possible. We know

that

upper-case alphabetics A to I had zone punch 12,

upper-case alphabetics J to R had zone punch 11,

upper-case alphabetics S to Z had zone punch 0.

Available as new zone-punch hole patterns were 12-0, 12-11, 11-0, and

12-11-0. There were four possible hole patterns, from which three had to
be chosen. No choice of three would satisfy the ideal condition.

However, Principle B clearly implied that the three choices should be
12-0, 12-11, 11-0, and not 12-11-0. The possible choices were

a toi 12-11 or 12-0,

jtor 11-0 or 12-11,

s to Zz 12-0 or 11-0.

Between these two sets of choices, the actual choice appeared to be quite

arbitrary—with no technical reasons for or against either choice.

It was observed on the standards committee that the same choice

must have been available when designing the card code for EBCDIC. The

choice for EBCDIC had had to be made, and it was made, admittedly

arbitrarily, for

a toi 12-0,

jtor 12-11,

s to z 11-0.

The standards committee decided that, since there was no technical

reason against this choice for the Hollerith card code, there was no reason

not to accept the same decision that had been made for EBCDIC. The
decision was so made by the committee.

308 Which Hollerith?

17.3. PROPOSALS

During the deliberations of the committee, seventeen proposals were
submitted by various committee members. These proposals were submit-
ted in the form of committee documents.

Proposal 1

On September 11, 1964, the first Proposed American Standard Hollerith
Representation of ASCII was drafted (document X3.2.3/53). It specified

hole patterns for all 128 characters* (see Fig. 17.1). What solutions did

this proposal provide for the eight problems?

Lower-case alphabetics

Hole patterns matched EBCDIC hole patterns, as previously described.
(This problem will not be referred to subsequently in this chapter.)

Control characters

The draft standard says

The de facto Hollerith had not contained the ASCII control charac-

ters. Since new hole patterns had to be devised for all characters in
ASCII columns 0 and 1, the hole patterns for these two columns

were developed with a logical relationship to the ASCII Code.

Examination of the hole patterns for columns 0 and 1 shows this to
be true:

i) Zone-punches 9-12 apply to all of column 0.

ii) Zone-punches 9-11 apply to all of column 1.

iii) With the exception of row 0 of columns 0 and 1, all digit-punch hole
patterns translate to the ASCII low-order four bits on a precise and

exact BCD basis.

There was a little problem for row 0 of columns 0 and 1. The “‘logical’’

hole patterns to correspond to part (iii) above would have been 9-12 and

9-11. But these hole patterns were already preempted for graphics I and
R. As is observed in other sections of this book, this kind of preemption
(for example 0-9, 12-0-9, 12-11-9, 11-0-9 are also preempted) led to the

* For a reason that will be given later, some subsequent Hollerith proposals
specified fewer than 128 hole patterns. One, for example, specified only 43 hole
patterns!

17.3 Proposals 309

b7| 0 9 0 0 1 1 1 1

b6 0 i) 1 1 0 0 1 1
b5 0 1 0 1{. Oo]. 1 0 1

Col
0 1 2 3 4 5 6 7

b4b3b2b1 | Row

NUL DLE SP 0 \O P @ P
0000 QO $9-12-0 |9-12-11

8-1 8-1 No Pch 0 8-1 11-7 8-4 |12-11-7
SOH DC1 ! 1 A Q a q

0001 1 .
9-12-1 |9-11-1 1 12-1 11-8 |12-0-1 }12-11-8
STX DC2 2 B R b r

0010 2
9-12-2 |9-11-2 |. & 2 12-2 11-9 |12-0-2 |12-11-9
ETX DC3 3 C s c 8

0011 3 ,
9-12~3 |9-11-3 8-3 3 12-3 0-2 |12-0-3 |11-0-2
EOT DC4 $ TS D T d t

0100 4
9-12-4 |9-11-4 | 11-8-3 4 12-4 0-3 |12-0-4 {11-0-3
ENQ NAK % 5 E U e u

0101 5
9-12—5 |9-11-5 | 0-8-4 5 12-5 0-4 | 12-0-5 |11-0-4
ACK SYN & 6 F v f Vv

0110 6
9-12-6 | 9-11-6 12 6 12-6 0-5 |12-0-6 |11-0-5
BEL ETB ' 7 G W g WwW

0111 7
9-12-7 | 9-11-7 8-5 7 12-7 0-6 | 12-0-7 |11-0-6
BS CAN (8 _ # — xX h x

1000 8 9-12 9-11
8 8 12-8-5 8
HT EM) 9

1001 9 9-12 9-11 -
8-1 8-1 11-8-5 9
LF ss * ;

10101 10 9-12 9—11
8-2 8-2 11-8-4 8-2
VT ESC + ;

104 17 11 9-12 9-11
8-3 8-3 12~-8-6 | 11-8-6
FF FS > <

11007; 12 9-12 9-11
8-4 8-4 0-8-3 | 12-8-4
CR Gs - =

110174 13 9-12 9-11
8-5 8-5 11 8-6
sO RS . >

11707) 14 9-12 9-11
8-6 8-6 12~8-3 | 0-8-6
SL US / ?

1111 15 9-12 9-11
8-7 8-7 O-1 8-7

Fig. 17.1. Hollerith, Version 1

hole pattern 8-1 in combination with zone-punch hole patterns also being
displaced, and these (in both EBCDIC and Hollerith) usually ended up in
row 0 because they were the hole patterns left over to fill up the code
positions in row 0. Following this line of reasoning, 9-12-0-8-1 and 9-12-
11-8-1 were chosen for row 0, columns 0 and 1.

310 Which Hollerith?

@ and '

At this time, in ASCII, ~ (Grave Accent) was in code position 4/0 and @
(Commercial At) in 6/0. It is to be noted that @ received its de facto 8-4

hole pattern.

5/12, 7/12, 7/14

At this time graphics ~ | and ~ were in code positions 5/12, 7/12, 7/14,

respectively.

EBCDIC/Hollerith compatibility

This proposal was evidently drafted by a proponent of EBCDIC Hollerith
compatibility. Except for columns 0 and 1 (see above) all hole patterns
were compatible, except those shown shaded in Fig. 17.1. The graphics ["
|* {} were not incorporated into EBCDIC at that time. Looking back, it

is not clear why the hole patterns of graphics "— ™ were not chosen to

be compatible with those of EBCDIC.

Logical OR, Logical NOT

The Logical OR, Logical NOT problem (to be described later) had not

yet surfaced.

Position 1/10

Control character SS (Start of Special) was at that time in code position
1/10 in ASCII. (This problem will not be discussed again until the
problem actually surfaces.)

A versus H

Since the drafter was evidently a proponent for EBCDIC/Hollerith
compatibility, and since EBCDIC had chosen existing hole patterns for

the A-graphics, this proposal also did so.

Comment. At this time, only two criteria were being applied:

i) Simple translation relationship, Hollerith to/from ASCII, for the

control characters.

ii) EBCDIC/Hollerith compatibility as much as possible.

Proposal 2

On November 10, 1964, the second proposal was made (document

X3.2.3/69) by Mr. J. L. Tobin. The proposer chose not to make any

17.3 Proposals 311

suggestions with respect to control characters, so he suggested hole
patterns only for the 94 graphics, and Space. The proposer had analyzed
the different versions of Hollerith previously referred to, and had counted

up the number of companies (out of 8) who agreed on a particular hole
pattern. He had then proposed a “‘consensus” approach as follows:

Unanimous 8 companies

Overwhelming 6 or 7 companies

Substantial 4 or 5 companies

Little or none 3 or less

Based on this analysis, the proposer chose the hole patterns shown in

Fig. 17.2.

Comments. As might be supposed from the selection scheme, there was
considerable incompatibility with EBCDIC among the specials.

This proposal did not receive support in the standards committee.
At the January 28, 1965 meeting, ASA Task Group X3.2.3 formally

voted to accept the existing Hollerith hole patterns for Space, the
alphabetics, 10 numerics, and 6 specials:

.»*/-$

All manufacturers’ equipments provided these. It was at this meeting,
therefore, that the concept of the “hard-core 43 graphics” emerged and
was never subsequently objected to.

Proposal 3

On November 23, 1964, another proposal was made. The proposer was,

as in the previous case, wrestling with the problem of criteria. This
proposer restricted himself to 64 hole patterns, since the maximum

existing implementation (except for EBCDIC on the System/360) had
64 hole patterns. The proposer, Mr. E. H. Clamons, presented a rather

pragmatic set of criteria, as follows:

Old established codes, IBM 407. 1.

2. New established codes, IBM BCD.

3. New established codes, UNIVAC 1004.

4. Suggested for adoption.

The proposal is shown in Fig. 17.3. It did not receive support in the
standards committee.

312 Which Hollerith?

b7[0 0 0 0 1 1 1 1
b6 0 0 1 1 0 0 1 1
bS 0 1 0 1 0 1 0 1

Col
0 1 2 3 4 5 6 7

b4b3b2b1 | Row

NUL DLE SP 0 @ P \ P
0000 0

No Pch 0 8-4 11-7 0-8-1 |12-11-7
SOH DCL ! 1 A Q a q

0001 1
11-8~2 1 12-1 11-8 {12-0-1 112-11-8

STX pc2 " 2 B R b r
0010 2

0-8-7 2 12-2 11-9 |12-0-2]12-11-9
ETX DC3 # 3 Cc S c 8

0011 3
8-3 3 12-3 0-2 |12-0-3 }11-0-2

EOT DCA $ 4 D T d t
0100 4

11-8-3 4 12-4 0-3 |12-0-4 |11-0-3
ENQ NAK % 5 E U e u

0101 5
0-8-4 5 12-5 0-4 |12-0-5 |11-0-4

ACK SYN & 6 F Vv £ v
01410 6

12 6 12-6 0-5 |12-0-6 }11-0-5
BEL ETB ' 7 G W g w

0111 7
8-2 7 12-7 0-6 |12-0-7 |11-0-6

BS CAN (8 H x h x
1000 8

12-8-5 8 12-8 0-7 |12-0-8 |11-0-7
HT EM) 9 I Y i y

1001 9
11-8-5 9 12~9 0-8 |12-0-9 |11-0-8

LF SS * : J Zz 4 Zz
1010] 10

11-8-4 8-5 L1l-1 0-9 |12-11-1]11-0-9

VT ESC + 3 K { k {
ror]

12-8-2 |11-8-6 | 11-2 |12-8-7 |12-11-2] 12-0

FF FS > < L ~ 1 |

0-8-3 | 12~8-6 11-3 12-8-4 | 12-11-3] 12-8-1

CR GS - = M 7 m }
1101 13

11 0-8-6 | 11-4 |11-8-7 | 12-11-4] 11-0

SO RS . > N A n a

12-8-3 8-6 11-5 11-8-1 | 12-11-5 8-7
SI US / ? 0 ° DEL

0-1 0-8-2 11-6 0-8-5 | 12-11-6

Fig. 17.2 Hollerith, Version 2

17.3 Proposals 313

b7| 0 0 0 0 1 1 1 1

b6 0 0 1 1 0 0 1 1
b5 0 1 0 1 0 1 0 1

Col
0 1 2 3 4 5 6 7

b4 b3 b2b1 | Row

NUL DLE SP 0 @ P \ p
0000 0

No Pch 0 8-4 11-7

SOH DC1 | 1 A Q a q
0001 1

11-0 1 12-1 11-8

STX Dc2 " 2 B R b rt
0010 2

| 12-8-4 2 12-2 | 11-9
ETX DC3 # 3 Cc S c 8

0011 3
8-3 3 12-3 0-2

EOT DC4 $ 4 D T d t
0100 4

11-8~3 4 12=4 0-3

ENQ NAK %, 5 E U e u
0101 5

0-8-4 5 12-5 0-4

ACK SYN & 6 F V f£ v
01710 6

12 6 12-6 0-5

BEL ETB ' 7 G W g w
0111 7

8-7 7 12-7 0-6

BS CAN ¢ 8 H x h x
1000 8

0-8-5 8 12-8 0-7

HT EM) 9 I Y i y
1001 9

0-8-7 9 129 0-8

LF Ss * : J Zz j Zz
1010] 10

11-8-4 8-5 11-1 0-9

VI ESC + ; K [k {
1011/11

8-2 11-8~-6 11-2 12~8-5

FF FS >. < L ~ 1 |
1100] 12

0-8-3 | 12-8-6 11-3 0~8-6

CR Gs ~ = M J m }
1711014 13

11 12-8-7 11-4 11~8-5

so RS : > N A n 7
1410 14

12-8-3 8-6 11-5 | 11~8-7

SI US / ? 0 Oo DEL
117177] 15 >

0-1 12-0 11-~6 0-8-2

Fig. 17.3 Hollerith, Version 3

314 Which Hollerith?

b7[0 0 0 0 1 1 1 1
b6 0 0 1 1 0 0 1 1
bS 0 1 0 1 0 1 0 1

Col
0 1 2 3 4 5 6 7

b4 b3 b2b1 | Row

NUL DLE SP 0 P @ P
oooo0 O J9-12-0 |9-12-11

8-1 8~1 No Pch 0 11-7 12-11-7
SOH Del ! 1 A Q a qd

0001 1
9~12—1 |9-11-1 | 11-8-2 1 12-1 11-8 |12-0-1 |12-11-8
STX DC2 " 2 B R b r

0010 2
9-12-2 |9-11-2 8-7 2 12-2 11-9 |12-0-2 |12-11-9
ETX pc3 # 3 c s c s

001711 3
9-12~3 | 9-11-3 8-3 3 12-3 Q-2 |12-0-3 |11-0-2

EOT pe4 $ 4 D T d t
0100 4

9-12-4 | 9-11=4 | 11-8-3 4 12-4 0-3 |12-0-4 |11-0-3

ENQ NAK % 5 E U e u
0101 5

9-12-5 |9-11-5 | 0-8-4 5 12-5 0-4 |12-0-5 |11-0-4
ACK SYN & 6 F Vv f v

0110 6
9-12-6 | 9~11-6 12 6 12-6 0-5 | 12-0-6 ;11-0-5
BEL ETB ’ 7 G Ww g w

0111 7
9~12-7 | 9-11-7 8-5 7 12-7 0-6 |12-0-7 |11-0-6

BS CAN C 8 H x h x
1000 8 9-12 9~11

8 8 12~-8-5 8 12-8 0-7 | 12-0-8 | 11-0-7

HT EM) 9 I Y i y
ioo1;) 9 9-12 | 9-11

8-1 8-1 11-8-5 9 12-9 0-8 |12-0-9 | 11-0-8

LF 8S * J Zz 5 z
1010) 10 9-12 9-11

8-2 8-2 11-8-4 8-2 11-1 0-9 | 12-11-1] 11-0-9
Vr ESC + ; K C k {

tori] 9-12 | 9-11
8-3 8-3 12-8-6 | 11-8-6 | 11-2 | 12-8-1 | 12-11-2} 11-0

FF FS : < L ~ 1 7
1100) 12 7 9-12 | 9-11

8-4 8-4 0-8-3 | 12-8-4 | 11-3 | 12-8-2 | 12-11-3] 11-8-7

CR Gs - = M] m }
1101!) 13 9-12 9-11

8-5 8-5 11 8-6 11-4 8-1 | 12-11-4| 12-0
so RS > N A n |

117107) 14 9-12 9-11
8-6 8-6 12-8-3 | 0-8-6 | 11-5 0-8-2 | 12-11-5} 12-8~7

ST US / 2 0 _ ° DEL
14474 15 9-12 9-11 12-11-0

8-7 8-7 0-1 0-8-7 | 11-6 0-8-5 | 12-11-6| 7-8-9
Fig. 17.4 Hollerith, Version 4

Proposal 4

In January, 1965 the fourth proposal was made. It was made by the IBM

representative, and specified 256 hole patterns. It is shown in Fig. 17.4 in
ASCII format, and in Fig. 17.5 in EBCDIC format. It was essentially

17.3 Proposals 315

Column 0

G0

Hole

Pat.
Hole Patterns:

9-12~0-8-1 11 ~— fi3] 0-1

[2] 9-12-11-8-1 12-11-0 9-11-0-1 Block | Hole Patterns at:

[3] 9-11-0-8-1 [9] 12-0 [5] 12-11 1 3 1 | Top and Left

[4] 9-12-11~0-8-1 11-0 2 | Bottom and Left

[5] No Pch [i] 0-8-2 2 4 3. | Top and Right

[e]} 12 . [22] 0 4 | Bottom and Right

Fig. 17.5 EBCDIC (from Hollerith, Version 4)

EBCDIC, but with the 32 control characters of ASCII assigned to

columns 0 and 1 of the 8-bit code table. Incidentally, this assignment of

control characters agreed with that of Proposal 1 (Fig. 17.1).

316 Which Hollerith?

EBCDIC at that time had 88 assigned graphics, while ASCII had 94.
This proposal substituted the ASCII ~ for the EBCDIC ¢ in position
4/10,* and positioned the six additional ASCII graphics [~] } { ~ in
positions 4/9, 6/9, 7/9, 12/0, 13/0, 14/0, respectively, of Fig. 17.5.

This proposal was accepted (at the time) by ASA Task Group
X3.2.3, and drafted into a Proposed American Standard Hollerith Rep-
resentation of ASCII (document X3.2.3/85, 1965 April 14).

Although ASA Task Group X3.2.3 was by now committed to

development of a Hollerith standard, the parent ASA Subcommittee
X3.2 had not relinquished its support for Decimal ASCII, and, at its
meeting on March 4, 1965, the following motion was passed (10 yes,

2 no, 6 abstain):

X3.2 directs X3.2.3 to develop a Decimal ASCII standard, which is
to be the punched card code for information interchange, and to
recommend a method of accommodating a 64-character Hollerith
card code.

The instruction to find a method to accommodate 64 Hollerith
characters led to a variety of proposals in Task Group X3.2.3. At the

subsequent meeting on April 27, 28, 1965, Task Group X3.2.3, wrestling
with the instruction given by X3.2, passed two motions; one motion
stating X3.2.3’s judgment that two standards, Decimal ASCII and Hol-
lerith, are required; the other motion stating X3.2.3’s judgment that both
these standards should encompass all 128 ASCII characters. Both these
motions were felt by X3.2.3 to be in consonance with the X3.2 motion.

However, at the subsequent X3.2 meeting, on April 29, 1965, a

majority of X3.2 members were either opposed to two standards, or
opposed to an “‘extended” Hollerith standard (128 characters) per se.

Proposal 5

On July 1, 1965, a fifth Hollerith proposal was made by Mr. R. H. Brown
(see Fig. 17.6). The proposer restricted the set to 64 hole patterns (in the
spirit of the above-mentioned X3.2 motion). The proposer was a propo-
nent of assigning existing hole patterns to the H-graphics.

*The standards committee had not adopted (and still has not adopted) the
hexadecimal notation for naming the sixteen rows and columns of an 8-bit code
table. Instead, rows and columns were numbers 0, 1, 2, 3,...,13, 14, 15 and the
columns/row notation was used for designating code-table positions. In this
chapter, since in most instances the 8-bit code tables are copies from actual
standards committee documents, the author also uses the column/row notation,

instead of the hexadecimal notation.

17.3 Proposals

b7 1 1
b6 0 0 1 1
b5 0 0 1

Col
° 0 1 6 7

b4b3b2b1 | Row

NUL DLE @ Pp
0000 0

SOH DCcl a q
0001 1

STX DC2 b r
0070 2

ETX DC3 c 8
0011 3

EOT DC4 d t
0100 4

ENQ NAK e u
0101 5

ACK SYN £ v
0110 6

BEL ETB g w
0111 7

BS CAN h x
1000 8

HT EM. i y

1001 9

LF Ss j Zz
10101] 10

VT ESC k {
7011/11

FF FS 1 —_
1100 12 over-

line

cR GS m }
1101/1] 13

so RS n |
1110{ 14

SL US 0 DEL
111417 15

Fig. 17.6 Hollerith, Version 5

@ and

The graphic for grave accent was at that time in position 4/0.

5/7, 7/12, 7/14

The graphics for tilde, overline, and vertical line were at that time in

positions 5/7, 7/12, 7/14, respectively.

317

318 Which Hollerith?

EBCDIC/Hollerith compatibility

Because the proposal assigned existing hole patterns to the H-graphics,

there were many incompatibilities with EBCDIC, as shown by the shaded
areas in Fig. 17.6.

Logical OR Logical NOT

The operations Logical OR and Logical NOT, previously in positions
7/12 and 7/14, had been replaced by the graphics for overline and vertical

line.

1/10

Control character SS (Start of Special) was still in vogue for position 1/10.

A versus H

Existing hole patterns were assigned in this proposal to the H-graphics.

This proposal was neither rejected nor accepted by Task Group

X3.2.3 at this time, but was kept under study. It was at this time that the
A versus H controversy surfaced.

Proposal 6

On September 7, 1965, Proposal 6 was made by Mr. L. L. Griffin,

Chairman of Subcommittee X3.2.

The proposal embodied the Decimal ASCII Card Code but addi-

tionally proposed a “Translation Table’? to the hard-core 43 Hollerith

characters (shown in Fig. 17.7).

Proposal 7

On September 14, 1965, Proposal 7 was made by Mr. R. M. Brown. It
was substantially the same as Proposal 5, but with a difference considered
to be important by the proposer. The hole patterns of 12-8-2 and 11-8-2
of Proposal 5 had been replaced by hole patterns 12-0 and 11-0 in
Proposal 7 (see Fig. 17.8). The widespread practice of overpunching
numerics by a 12-punch or 11-punch to indicate positive or negative

numeric fields naturally required that the hole patterns 12-0 and 11-0 be

included in the set of 64 hole patterns. The proposer pointed out that this
particular card code was, at that time, a Draft Military Standard.

As with Proposal 5, Proposal 7 was kept for study by Task Group
X3.2.3.

Proposal 8

On September 15, 1965, Proposal 8 was submitted by Mr. J. L. Tobin.

Proposal 8 was, in fact, the same as Proposal 7.

17.3 Proposals

b7 0 1 1 1 1
b6 0 0 1 0 0 1 4
b5 0 0 0 1

Col
0 1 2 4 5 6 7

b4b3 b2b1 | Row

NUL DLE SP ‘ P @ P
0000 0

No’ Pch 11-7
SOH DCI ! A Q a q

0001 1
12-1 11-8

STX DC2 wr B R D r
0010 2

12-2 11-9
ETX DC3 # C 8 C 8

0011 3
12-3 0-2

EOT DC4 $ D T d t
0100 4

11-8-3 12-4 0-3
ENQ NAK % E U e u

0101 5
12-5 0-4

ACK SYN & F Vv f v
0110 6

12-6 0-5
BEL ETB ' G W g w

0111 7
12-7 0-6

BS CAN (H x h x
1000 8

12-8 0-7
HT EM) T Y t _y

1001 9
12-9 0-8

LF ss * J Z j Zz
10101} 10

11-8-4 11-1 0-9
VT ESC + K [k {

1074141] 11
11-2

FF FS ; L ~ 1 _
1100 12 over-

0-8-3 11-3 line

CR GS = M 7 m }
14101| 13

LL 11-4
so RS N A n |

1110] 14
12-8-3 L1-5

SI US / oO ° DEL
11444 15 -

0-1 11-6

Fig. 17.7. Hollerith, Version 6

319

At the September 14, 15, 1965 meeting of Task Group X3.2.3,
Decimal ASCII was forwarded to Subcommittee X3.2 as a recommended

American Standard. Task Group X3.2.3’s opinion was about evenly
divided between an H-based Hollerith and an A-based Hollerith.

320 Which Hollerith?

b7[0 0 0 0 1 1 1 1
b6 0 0 1 1 0 0 1 1
b5 0 1 0 1 0 1 0 1

Col
0 1 2 3 4 5 6 7

b4 b3 b2b1 | Row

NUL DLE SP 0 ‘ P @ P
0000 0

No Pch 0 0-8-7 | 11-7
SOH DCl ! 1 A Q a q

0001 1
11-0 1 12-1 11-8

STX DC2 " 2 B R b r

0010 2
8-7 2 12-2 11-9

ETX DC3 # 3 Cc s c 8
0011 3

12-8-7 3 12-3 0-2

EOT DC4 $ 4 D T d t
07100 4

11-8-3 4 12-4 0-3
ENQ NAK % 5 E U e u

0101 5
0-8-5 5 12-5 0-4

ACK SYN & 6 F Vv £ Vv
0110 6

8-2 6 12-6 0-5
BEL ETB ' 7 G W g Ww

07111 7
8-4 7 12-7 0-6

BS CAN (8 H X h x
1000 8

0-8-4 8 12-8 0-7

HT EM) i) I Y i y
1001 9

12-8~4 9 12-9 0-8

LF ss * : J Zz j Zz
1010] 10

11-8-4 8-5 li-1 0-9

VT ESC + 3 K [k {
1011 1

12 11-8-6 | 11-2 | 12-8-5

FF FS > < L ~ L _—
1100 12 over~-

0-8-3 |12-8-6 | 11-3 0~8~6 line

CR GS - = M] m }
1101 13

il 8-3 11-4 | 11-8-5

S0 RS . > N A n |
111710] 14

12-8-3 8-6 11-5 | 11-8-7

SI US / ? 0 _ 0 DEL
1111 15

0-1 12-0 11-6 0-8-2
Fig. 17.8 Hollerith, Versions 7 and 8

Proposal 9

At the November 3, 4, 5, 1965 meeting of Task Group X3.2.3, an

attempt was made to appease Decimal ASCII proponents (Hollerith-H
proponents and Hollerith-A proponents) by incorporating all three card

codes into a draft American Standards.

17.3 Proposals 321

b7{ 0 0 0 0 1 1 1 1
b6 0 0 1 1 0 0 1 1
bS 0 1 0 1 0 1 0 1

Col 0 1 2 3 4 5 6 7
b4 b3 62 b1 | Row

NUL DLE SP 0 - P @ P
0000 0 8-4

No Pch 0 0-8~7 | 11-7 SYS
SOH DCL ! 1 A Q a q

0001 1 12-8-7
11-0 1 12-1 11-8

STX DC2 " 2 B R b r
0010 2

8-7 2 12-2 11-9
ETX DC3 #f 3 Cc S c s

0011 3 8-3
12-8-7 3 12-3 Q-2

EOT DC4 $ 4 D T d t
0100 4

11-8-3 4 12-4 0-3
ENQ NAK % 5 E U e u

0101 5 0-8-4
0-8-5 5 12-5 0-4

ACK SYN & 6 F V f v
0110 6 12

8-2 6 12-6 0-5
BEL ETB ' 7 G W g w

0111 7 8-5
8-4 7 12-7 0-6

BS CAN (8 H X h x
1000 8 12-8-5

0-8-4 8 12-8 0-7
HT EM) 9 I Y i y

1001 9 11-8-5
12-8-4 9 12-9 0-8

LF * : J Z j Zz
1010 10 8~2

11-8-4 8-5 11-1 0-9
VT ESC + ; K [k {

TOV, 1 12-8-6 11-8-2
12 11-8-6 | 11-2 | 12-8-5

FF FS > < L ~ 1 _
1100) 12 12-8-4 12-8-2 over-

0-8-3 | 12-8-6 | 11-3 0-8-6 line
CR GS - = M J m }

1101); 13 8-6 0-8-2
ll 8-3 11-4 | 11-8-5

SO RS . > N A n |
11740] 14 0-8-6

12-8-3 | 12-0 11-5 | 11~8-7
SI us / 2 0 _ re) DEL

117211 15 0-8-7 0-8-5

0-1 12-0 11-6 0-8-6

A

H

Fig. 17.9 Hollerith, Version 9

The two Hollerith proposals, both specifying 64 hole patterns to
satisfy the dictate of Subcommittee X3.2, are shown in Fig. 17.9. The
A-Hollerith version was substantially compatible with EBCDIC.

322 Which Hollerith?

The philosophy of appeasing Decimal ASCII, Hollerith-A, and
Hollerith-H proponents by combining all three card codes into a single
draft American Standard did not survive. As a result of an X3.2 letter

ballot on the draft American Standard, Subcommittee X3.2 pared the two

64-character Hollerith card codes into a single Hollerith card code
consisting of the “hard core 43” (Fig. 17.7). This Hollerith card code was
then combined with the Decimal ASCII card code into a single draft
American Standard. The Hollerith Card Code Table was qualified as an
“interim representation,” although no time limits were expressed with
respect to the interim. At the December 7, 8, 9, 1965 meeting of Sub-

committee X3.2, a recorded vote was taken to forward this draft Ameri-

can Standard to Committee X3 for further processing.

In 1965, Decimal ASCII had been approved as an ECMA Standard,

and in May, 1965, ISO/TC97/SC2 prepared a draft ISO Proposal on
Decimal ASCII, which was circulated for review and comment.

In December 1965, Committee X3 issued an X3 letter ballot on

Decimal ASCII. In June 1966, the X3 ballot result was reported:

15 affirmative,

13 negative,

17 not yet responded.

X3 declared that it appeared there would not be a consensus for approval

of Decimal ASCII. An ad hoc committee was established to recommend a

course of action. The ad hoc committee met on July 28, 1966, and, after

discussion, recommended the preparation of an American Standard

“BCD Card Code” (their nomenclature) based on existing Hollerith

practices, and that 128 hole patterns be assigned. Task Group X3.2.3,
therefore, once again approached the problem of ‘which Hollerith?”

Proposal 10

On August 15, 1966, Proposal 10 (Fig. 17.10) shows the Hollerith Card

Code prepared in X3.2.3 in response to the X3 directive. It was a
Proposed American Standard BCD Card Code (document X3.2.3/141).

Control characters

For the first time, Hollerith hole patterns compatible with EBCDIC hole
patterns were assigned in columns 0 and 1.

@ and~

The graphic @ (Commercial At) was now firmly in position 4/0, and
remained there thereafter. This problem will not be referred to again.

7.3 Proposals 323

b70 0 0 0 1 1 1 1
b6 0 0 1 1 0 0 1 1
bS 0 1 0 1 0 1 0 1

Col 0 1 2 3 4 5 6 7
b4b3b2b1 | Row

NUL DLE SP 0 @ P = P
0000 0 §9-12-0 |9-12-11

8-1 8-1 0 8-4 11-7 8-1 }12~11-7
SOH pel 1 A Q a q

0001 1
9-12-1 |9-11-1 1 12-1 11-8 |12-0-1 |12~11-8
STX DC2 B R b r

0010 2
9-12-2 |9~11-2 8-7 2 12-2 11-9 |12-0-2 |12~11-9
ETX DC3 # 3 Cc S c 8

0011 3
9-12-3 |9-11-3 8-3 3 12-3 O-2_ | 12-0-3 |11-0-2
EOT DC4 $ 4 D T d t

0100 4
9-7 9-8-4 | 11-8~3 4 12-4 0-3 |12-0-4 |[11-0-3
ENQ NAK 4 5 E U e u

0101 5 9-0
8-5 9-8-5 | 0-8-4 5 12-5 0-4 | 12~0-5 |11-0-4
ACK SYN & 6 F Vv £ Vv

0170 6 9-0
8-6 9-2 12 6 12-6 0-5 |12-0-6 |11-0-5
BEL ETB ‘ 7 G W gz Ww

0111 7 9-0
8~7 9-0-6 8-5 7 12-7 0-6 |12-0-7 |11-0-6
BS CAN C 8 H x h x

1000 8
9-11-6 {9-11-8 | 12-8-5 8 12-8 0-7 | 12-0-8 }11-0-7
HI EM) 9 T Y i y

1001 9 9-11
9-12-5 | 8-1 11-8-5 9 12-9 0-8 |12-0-9 |11~-0-8
LF SUB * J Z 4 Zz

1010] 10
9-0-5 | 9-8-7 | 11-8-4 8-2 12-11-1
VT ESC + 3 k :

1011/1 9~12 :
8-3 9-0-7 | 12-8-6 | 11-8-6 5°] 12-11-2
FF FS > < 1

1100] 12 9~12 9-11
8-4 8-4 0-8-3 | 12-8-4 | 12-11-3
CR Gs - =

171017] 13 9~12 9-11
8-5 8-5 1l 8-6
so RS >

1110] 14 9~12 9-11
8~6 8-6 12-8-3 | 0-8-6 | 11-5 [| 11-8-7 | 12-11-5
Si US / ? 0 ° DEL

1177) 15 9~12 9-11 . 7
8~7 8~7 0-1 0-8-7 | 11-6 0-8-5 | 12-11-6] 9-12-7

Fig. 17.10 Hollerith, Version 10

9/12, 7/12, 7/14

3raphics \ | and ~ were currently in code positions 5/12, 7/12, 7/14,
espectively.

324 Which Hollerith?

Column

Hole
Pat.

Hole Patterns:

[1] 9-12-0-8-1 il (i3] 0-1

[2] 9-12-11-8-1 12-11-0 9-11-0~1 Block | Hole Patterns at:

[3] 9-11-0-8-1 [e] 12-0 [ts] 12-11 1 3 1 | Top and Left

[4] 9-12-11-0-8-1 11-0 2 | Bottom and Left

[s] No Pch [ia] 0-8-2 2 4 3. | Top and Right

fs] 12 [iz] 9 4 | Bottom and Right
Fig. 17.11 EBCDIC (from Hollerith, Version 10)

EBCDIC/Hollerith compatibility

Although a number of code positions are shown shaded in Fig. 17.10, this
Hollerith proposal was in fact intended to be entirely compatible with the

EBCDIC then current. In an Appendix to this Proposed American

Standard, an EBCDIC code table was shown “to accommodate the

17.3 Proposals 325

requirements of 8-bit environments to provide 256 hole patterns.” This
chart is reproduced in Fig. 17.11. It is to be noted that the columns and
rows were numbered 0, 1, 2, 3,..., 7, 8, 9, 10, 11, 12, 13, 14, 15, instead

of the hex notation 0, 1, 2, 3,:..,7, 8, 9, A, B, C, D, E, F.

a) Graphics []{ and } were shown in Fig. 17.11 in code positions 11/13,

11/14, 8/11, 9/11, respectively, because they were at that time given

those EBCDIC code positions in a System/360 programming product

called Text/360, a text processing program.

b) Although not at that time actually assigned in EBCDIC, graphics \ ~
~ and ~ were shown assigned in Fig. 17.11 in code positions 12/0,

13/0, and 7/9, respectively.

Logical OR, Logical NOT

At this time, Logical OR was in ASCII code position 7/12, and committee

members were considering that ~ might serve as, or replace, the Logical
NOT graphic * in PL/I.

However, a representative of SHARE had stated in a letter that this

was unsatisfactory. SHARE had stated a requirement that the graphics
for Logical OR and Logical NOT

a) be in columns 2, 3, 4, or 5 of ASCII;

b) not be in any National Use code position.

A versus H

The A-graphics were assigned to de facto hole patterns in Proposal 10.

Position 1/10

The Substitute character, SUB, had now replaced the Start of Special

character, SS, in position 1/10 of ASCII.

Proposal 11

In August 1966, Proposal 11 was made by the UNIVAC member of
X3.2.3. It is shown in Fig. 17.12. This proposal was intended to achieve

EBCDIC compatibility, except for columns 0 and 1. It was proposed that

the control characters of ASCII be assigned identically in columns 0 and
1 of EBCDIC as in columns 0 and 1 of ASCII.

It was recognized that the following graphics were not, at that time,
assigned in EBCDIC:

L]i}\>*

326 Which Hollerith?

b7f0 0 0 0 1 1 1 1
b6 0 0 1 1 0 0 1 1
bS 0 1 0 1 0 1 0 1

Col
0 1 2 3 4 5 6 7

b4 b3 b2 bt | Row

NUL DLE SP i) @
0000 O [9-12-0 |9-12-11

8-1 8-1 No Pch 0 8-4
SOH DC1 ! 1 A

0001 1
9-12-1 |9-11-1 | 12-8-7 1 12-1
STX DC2 " 2 B

0010 2
9-12-2 | 9-11-2 8-7 2 12-2
ETX DC3 if 3 Cc

0011 3
9-12-3 | 9-11-3 8-3 3 12-3
EOT DC4 $ 4 D

0100 4
9-12-4. | 9-11-4 | 11-8-3 4 12=4 0-3 | 12-0-4 |11-0-3
ENQ NAK % 5 E U e u

0101 5
9-12-~5 | 9-11-5 | 0-8-4 5 12-5 0-4 | 12-0-5 |11-0-4
ACK SYN & 6 F V £ v

0110 6
9-12-6 | 9-11~6 12 6 12-6 0-5 | 12-0-6 |11-~0-5
BEL ETB ’ 7 G W g W

0111 7
-9-12-7 | 9-11-7 8-5 7 12-7 0-6 | 12-0-7 | 11-0-6

BS CAN (8 H X h x
1000 8 9-12 9=11

8 8 12-8-5 8 12-8 0-7 | 12-0-8 | 11-0~7
HT EM) 9 I Y i y

100 1 9 9-12 9-11
8-1 8-1 11-8~5 9
LF SUB * :

1010! 10 9-12 9-11
8-2 8-2 11-8~4 8-2
VT ESC + 3

tots) 9-12 9-11
8-3 8-3 12-8~6 | 11-8-6
FF FS > <

1100] 12 9-12 9-11
8-4 8-4 0-8-3 | 12-8-4
CR GS - =

1101 13 9-12 9-11
8-5 8-5 11 8-6
sO RS . >

1410] 14 9-12 9-11
8-6 8-6 12-8-3 | 0-8-6
SI us / ?

TV 1d] 15 9-12 9-11
8-7 8-7 0-1 0-8-7 | 11-6 0-8~5 | 12-11-6] 7-8-9

Fig. 17.12 Hollerith, Version 11

The proposer proposed the following:

a) Replace ¢ and ! with [and] in EBCDIC, that is, assign them to
EBCDIC code positions 4/10 and 5/10 (see Fig. 17.11). The princi-
ple proposed here was that the 64 hole patterns assigned to the
graphics of columns 2, 3, 4, and 5 of ASCII (the so-called basic

subset) should be the set of hole patterns implemented on IBM’s 029

17.3 Proposals 327

Keypunch. EBCDIC code positions 4/10 and 5/10 had assigned hole
patterns 12-8-2 and 11-8-2. Hence [and] should be assigned to
these EBCDIC code positions.

b) To resolve the Logical OR, Logical NOT problem, let them retain
their existing hole patterns 12-8-7 and 11-8-7, but substitute the
ASCII graphics ! and * for | and ~. Therefore, assign ! and * to
EBCDIC code positions 4/15 and 5/15, respectively.

c) Assign \ in EBCDIC code position 6/10 “to fill up the block of
specials in Quadrant 2 of EBCDIC.”

d) Since {}|~* and ~ were “paired” (that is, in the same rows) in ASCII
with [] \ @ and * they should be similarly “paired” in EBCDIC, that
is, assigned to code positions as shown in Fig. 17.13. The concept of
““pairing’’ here was that, just as there was a single-bit difference for

“paired” graphics in ASCII, so there should be a single-bit difference
in EBCDIC. The practical utility of this concept was not revealed by
the proposer.

*roposal 12

\t the same time, the representative of the Department of Defense
resented Proposal 12, which assigned the H-graphics to the existing hole
atterns. It is shown in Fig. 17.14.

Also raised in this proposal was a requirement that hole patterns
2-0 and 11-0 (to allow for overpunched numerics) be assigned in
olumns 2, 3, 4, or 5 of ASCII, rather than hole patterns 12-8-2 and 11-

-2. This created a dilemma. The 12-0 and 11-0 had not been provided
n IBM’s Keypunch (the 029) because of mechanical problems. So this
equirement of the Department of Defense would be in conflict with the
equirement (stated by the UNIVAC representative in Proposal 11

bove) that the 64 hole patterns assigned to columns 2, 3, 4, and 5 of

\SCII should be those implemented on the 029.

‘roposal 13

Mn October 14, 1966, Proposal 13 was made, a proposed American
tandard BCD Card Code. It is shown in Fig. 17.15. As with Proposal 10
bove, it was designed for compatibility with EBCDIC (see Fig. 17.16).
ilso, an attempt was made to resolve the Logical OR, Logical NOT
roblem, and the problem of 12-0 and 11-0 raised in Proposal 12 above.

a) As shown in Fig. 17.16, graphics \ [and] were assigned in EBCDIC
code positions 12/0, 13/0, 14/0, respectively. Since hole patterns

12-0 and 11-0 are assigned in EBCDIC to positions 12/0 and 13/0,

328 Which Hollerith?

Hola

Pat.
Hole Patterns:

[+] 9-12-0-8-1 ll [i3] 0-1

[2] 9-12-11-8-1 12-11-0 9-11-0-1 Block | Hole Patterns at:

[3] 9-11-0-8-1 = [9] 12-0 [15] 12-11 1 3 1 | Top and Left

{4} 9-12-11-0-8-1 11-0 2 | Bottom and Left

(s] No Pch {a7] 0-8-2 2 4 3. | Top and Right

{e] 12 {12] 0 4 | Bottom and Right
Fig. 17.13 EBCDIC (from Hollerith, Version 11)

this would satisfy the Department of Defense requirement (although

it was not known how the problem of implementing hole patterns on

the 029 Keypunch would be resolved). Code position 14/0 in EBC-

DIC has hole pattern 0-8-2. This was implemented on the 029

Keypunch, but with no graphic assigned at that time.

17.3 Proposals

b7[0 0 0 0 1 1 1 1
b6 0 0 1 1 0 0 1 1
bS 0 1 0 1 0 1 0 1

Col
0 1 2 3 4 5 6 7

b4 53 b2b1 | Row

NUL DLE SP 0 @ P “ P
0000 0 {9-12-0 |9-12=11

8-1 8-1 No Pch 0 8-5 11-7 8-1 |12-11-7
SOH DC1 { 1 A Q a q

0001 1
9-12-1 |9-11-1 | 0-8-2 1 12-1 11-8 |12-0-1 |12-11-8
STX DC2 " 2 B R B r

0010 2
9-12-2 |9-11-2 8-7 2 12-2 11-9 |412-0-2 |12-11-9
ETX DC3 # 3 C S c s

0011 3
9~12-3 | 9-11-3 8-6 3 12-3 0-2 |12-0-3 | 11-0-2
EOT DC4 $ 4 D T a £

0100 4
9-7 9-8-4 | 11-8-3 4 12-4 0-3 |12-0-4 |11-0-3
ENQ NAK % 5 E U e u

0101 5 9-0
8-5 9-8-5 | 12-8-5 5 12-5 0-4 |12-0-5 |11-0-4
ACK SYN & 6 F V £ v

0110 6 9-0
8-6 9-2 12-8-6 6 12-6 0-5 |12-0-6 |11-0-5
BEL ETB ‘ 7 G W g Ww

0111 7 9-0
8-7 9-0-6 8-4 7 12-7 0-6 | 12-0-7 | 11-0-6
BS CAN (8 H x h x

1000 8
9-11~6 | 9-11-8 | 0-8-4 8 12-8 0-7 | 12-0-8 | 11-0-7
HT EM) 9 I Y i y

1001 9 9-11
9-12-5 | 8-1 12-8-4 9 12-9 0-8 | 12-0-9 | 11-0-8
LF SUB * : J Zz 5 Z

1010] 10 12-9
9-0-5 | 8-2 11-8-4 8-2 11-1 0-9 | 12-11-1] 11-0-9
VT ESC + 3 K [k {

1077] 11 9-12 12-0
8-3 9-0-7 12 11-8-6 | 11-2 11-0 |12-11-2] 8-3
FF FS > < L \ 1 |

1100] 12 9-12 9-11 12-11-0
8-4 8-4 0-8-3 | 11-8-6 | 11-3 12-0 | 12-11-3]) 8-5
CR GS - = M J ™ }

11011] 13 9-12 9-11 12-11
8-5 8-5 il 8-3 11-4 |12-8-7 | 12-11-4| 8-3
sO RS > N x n ~

1110| 14 9-12 9-11 11-0
8-6 8-6 12-8-3 | 0-8-6 | 11-5 | 11-8-7 | 12-11-5| 8-5
SI US [2 0 _ oO DEL

11474 15 9-12 9-11 12-11-0
8-7 8-7 Q-] Q-8-7. | 11-6 Q-8-5 | 12-11-6| 9-8-7

Fig. 17.14 Hollerith, Version 12

329

b) The “pairing” concept was then invoked for a new graphic , (a
broken vertical line) and for { and } to position them in EBCDIC

code positions 8/0, 9/0, 10/0, respectively.

c) Similarly, ~ and ~ were “paired” in EBCDIC with * and @, respec-
tively.

330 Which Hollerith?

b7| 0 0 0 0 1 1 1 1

b6 0 0 1 1 0 0 1 1

bS 0 1 0 1 1 0 1

Col
0 1 2 3 4

b4b3b2b1 | Row

NUL DLE SP 0 @

0000 0 9-12-0 {9-12-11

8-1 8-1 No Pch 0 8-4

SOH DC1 ! | 1 A

0001 1

9-12-1 |9-LI-1 | 12-8-7 1 12-1

STX DC2 " 2 B
0010 2

9-12-2 |9-11-2 8-7 2 12-2 11-9 12-0-2 |12-11-9

ETX DCc3 # 3 C $ c 8

00141 3

9-12-3 |9-11-3 8-3 3 12-3 0-2 12-0-3 {11-0-2

EOT DC4 $ 4 D T d- t

0100 4

9-7 9~8-4 | 11-8-3 4 12-4 0-3 12-0-4 | 11-0-3

ENQ WAK % 5 E U e u

0101 5 9-0

8-5 9-8-5 0-8=4 5 12-5 0-4 12-0-5 | 11-0-4

ACK SYN & 6 F Vv £ Vv
0110 6 9-0

8-6 9-2 12 6 12-6 Q-5 12-0-6 | 11-0-5

BEL ETB ' 7 G W g w
017111 7 9-0

8-7 9-0-6 8-5 7 12-7 0-6 12-0~7 | 11-0-6

BS CAN (8 H Xx h x
1000 8

9-11-6 | 9-11-8 | 12-8-5 8 12-8 Q-7 12-0-8 | 11-0-7

HT EM) 9 I Y i y
1001 9 9-11

9~12-5 8-1 11-8-5 9 12-9 0-8 12-0-9 {| 11-0-8

LF SUB x : J Z j Zz
1010 10

9-0-5 9-8-7 | 11-8-4 8-2 11-1

VT ESC + 3 K
1011 11 9-12

8-3 9-0-7 | 12-8-6 | 11-8-6 11-2

FF FS . < L

1100 12 9-12 9-11

8-4 8-4 0-8-3 | 12~-8-4 1i-3

CR GS - = M

1101 13 9-12 9-11

8-5 8-5 ll 8-6 11-4

sO RS > N
1110 14 9-12 9-11

8-6 8-6 12-8-3 0-8-6 11-5

SI US / ? 0
17171771 15 9-12 9-11

8-7 8-7 O-1 Q-8~7 11-6 0-8-5 | 12-11-6| 9-12-7

Fig. 17.15 Hollerith, Version 13

d) At this time, it had been proposed to resolve the Logical NOT,

Logical Or problem in ASCII by assigning ! and | as duals in ASCII
code position 2/1, and * and “ as duals in ASCII code position 5/14.
Also, the new graphic | was proposed for ASCII code position 7/12,

to avoid confusion with the Logical OR graphic |.

17.3 Proposals 331

Column 0

Hole
Pat.

Hole Patterns:

[7] 9-12-0-8-1 ll [13] 0-1

[2} 9-12-11-8-1 12=11-0 9-11-0-1 Block | Hole Patterns at:
[3] 9-11-0-8-1 [2] 12-0 [is] 12-11 1 3 1 | Top and Left

[4] 9-12-11-0-8-1 11-0 2 .| Bottom and Left

(s] No Pch [11] 0-8-2 2 4 3 | Top and Right
[e] 12 [12] 0 4 | Bottom and Right

Fig. 17.16 EBCDIC (from Hollerith, Version 13)

Proposal 14

On August 31, 1966, Task Group X3.2.3 met and considered Proposal
10. Some changes were made that resulted in Proposal 14 (Fig. 17.17),

332 Which Hollerith?

67[0 0 0 0 1 1 1 1
b6 0 0 1 1 0 0 1 3
b& 0 1 0 1 1 0 1

Co!
0 1 2 3 4 5 6 7

b4 63 b2b1 | Row
NUL DLE SP 0 @ P

0000 0 |9-12-0 | 9-12-11
8-1 8-1 No Pch 0 8-4 11-7
SOH DC1 J I A Q

0001 1
9-12-1 |9-11-1 | 12-8-7 1 12-1 11-8
STX DC2 2 B R

0010 2
9-12-2 | 9-11-2 8-7 2 12=2 11-9 |12-0-2 |12-11-9
ETX DC3 FF 3 Cc Ss c 3

0011 3
9-12-3 | 9-11-3 8-3 3 12-3 O~2 | 12-0-3 }11-0-2
EOT DC4 $ Z D T d E

0100 4
9-7 9-8-4 | 11-8-3 4 12-4 O~3 | 12-0-4 | 11-0-3

ENQ NAK % 5 E U e u
0101 5 9-0

8-5 9-8-5 { 0-8-4 5 125 O~4 =| 12-0-5 | 11-0-4
ACK SYN & 6 F V f v

01310 6 9-0

8-6 9-2 12 6 12-6 0-5 |12-0-6 | 11-0-5
BEL ETB ' 7 G W zg Ww

0111 7 9-0

8-7 9-0-6 8-5 7 12-7 O~6 | 12-0-7 | 11-0-6
BS CAN (8 H x h x

1000 8
9-11-6 | 9-11-8 | 12-8-5 8 12~8 O-7 | 12-0-8 | 11-0-7
HT EM } 9 T Y L ¥

1001 9 9-11
9-12-5 | 81 11-8-5 9 12-9 0-8 | 12-0-9 | 11-0-~8
LF SUB * : J Z j z

1010] 10
9-0-5 | 9-8-7 | 11-8-4 8-2 11-1 0-9 | 12-11-1] 11-0~9
VT ESC + ; K E k {

101717; 11 9-12
8-3 9-0-7 | 12-8-6 | 11-8-6 | 11-2 | 12-8-2 | 12-11-2
FF FS ’ < L eo l tee

1100] 12 9-12 | 9-11
8-4 8-4 0-8-3 | 12-8-4 | 11-3 ee | 12-11-3) pager”
CR GS - = M J m }

1101/1] 18 9-12 9-11
8-5 8-5 11 8-6 11-4
sO RS > N

1147 07; 14 9-12 9-11
8-6 8-6 12-8-3 | 0-8-6 | 11-5
SI us / ? 0

11117) 15 9-12 9-11
8-7 8-7 Q=1 0-8-7 1 1-6

Fig. 17.17 Hollerith. Version 14

which became a proposed USA Standard.”

a) Task Group X3.2.3 decided that hole patterns 12-8-2 and 11-8-2
(implemented on the 029 Keypunch) should be assigned in columns

* ASA had changed its name to United States of America Standards Institute
(USASI), and standards were now called “USA Standard...”

17.3 Proposals 333

Pat.
@ Some equipment provides ¢ @May be |

Hole Patterns:

[7] 9-12-0-8-1 7] 1 [73] 0-1 @ Some equipment provides ! @ May be ~

[2] 9-12-11-8-1 12=11-0 9-11-0-1 Block | Hole Patterns at:

[3] 9-11-0-8-1 = [2] 12-0 12-11 1 3 1 | Top and Left

(4] 9-12-11-0-8-1 11-0 2 | Bottom and Left

[s] No Pch [1] 0-8-2 2 4 3 | Top and Right

[es] 12 [12] 0 4 | Bottom and Right

Fig. 17.18 EBCDIC (from Hollerith, Version 14)

2, 3, 4, or 5 of ASCII, rather than 12-0 and 11-0 (unimplementable

on the 029 Keypunch). These hole patterns were therefore assigned

to code positions 5/11 and 5/13, respectively. It was also proposed
that they be incorporated into EBCDIC as duals for ¢ and ! (see Fig.
17.18).

334 Which Hollerith?

b) It was proposed that EBCDIC show ! and * in code positions 4/15
and 5/15, respectively, as duals for | and ~.

c) To ensure that 12-0 and 11-0 (not assigned in columns 2, 3, 4, or 5

of ASCII) would be assigned somewhere in the set of 128 hole

patterns, it was proposed that they be assigned to code positions 7/11
and 7/13. This resulted in their being proposed to be assigned in
EBCDIC code positions 12/0 and 13/0.

d) It was proposed that \ be assigned to EBCDIC code position 6/10,

“to fill up the block of specials in Quadrant 2 of EBCDIC.” This
resulted in a hole pattern of 12-11, which raised a new problem. The
12-11 hole pattern was determined to be unimplementable on the
029 Keypunch. It is to be noted that the implementable hole pattern
0-8-2 was assigned to ASCII code position 7/12, which resulted in
the | being proposed to be assigned in EBCDIC code position 14/0.

e) A significant step was taken in this proposed USA Standard toward

resolving the Logical OR, Logical NOT problem. It was proposed to
place in the ASCII standard, and in this Hollerith standard, the
following wording:

In specific applications it may be desirable to employ distinctive

styling of individual graphics to facilitate their use for specific pur-

poses, as, for example, to stylize the graphics in code-table positions
2/1 and 5/14 into those frequently associated with Logical OR (|) and
Logical NOT ().

This wording which specifically allowed manufacturers to provide | and ™

instead of ! and * was accepted as the final resolution of the Logical OR,

Logical NOT problem.

Proposal 15

At the March 1967 meeting of ISO/TC97/SCZ2, it was reported that a

ballot on Decimal ASCII had resulted in two countries voting ‘““YES,”’ six

countries voting ‘““NO,” and three countries abstaining. Decimal ASCII
was therefore officially terminated as an ISO Draft Proposal.

Three countries had submitted Hollerith card-code proposals. A
review showed agreement on 124 of the 128 hole patterns, with disagree-
ment in hole patterns for code positions 5/12, 5/13, 7/12, and

7/13 as shown in Fig. 17.19. The corresponding result for EBCDIC was

as shown in Fig. 17.20.

17.3 Proposals 335

b7[0 0 0 0 1 4 1 1
b6 0 0 1 1) 0 1 1
b5 0 1 0 1 0 1 0 1

Colt 6 1 2 3 4 5 6 7
b4 b3 b2b1 | Row

NUL DLE SP 0 @ P s D
0000 0 [9-12-0 | 9-12-11 12-11-0

8-1 8-1 No Pch 0 8-4 11-7 8-4 |12-11-7
SOH DCcl ! 1 A Q a q

0001 1
9~12—=1 |9-11-1 |12-8-7 1 12-1 11-8 |12-0-1 |12-11-8
STX DC2 " 2 B R B r

0010 2
9-12-2 | 9-11~2 8-7 2 12-2 11-9 |12-0-2 |12-11-9
ETX DC3 # 3 Cc 8 ¢ Ss

0011 3
9-12-3 | 9-11-3 8-3 3 12-3 0-2 | 12-0-3 |11-0-2
EOT DC4 $ 4 D T d t

0100 4
9-7 9-8-4 | 11-~8-3 4 12-4 0-3 [12-0-4 |11-0-3
ENQ NAK % 5 E U e u

0101 5 9-0
8-5 9-8-5 | 0-8-4 5 12-5 Q-4 | 12-0-5 |11-0-4
ACK SYN & 6 F Vv f v

0110 6 9-0
8-6 9-2 12 6 12-6 0-5 | 12-0-6 |11-0-5
BEL ETB ' 7 G W g w

01141 7 9-0
8-7 9-0-6 8-5 7 12-7 0-6 | 12-0-7 |11-0-6
BS CAN (8 H x h x

1000 8
9-11-6 | 9-11-8 | 12~8-5 8 12~8 0-7 | 12-0-~8 | 11-0-7
aT EM) 9 I Y i y

100 1 9 9-11

9-12-5 | 8-1 11~8-5 9 12~9 0-8 {12-0~9 | 11-0-8
LF SUB * : J Zz j Zz

1010] 10
9-0-5 | 9-8-7 | 11-8-4 8-2 11~1 0-9 | 12-11-1] 11~0-9
VT ESC + ; K [k {

10141] 11 9-12
8-3 9-0-7 | 12-8-6 | 11-8-6 | 11-2 11-0 | 12-11-2] 12-0
FE FS > < L \ 1 \

1100) 12 9-12 9-11
8-4 8-4 0-8-3 | 12-8-4 | 11-3 12-11-3
CR GS - = M J m }

1710 1) 13 9-12 9-11
8-5 8-5 il 8-6 11-4 12-11~4
so RS . > N “ n ~

1110 14 9-12 9-11 12-11

8-6 8-6 12-8-3 | 0-8-6 | 11-5 | 11-8~7 | 12-11-5| 8-7
$I us / 2 0 _ ° DEL

Part] 9-12 9-11
8-7 8-7 Q-1 0-8-7 | 11-6 0-8-5 | 12-11-6] 9-12-7

5/12 5/13 | .7/12 7/13

France 11-8-2 | 0-8-2 11-0 | 11-0+8

USA 11-0-8-2 | 11-8-2 | 0-8~2 11-0

Fig. 17.19 Hollerith, Version 15

336 Which Hollerith?

12 [12 | 12 12
Hole 11 [il 7 il tl fail [— di
Pat. 0 0 0 0

5/10 10/10 13/0 14/0 Hole Patterns:

[t] 9-12-0-8-1 11 [13] 0-1 France \ { i]

[2] 9-12-11-8-1 12-11-0 9-11-0-1 USA] \ } {

[3] 9-11-0-8-1 [2] 12-0 [15] 12-11 Block | Hole Patterns at:

[4] 9-12-11-0-8-1 11-0 1 3 1 | Top and Left

[5] No Pch [1] 0-8-2 2 Bottom and Left

[6] 12 [2] 0 2 4 3 Top and Right

4 Bottom and Right
Fig. 17.20 EBCDIC (from Hollerith. Version 15)

Proposal 16

In March 1967, Task Group X3.2.3 prepared another Proposed USA
Standard Hollerith Punched Card Code (Fig. 17.21).

a) The problem of 12-11 versus 0-8-2 for code position 5/12, referred
to under Proposal 14 above, was resolved by assigning 0-8-2 to
position 5/12.

17.3 Proposals 337

b7| 0 0 0 0 1 1 1 1

b6 0 0 1 1 0 0 1 1

b5 0 1 0 1 0 1 0 1

Col
0 1 2 3 4 5 6 7

b4b3b2b1 | Row

NUL DLE SP 0 @
0000 0 9-12-0 | 9-12-11

8-1 8-1 No Pch 0 8-4

SOH DCl ! 1 A

000i 1

9-12-1 {9-11-1 | 12-8-7 1 12-1

STX Dc2 " 2 B

0010 2

9-12-2 | 9-11-2 8~7 2 12-2

ETX DC3 # 3 Cc

0071 3

9-12-3 | 9-113 8-3 3 12-3 0-2 12-0-3 | 11-0-2

EOT DC4 $ 4 D T d t

0100 4

9-7 9-8-4 | 11-8-3 4 12-4 0-3 12-0-4 |11-0-3

ENQ NAK % 5 E U e u

0101 5 9-0

8-5 9-8=5 0-8-4 5 12-5 0-4 12-0-5 | 11-0-4

ACK SYN & 6 F Vv £ Vv

0110 6 9-0

8-6 9-2 12 6 12-6 0-5 12-0-6 | 11-0-5

BEL ETB ' 7 G W g w
01411 7 9-0

8-7 9-0-6 8-5 7 12-7 0-6 12-0-7 | 11-0-6

BS CAN ¢ 8 H xX h x
1000 8

9-11-6 | 9-11-8 | 12-8-5 8 12-8 O~7 12-0-8 | 11-0-7

HT EM) 9 I Y 1 y
1001 9 9-11

9-12-5 8-1 11-8-5 9 12-9 0~8 12-0-9 | 11-0-8

LF SUB * : J Z j Zz
1010 10

9-0-5 9-8-7 | 11~8-4 8-2 11-1 0-9 12-111] 11-0-9

VT ESC + 5 K { k {
10311 11 9~12

8-3 9-0-7 | 12-8-6 | 11-8-6 11-2

FF FS ’ < L

1100 12 9-12 9-11

8-4 8-4 0-8~3 | 12-8-4 11-3

CR GS - = M

1101 13 9-12 9-11

8-5 8-5 ll 8-6 11-4

so RS . > N

1110 14 9-12 9-11

8-6 8-6 12-8-3 0-8-6 11-5

ST US / ? 0

17171 15 9-12 9-11
8-7 8-7 O-1 0-8-7 11-6 0-8-5 | 12-11-6| 9-12-7

Fig. 17.21 Hollerith, Version 16

b) All that remained was to assign hole patterns to code positions 7/12

and 7/14. Task Group X3.2.3 chose (for not very strong reasons)

hole patterns 0-8-1 and 12-8-1. This resulted in ~ and ~ being
proposed to be assigned to EBCDIC code positions 4/9 and 5/9,
respectively, as shown in Fig. 17.22.

338 Which Hollerith?

Hole

Pat.
Hole Patterns:

[7] 9-12-0-8-1 ll [13] 0-1
[2] 9-12-11-8-1 12-11-0 9-11-0-1 Block’ | Hole Patterns at:

[3] 9-11-0-8-1 [9] 12-0 [5] 12-11 1 3 1 | Top and Left

[4] 9-12-11-0-8-1 11-0 2 | Bottom and Left

[S] No Pch [v4] 0-8-2 2 4 3. | Top and Right
[se] 12 [72] 0 4 | Bottom and Right

Fig. 17.22 EBCDIC (from Hollerith, Version 16)

Proposal 17

As a result of ISO/TC97/SC2 ballots on Proposal 15, final agreement was

reached, as shown in Fig. 17.23. This proposal, subsequently incorporated
into a draft USA Standard Hollerith Card Code, was finally approved as a
USA Standard. The results for EBCDIC are shown in Fig. 17.24.

17.3 Proposals 339

b7/ 0 0 0) 1 1 1 1
b6 0 0 1 1 i) 0 1 1
b5 0 1 0 1 0 1 0 1

Col
i) 1 2 3 4 5 6 7

b4 b3 b2b1 | Row

NUL DLE SP 0 @ P * P
oo0o0o 0 |9-12-0 | 9-12-11

8-1 8-1 No Pch 0 8-4 11-7 8-1 |12-11-7
SOH DCL ui 1 A Q a q

0001 1
9-12-1 |9-11-1 | 12-8-7 1 12-1 11-8 |[12-0-1 |12-11-8
STX DC2 " 2 B R b x

0010 2
9-12-2 | 9-11-2 8-7 2 12-2 11-9 |12-0-2 |12-11-9
ETX DCc3 Fd 3 Cc s c s

0011 3
9-12-3 | 9-11-3 8-3 3 12-3 0-2 | 12-0-3 |11-0-2
EOT DC4 $ 4 D T d t

0100 4
9-7 9-8-4 | 11-8-3 4 12-4 0-3 | 12-0-4 | 11-0-3
ENQ NAK % 5 E U e u

0101 5 9-0
8-5 9-8-5 | 0-8-4 5 12-5 0-4 {12-0-5 | 11-0-4
ACK SYN & 6 F Vv £ v

0110 6 9-0
8-6 9-2 12 6 12-6 0-5 | 12-0-6 | 11-0-5
BEL ETB ' 7 G W g Ww

01411 7 9-0
8-7 9-0-6 8-5 7 12-7 0-6 | 12-0-7 | 11-0-6
BS CAN (8 H x h x

1000 8
9-11-6 | 9-11-8 | 12-8-5 8 12-8 0-7 | 12-0~8 | 11-0-7
HT EM) 9 T Y i y

1001 9 9-11
9-12-5 | 8-1 11-8~5 9 12-9 0-8 {| 12-0~9 | 11-0-8
LF SUB * : J Zz 5 Zz

10101] 10
9-0-5 | 9-8-7 | 11-8-4 8-2 il-1 0-9 | 12-11-1} 11-0-9
VT ESC + 3 K { k {

1011] 11 9-12
8-3 9-0-7 | 12-8-6 | 11-8-6 | 11-2 | 12-8-2 | 12-11-2| 12-0
FF FS 5 < L \ 1 {

1100) 12 9-12 9-11
8-4 8-4 0-8-3 | 12-8-4 | 11-3 O~8-2 | 12-11-3] 12-11
CR GS = = M 7 ™ }

11011] 13 9-12 9-11
8-5 8-5 11 8-6 11-4 |11-8-2 | 12-11-4; 11-0
So RS > N AT 2 0 ~

11107) 14 9-12 9-11
8-6 8-6 12-8-3 | 0-8-6 | 11-5 | 11-8-7 | 12-11-5] 11-0-1
SI US / 2 0 _ ° DEL

147447] 15 9-12 9-11
8-7 8-7 0-1 0-8-7 | 11-6 0-8-5 | 12-11-6] 9-12-7

Hole Patterns:

G] May be |

[2] May be ~

Fig. 17.23 Hollerith, Version 17

The Hollerith card code had finally been resolved. It subsequently
became both an ISO Recommendation and an ECMA Standard. The

ECMA Standard on Decimal ASCII was withdrawn.

340 Which Hollerith?

Column

Hole ll ll

Pat. 0

Hole Patterns: @ May be |
[7] 9-12-0-8-1 [7] 11 [3] 0-1 @ May be

[2] 9-12-11-8-1 12-11-0 9-11-0-1 Block | Hole Patterns at:

[3] 9-11-0-8-1 [2] 12-0 [is] 12-11 1 3 1 | Top and Left

[4] 9-12-11-0-8-1 11-0 2 | Bottom and Left

(s] No Pch [1] 0-8-2 2 4 3. | Top and Right

[e] 12 {r2] 0 4 | Bottom and Right

Fig. 17.24 EBCDIC (from Hollerith, Version 17)

Two further problems arose in the Hollerith Card Code with respect
to the assignment of the Katakana graphics and with respect to the

Alphabetic Extenders. These problems are discussed in Chapters 18 and 21,

respectively.

18
Katakana

and the Hollerith
Card Code

The Japanese written language, like the Chinese written language, is
ideographic; that is to say, each word is represented by an ideograph.
There are thousands (estimates run to 50,000, and higher) of ideographs.

In the early days of data processing in Japan, it was quite impractical to
provide these thousands of symbols on either a printing or display device.

18.1 KATAKANA SYMBOLS

Instead, a set of 47 phonetic symbols was used. These symbols are called
Katakana symbols (long used in Japan). The Katakana symbols, and the
sounds* they represent, are shown in Fig. 18.1.

These 47 basic Katakana symbols were assigned in EBCDIC in 1964
as shown in Fig. 18.2.

18.2 KATAKANA IN PTTC

These 47 basic Katakana were implemented on IBM products using the
88-graphic PTTC code, as identified below and shown in Fig. 18.3.

Alphabetics 26
Numerics 10

Katakana 47

Specials ., —- *y JS

88

*This book is not the place to go into the use of the “voiced-sound symbol,” the
“semi-voiced sound symbol,” or “small Katakana.”

341

Shape Name Shape Name

P A N HA
4 I b HI
9 U 7 FU
I E A HE
4 0 ih HO

b KA 2 MA
+ KI = MI
2 KU ds MU
y KE x ME
a KO E MO

tf SA P YA
y SHI
z SU 1 YU
PR SE
y SO 3 YO

a TA 3 RA
F CHI y RI
y TSU bp RU
F TE L RE
b TO o RO

t NA 9 WA
= NI y N
x NU
R NE * Voiced Sound Symbol
J NO e Semi-voiced Sound Symbol!

Fig. 18.1 Basic Katakana-47

coum] o | 1 [| 2 | 3 a|{s[e| 7 alojfal|e c|ofel| r

Bit 00 a1 10 114

Pat oo | 01 10 11 oo | 01 10 11 oo | 01 10 11 oo | 01 10 11
Row

0 {0000 y

1 |0001 ? 4q

2 |0010 f F \

3 |0011 % y ik

4 |0100 I tr Y

5 |0101 4 b =

6 |0110 p t 4

7 |011% + = d

8 1000 4 R £

9 |1001 2 Pp

A [10170 q J 2 L

B [1011 g

c |1100 ty 3 9

D {1101 v Nn 3 D

— |1110 za t y ‘

F 1114 p 2 v °

Fig. 18.2 EBCDIC basic Katakana-47

342

18.3 Katakana in EBCDIC 343

Lower Case Upper Case

Panag A B BA A B BA

SP ‘ if \ SP ° - *

1 x a z 5 1 x J A

2 2 h / 3 é S K B

21 P d y y 3 L C

4 9 t t y 4 U M D

41 I E = 4 5 V N E

42 A ¥ 3 N 6 W 0 F

421 P tt g + 7 Xx P G

8 1 y 3 2 8 Y Q H

8 1 3 y a = 9 Z R I

8 2 2 0

8 21 t R v W 0 : b

84

84 1

842

8421

Block | Hole Patterns at:

1 3 1 Top And Loft

2 | Bottom and Left

2 4 3 Top and Left

Fig. 18.3 Katakana-88 4 | Bottom and Lett

18.3. KATAKANA IN EBCDIC

Subsequently, 16 more Katakana symbols were introduced (see Fig.
18.4). They are called small Katakana and Katakana punctuation sym-

bols. These 16 Katakana symbols, and the 47 described previously, are

shown coded in EBCDIC in Fig. 18.5: 16 Katakana symbols in

columns 4 and 5, and 47 Katakana symbols in columns 8, 9, A, and B.

Shown in Fig. 18.6 are the 88 EBCDIC symbols assigned at that

time. It is to be observed that 26 of the Katakana symbols co-map into

Fig. 18.4 Small Katakana

Shape Name

Katakana full stop

Katakana.opening bracket

Katakana closing bracket

Katakana comma

Conjunctive symbol

Katakana particle

a

ya

yu

yo

tsu

Prolonged sound symbol

and Katakana Punctuation Symbols

coum] o | 1 | 2 | 3 a {os |e6| 7 efsfals c | o[e | e

Bit 00 01 10 11

Pat.
Row oo | 01 to | 41 oo | 01 10 | 11 oo | o1 10 | 11 | 00} 01 40 |] 71

o Jooo0 y

1 0001 ° L P 2

2 |o010 [4 q F \

3 40011 d P 4 ih

4 10100 . 2 I T XY

5 |0101 3 4 b =

6 [0110 7 9 dD t &

7 Jovi ? + = a

8 |1000 4 _ 2D x E

9)1001 9 5 a P

A |1010 4 7 i Lv

B [1071 o

c |1100 tf 4 9

Dp |1101 y N 3 y

E |1110 za t y ‘

e |14%1 b 2 Ib °

Fig. 18.5 Katakana-63 in EBCDIC

344

18.4 JISCII 345

Column| 0 | 1 2 3 4 | 5 6 7 8 9 A B c D E | F

Bit 00 01 10 11

Pat. "|
Row oo | 01 10 1 oo | 01 10 11 oo | 01 10 14 oo |] 01 10 11

0 |oo00 SP & - 0

1 [0004 / a j A J 1

2 |o010 b k s B K s 2

3 {0011 c 1 t Cc L T 3

4 |0100 d m u D M U 4

5 {0101 e n Vv E N v 5

6 [0110 f£ ° w F 0 W 6

7 [0111 g Pp x G P xX 7

8 |1000 h q y H Q Y 8

9 |1001 i r Zz I R Z 9

A |1010 ¢ !

B 11011 . $ > if

c |1100 < * 4 @

D }1101 () _ '

—E |1110 + : > =

F [1411 | 7 ?

Fig. 18.6 EBCDIC-88

the same EBCDIC code positions as the small Latin alphabetics. This was
not a problem at the time, since there were no data processing applica-

tions calling for the use of both Katakana symbols and small Latin
alphabetics. Subsequently, a problem arose, which will be described.

18.4 JISCIl

In 1968, the Code Standardization Committee of the Information Proces-

sing Society of Japan was preparing a draft Japanese Industrial Standard

Code for Information Interchange (JISCII). JISCII was to be based on the
ISO 7-Bit Code, but would be an 8-bit code. It is shown in Fig. 18.7, with

the 94 graphics of the ISO 7-Bit Code in columns 2 through 7 and the 63
Katakana symbols in columns 10 through 13. The control character KS in
code position 10/0 stands for Katakana Space.

It was observed, that in JISCII, the small Latin alphabetics and the

Katakana symbols had unique code positions, whereas, as has been noted

earlier, they co-map in EBCDIC. Therefore a one-to-one translation
relationship between the 256 JISCII code positions and the 256 EBCDIC

code positions was not possible.

346 Katakana and the Hollerith Card Code

Column] 0 | 1 | 2 | 3 4 | 5 | 6 | 7 8 | 9 | 10 14 12 | 13 | 14 | 15

Bit. 00 01 10 11

Row Par] oo | 01 | 10 | 11 | oo |} o+ | 10 | 11 | 08 | o1 | 10 7 11 | OO} 01 | 10 |] 41

o |0000 sp 0 @ P * P KS - a =

1 |o0001 | 1 A Q a q ° P F 4

2 |0010 " 2 B R b r r 4 y a

3 |0014 # 3 Cc 8 ¢ 8 J 9 > E

4 |o100 $ 4 D T d t : T b P

5 |0101 % 5 E U e u x t i

6 |0110 & 6 F V £ v 7 a = 4

7 }0111 ' 7 G WwW g w ? + x 3

8 |1000 (8 H X h x 4 2 z y

9 |1001) 9 I Y i y 9 y ? Ib

10 |1010 * : J Z j z I 4 N v

Ww j1014 + ; K [k ri 4 ¥ Cc g

12, [1100 , < L ¥ 1 P y 2 2

13, 111701 - = M 7 m } 1 z “\ y

14111170 . > N . n ~ a e it

16 41111 / ? oO _ o | DEL 9 y 2 °

Fig. 18.7 JISCII

It was foreseen that the requirement would come to translate EBC-
DIC to/from JISCII. Clearly, there were only two possibilities; either
change EBCDIC or change JISCII, so that a one-to-one relationship was
possible. The probability seemed low that, working through IBM rep-
resentatives to the Japanese Code Standardization Committee, the Com-
mittee would change JISCII. Therefore a decision was made to change
EBCDIC with respect to the Katakana symbols.

18.5 JISCil, HOLLERITH, AND EBCDIC

At this time, the International Code Standards Committee,

ISO/TC97/SC2, was working on the standardization of the Hollerith Card

Code (which they called the Twelve-Row Card Code), and had accepted
the requirement to standardize 256 hole patterns. Since it seemed likely
that the 256 hole patterns of the EBCDIC card code would be the 256
hole patterns selected for the 256-character Hollerith Card Code, rela-

tions between three codes, JISCII, Hollerith, and EBCDIC, occupied the

attention of ISO/TC97/SC2.

18.7 Assumptions for the Hollerith Card Code 347

18.6 OBJECTIVES FOR THE HOLLERITH CARD CODE

Objectives were set for the standardization of the Hollerith Card Code.

Objective 1. 256 hole-patterns should be provided, to meet the needs of
8-bit computer manufacturers.

Objective 2. The assignment of hole patterns to control and graphic
meanings should be as compatible as possible with existing assignments
on 6-bit and on 8-bit computers.

Objective 3. The needs of countries using non-Latin alphabets, as well
as the needs of countries using Latin alphabets, should be given consider-

ation.

Objective 4. The translation of the Hollerith hole patterns to the
EBCDIC bit patterns should be as simple as possible.

Objective 5. The translation of the Hollerith hole patterns to the bit
patterns of ISO-8 (the 8-bit expansion of the ISO 7-Bit Code) should be
as simple as possible.

Objective 6. The collating sequence of an alphabet should be code
independent.

Comment. It was recognized in ISO/TC97/SC2 that it was not possible to
achieve all these objectives. In particular, Objectives 4 and 5 are not
mutually achievable.

18.7 ASSUMPTIONS FOR THE HOLLERITH CARD CODE

Some assumptions were accepted by ISO/TC97/SC2.

Assumption 1. The set of 256 Hollerith hole patterns shown in Fig. 18.8

should be used.”

Assumption 2. The structure of ISO-8 would be as follows (see Fig.

18.9):

a) The embedment algorithm would be E8 = 0; that is, the 128 charac-

ters of ISO-7 would be embedded contiguously in the first 8 columns
of the 16-by-16 code table.

b) Columns 8 and 9 would be reserved for future assignment of control
characters. For purposes of reference, these code positions are desig-

nated KO through K31.

*This set of 256 hole patterns was also the starting point for the EBCDIC card
code (Fig. 11.3).

Fig. 18.8 256 hole patterns

cum] oft |2tsl¢«leslel7,e«,e[o[ul2]sfuw]s
Bit | 00 01 10 11

now } go | or | 10 | 11 | 00 | 01 | 10 | 11 | 00 | 01 | 10 | 11 | oof 01 f 10] 44

o joooo} NUL | DLE| SP) @ P p | KO | Ki6] NO | Ni6| N32] N48 Go | G16

1 [00017 SOH| Dc1| ! i A Q a q | Kl | K17— NL | NL7| N33] N49} G1 | G17

2 |o0010) STX| DC2} " 2 B R b x | K2 | KLI8[N2 | N18] N34/ N50] G2 | G18

3 Joo11} ETx| Dc3|] # 3 Cc s ce s | K3 | KL9}N3 | NLO | N35} N51 }G3 | G19

4 {0100} KOT] Dc4] $ 4 D T d t | K4 | K20] N4 | N20] N36] N52] G4 | G20

5 |0101) ENQ| NAK] % 5 E U e u [5 | K21)N5 | N21] N37] N539G5 | G21

6 |0110} ACK] SYN] & 6 F Vv f£ vy | K6 | K22}N6 | N22 | N38) N54 5 G6 622

7 }0111] BEL| ETB] ¢ 7 G Ww g w | RK7 | K239N7 | N23 | N39| N55]G7 | G23

8 |1000] BS | CAN] (8 H x h x | K8 | K24,N8 | N24] N40] N56] G8 | G24

9 {1003] Hr | EM) 9 I Y i y |KO | K25] NO | N25] N41] N57}-G9 | G25

10 |10107 LF | suB| * J Zz 4 z | K10 | K26] N1O | N26} N42) N58] G10 | G26

110 |1011} VE | ESC] + 3 K [k { | 11 | K27 |] N11 | N27 | N43] N59] G11 | G27

12 |1100/ FF | FS , < L \ 1 | | R12] K28} N12 | N28 | N44] N60] G12} G28

13 |11017 cR | GS - = M J m™ } | X13 | K29] NL3 | N29 | N45 | N61] G13 | G29

14 |1170] so | RS > N “ n “~ 7 K14 | R30] N14 | N30] N46 | N62] G14 | G30

15 (1117 st | us / 2? 0 _ o {| DEL § K15{ K3L 9 N15 | N31 | N47 | N63 9 G15} G3l

Fig. 18.9 Structure of ISO-8

8.7 Assumptions for the Hollerith Card Code 349

c) Columns 10 through 13 would be reserved for future assignment of
non-Latin alphabets. For purposes of reference, these code positions
are designated NO through N63.

d) Columns 14 and 15 would be reserved for future assignment of
special graphics. For purposes of reference, these code positions are
designated GO through G31.

Assumption 3. In countries with non-Latin alphabetic (Katakana, Cyril-
lic, etc.), programming language source statements would use capital Latin
alphabetics, but normal data processing applications could use the non-

Latin alphabetics.

Assumption 4. If small non-Latin alphabetics are required (as in Cyrillic,
for example), they can be co-mapped into the same code positions as the

small Latin alphabetics, if necessary.

Comment. What was assumed here was that there would be no data
processing application requiring four alphabets—the small and capital
Latin alphabets and small and capital non-Latin alphabets.

Assumption 5. The gross collating sequence for the Katakana symbols,
small Katakana and Katakana punctuation symbols collating low to basic
Katakana symbols, could be reversed in the future, if necessary.

Comment. One of the proposals described later did invoke this assump-

tion.

Assumption 6. The collating sequence of non-Latin alphabetics should be
the same in ISO-8 and in EBCDIC.

Assumption 7. Non-Latin alphabetics should be self-contiguous in ISO-8,
but need not be so in EBCDIC.

Some criteria, arising from Hollerith Card Code practices and im-

plementations of that time, were agreed to by ISO/TC97/SC2.

Criterion 1. The hole patterns long associated with Space, numerics,
capital alphabetics, and many specials, should be used.

Criterion 2. The hole patterns already associated with small alphabetics
in some manufacturers’ card equipments should be used.

Criterion 3. The hole patterns associated with certain control characters

(NUL, HT, DEL, BS, DC3, LF, ETB, ESC, EOT, SUB) in some
manufacturers’ card equipments should be used.

Comment. EBCDIC is structured so that the first 4 columns are for

control characters and the last 12 columns are for graphic characters.

ISO-8 (Fig. 18.9) is structured so that columns 0, 1, 8, and 9 are for

350 Katakana and the Hollerith Card Code

control characters; columns 2 through 7 and 10 through 15 are for
graphic characters.

Criterion 4. The same set of 64 hole patterns should be used for control
characters in both ISO-8 and EBCDIC. The same set of 192 hole
patterns should be used for graphic characters in both ISO-8 and
EBCDIC.

Comment. The folding characteristics of printer control units for
EBCDIC-based computing systems should be incorporated because it
would facilitate the provision of Latin, Katakana, and Cyrillic subsets on
printers.

Comment. Due to an anomaly, the simple 64-for-controls/192-for-

graphics correspondence between ISO-8 and EBCDIC described in

Criterion 4 above cannot exist precisely. The Delete character is in the

control character section of EBCDIC, but in column 7 of ISO-8 (there-

fore not in the control columns of ISO-8). To put it another way, only 63

of the control positions in columns 0, 1, 8, and 9 of ISO-8 can correspond

to the control positions in columns 0 through 3 of EBCDIC. The 64th

control position of ISO-8 (whatever it may be) must correspond to a

position in the graphic columns, 4 through F, of EBCDIC. The conse-

quence of this realization is described later.

Criterion 5. Given that Katakana (and Cyrillic) were to be reassigned in
EBCDIC, folding* capability should be available in the revised EBCDIC.

Comment. Following accepted conventions, the 16 columns and 16 rows
of the EBCDIC code table are numbered according to the hexadecimal
convention, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F, whereas the 16

columns and rows of ISO-8 are numbered 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10,

11, 12, 13, 14, 15.

18.8 DEVELOPMENT OF THE HOLLERITH CARD CODE

Given the Objectives, Assumptions, and Criteria above, development of a

256-character Hollerith Card Code proceeded in ISO/TC97/SC2.

Criteria 1, 2, and 3 essentially prescribed the Hollerith hole patterns
for the 94 graphics, for Space, for Delete, and for 9 control characters

(NUL, HT, BS, DC3, LF, ETB, ESC, EOT, SUB) of columns 0 through
7 of ISO-8.

*As will be described later, this “folding” criterion came into conflict with the
collating sequence of Katakana, and conflicting proposals were made to
ISO/TC97/SC2.

18.8 Development of the Hollerith Card Code 351

Considering the remaining 23 control characters in columns 0 and 1
xf the ISO 7-Bit code, it was observed, under Criterion 4, that zone-

yunch combinations of 9, 9-0, 9-11, and 9-12 were used in columns 0

through 3 of EBCDIC, but with zone-punch combinations of 9-12-0, 9-

12-11, 9-11-0, and 9-12-11-0 in row 0 of these columns. It was realized

chat the closest approach to Objective 5 (translation simplicity, Hollerith
to/from ISO-8) could be achieved if the digit punches were associated
within rows with the BCD low-order four bits of the 8-bit bit patterns.
Accordingly, assignments were made as shown in Fig. 18.10.

Observe that, with the exception of hole patterns for DLE and SYN,
the BCD relationship is fairly good. The hole pattern 9-12-11-8-1 was
one of the four in row 0, columns 0 through 3 of EBCDIC, and had to go
somewhere in ISO-8. It is not obvious, in retrospect, why 9-2 was
assigned to SYN.

This now left the following 31 hole patterns from columns 0 through
3 of EBCDIC, to be assigned to columns 8 and 9 of ISO-8 under
Criterion 4. (Of course, 32 hole patterns were needed, but the anomaly

Low-|Column-> 0 1

order} Row

4 bits J

0000 0 DLE 9-12-11-8-1

0001 1 SOH 9-12-1 DCi_ 9-11-1

0010 2 STX 9-12-2 DC2 9-11-2

OO11 3 ETX 9-12-3

0100 4 DC4 9-11-4

0101 5 ENQ_ 9-0-8-5 NAK 9-8-5

0110 6 ACK 9-0-8-6 SYN 9-2

0111 7 BEL 9-0-8-7

1000 8 CAN 9-11-8

1001 9 EM 9-11-8-1

1010 10

1011 11 VT 9-12-8-3

1100 12 FF 9-12-8-4 FS 9-11-8-4

1101 13 CR 9-12-8-5 GS 9-11-8-5

1110 14 SO 9-12-8-6 RS 9-11-8-6

1111 15 SI 9-12-8-7 US 9-11-8-7

Fig. 18.10 Hole patterns, columns O and 1

352 Katakana and the Hollerith Card Code

(see Comment on Criterion 4) would play a role here.)

9. 11-0-8-1

9-0-1

9-0-2

9-0-8 9-12-11-0-8-1

9-0-8-1 9-1

9-0-8-2 9-11-8-2

9-0-8-3 9-3

9-0-8-4 9-4

9-12-8-1 9-5

9-12-8-2 9-6

9-12-8-3 9-12-8

Following the same BCD translation rule described above, these were

assigned to columns 8 and 9 of ISO-8, as shown in Fig. 18.11.

Observe that, with the exception of hole patterns assigned to K13,

K14, K15, K23, K28, and K29, the BCD relationship is about as good as

it can be, given the hole patterns available for columns 8 and 9 of ISO-8.

Low- |Column-> 8 9

order| Row

4 bits- 1

0000 0 KO = 9-11-0-8-1 K16 9-12-11-0-8-1
0001 1 Ki = 9-0-1 K17 9-1

0010 2 K2 9-0-2 K18 9-11-8-2

0011 3 K3 9-0-3 K19 9-3

0100 4 K4 9-0-4 K20 9-4
0101 5 K5—-9-11-5 K21 9-5

0110 6 K6 = 9-12-6 K22 9-6
0111 7 K7 = -9-11-7 K23 9-12-8

1000 8 K8 9-0-8 K24 9-8
1001 9 K9 9-0-8-1 K25 9-8-1

1010 10 K10 9-0-8-2 K26 9-8-2

1011 11 K11 9-0-8-3 K27 9-8-3

1100 12 K12 9-0-8-4 K28 9-12-4

1101 13 K13 9-12-8-1 K29 9-11-4

1110 14 K14 9-12-8-2 K30 9-8-6

1111 15 K1i5 9-11-8-3 K31

Fig. 18.11 Hole patterns, columns 8 and 9

18.9 The 64th Hole Pattern 353

18.9 THE 64th HOLE PATTERN

For a hole pattern for K31, the anomaly (see Comment to Criterion 4

above) now came into play. All 64 hole patterns from columns 0 through 3

had been assigned to the Delete character and to 63 of the 64 control

positions in columns 0, 1, 8, and 9 of ISO-8. Where was the 64th hole

pattern to come from?

Column 9

Hole

Pat.
Hole Patterns:

[4] 9-12-0-8-1 [3]

[2] 9-12-11-8-1 9-11-0-1 Block | Hole Patterns at:

[3] 9-11-0-8-1 [2] fs) 1 3 1 | Top and Left

[4] 9-12-11-0-8-1 2 | Bottom and Left

[5] [a1] 2 4 3° | Top and Right

[s] fr] 4 | Bottom and Right

Fig. 18.12 Control characters in EBCDIC

354 Katakana and the Hollerith Card Code

Eventually after much discussion, ISO/TC97/SC2 chose the hole
pattern 9-11-0-1, which comes from EBCDIC hex position E1.

Incidentally, the assignment of hole patterns for columns 0, 1, 8, and

9 in ISO-8 now dictated where the 23 control characters in columns 0 and
1 of ISO-7 (not previously assigned in EBCDIC) and the 32 control
character positions (KO through K31) in columns 8 and 9 of ISO-8 should

be assigned in EBCDIC. This is shown in Fig. 18.12.
As described earlier, EBCDIC had been revised with respect to the

positioning of the Katakana graphics. This was made known to the
standards committees. During the discussions on the committees, it
became apparent that Criterion 5, the “folding” criterion, would come
into conflict with the collating sequence of Katakana.

18.10 EXAMPLES OF FOLDING

In order to appreciate the significance of the criterion on folding, four

examples are given.

cum ofa telelelelel?l*lelelelel>l*]+
Bit 00 01 10 11

Row Pat oo | o1 | 10 | 11 |] oO} 01 10 | 11 | oo | ot | 10 | 11 | oo | 01 |] 40 |] 11

0 j0000 sP & - uv 0

1 |0001 / P 4a A J 1

2 }0010 4 ¥ \ B K Ss 2

3 0011 9 y if c L T 3

4 |0100 I T v D M U 4

5 10101 4 b = E N v 5

6 |ot10 a y b F 0 W 6

7 jot + = a G P x 7

8 |1000 2 Bs t H Q Y 8

9 |1001 5 Eg P I R Z 9

A [1010 ¢ ! : a) 1 U

B [1011 . $ ¥ > # a

c |1100 < * a @ t 3 9

po [1104 () _ ' y N | 3 y

E |1110 + ; > = za t u

Foiaii | 7 2 " p 7 Wu
Fig. 18.13 EBCDIC Latin and basic Katakana

18.10 Examples of Folding 355

Example 1

The 47 Basic Katakana symbols, the 26 capital Latin alphabetics, the 10
numerics, 26 specials, and the Space character, as then assigned in

EBCDIC, are shown in Fig. 18.13.
If the two high-order bits of the 8-bit bit patterns are dropped, it will

be observed, as shown in Fig. 18.14, that the 26 Latin alphabetics, the 10

numerics, the 26 specials, and the Space character “fold” into a 6-bit
tableau. This dropping of the two high-order bits and the 6-bit resultant

tableau to ‘‘address”’ printing positions on a line printer is precisely what

a printer control unit can easily do. Then, if the graphic shapes shown in

Fig. 18.13 are actually in the addressed printing positions of the print

element (which could be a print chain, or a print train, for example), the

appropriate EBCDIC graphics will be printed when the appropriate

EBCDIC bit patterns are sent to the printer control unit.

ot em 00 01 10 11

0000 SP & - 0

0001 A J / 1

0010 B K s 2

0011 c L t 3

0100 D M U 4

0101 E N v 5

0110 F oO W 6

0111 G P x 7

1000 | H Q Y 8

1001 I R Z 9

1010 ¢ ! WS

1011 . $; #

17100 < * % @

1101 C) _ '

1110 + ; > =

1111 | - ? "
Fig. 18.14 Folded Latin-63

356 Katakana and the Hollerith Card Code

Example 2

As a further example, if the bit patterns for the 47 Basic Katakana
symbols, for the 10 numerics, for the following 6 specials

¥ > * ~ /

and for the Space character are sent to the printer control unit, the

dropping of the two high-order bits yields a folded Katakana set, as
shown in Fig. 18.15. Again, if these graphic symbols are in the addressed

printing positions of the print element, this Katakana subset will be
printed.

Observe, then, that the printer control unit has performed the identi-

cal operation on both the Latin set and the Katakana set—drop the two
high-order bits, and address the resultant 6-bit bit patterns to printing
positions on the print element. The two print elements are, of course,

Oe ern a0 01 10 11

5

0000 SP y - 0

0001 ? a / 1

0010 4 5 A 2

0011 9 y if 3

0100 I z 2 4

0101 + b = 5

0110 h t b 6

0111 # - x 7

1000 2 y E 8

1001 5 z P 9

1010 a / 1 v

1011 . ¥ ’ 4

1100 5 * 3 9

7701 y n 3 2

1110 z E i “

14114 t 2 ly °

Fig. 18.15 Folded Katakana-64

18.10 Examples of Folding 357

different, but they have a common characteristic—the appropriate graphic
is in the appropriate printing position on the print element.

Example 3

A somewhat more complex folding is required to provide 48-character
printing sets. The first part of the process in the printer-control unit is the
same, the dropping of the two high-order bits of the 8-bit bit patterns.
But, additionally, in the resultant 6-bit tableau, rows with low-order

4-bits equal to 1010, 1101, and 1111 are blocked. The three 6-bit bit

patterns 011110, 101110, and 111110 are also blocked. The 48 positions
then addressed to the printing positions of the print element are
designated by X in Fig. 18.16.

Referring back to Fig. 18.13, it can be seen that this 48-character
folding yields the 48-character folded Latin set shown in Fig. 18.17.

Bittern 00 01 10 14

N

0000 SP Xx x Xx

0001 X x x x

0010 x x x x

0011 X Xx Xx X

0100 X X X X

0101 x X X x

0110 X X X Xx

01114 X x x x

1000 X Xx X Xx

10014 x Xx x Xx

1010

1011 X x X Xx

1100 x x x x

1101

1110 x

1411
Fig. 18.16 48-character printing positions

Pattern 00 01 10 11

0000 SP & _ 0

0001 A J / 1

0010 B K s 9

0011 c L qT 3

0100 D M U 4

0101 E N Vv 5

0110 F 0 W 6

0111 G P x 7

1000 H Q XY 8

1001 I R Zz 9

1010

1011 $; #

1100 < * % @

1101

1110 +

1111

Fig. 18.17 EBCDIC folded Latin-48

coum] o | 1 | 2 | 3 [5 [6 | 7 e][ofa] s ce] of e|

Bit 00 01 10 11

Row Pay] oo | o1 | 10] 11 oa | 01 10 | 11 oo | 01 to | 41 | GO} 01 10 | 11

0 |0000 SP - H 0

41 [0001 / 1 A 1

2 |oo10 A M y 2

3 [0011 5 H nat 3

4 10100 u 0 B 4

5 10101 Zi nl b 5

6 |0110 E A bl 6

7 |0111 ob P 3 7

8 |1000 r c Ww 8

9 |1001 X T 3 9

A |1010

B [10171 cs ’ 4

ce |1100 * VW UW b

p [7101

E |1110 H

F {1111

Fig. 18.18 EBCDIC Cyrillic-48

8.11 Katakana Collating Sequence 359

txample 4

[he 32 large Cyrillic alphabetics, as then assigned in EBCDIC, are shown
n Fig. 18.18. Applying the 48-character folding process yields the 32
arge Cyrillic alphabetics, the 10 numerics, and the following 6 specials,

CS ’ * 7 /

is shown in Fig. 18.19, where CS stands for Currency Symbol.

Pattern 00 01 40 11

0000 SP H - 0

0001 oO J / 1

0010 A M y 2

0011 5 H Hi 3

0100 L 0 B 4

0101 A A b 5

0110 E A ; 6

0111 ah P 3 7

1000 r C uw 8

1001 X T 3 9

1010

1011 . cs ; 4

1100 U * ly b

1101

1110 Y

4111

Fig. 18.19 Folded Cyrillic-48

18.11 KATAKANA COLLATING SEQUENCE

As stated in Assumption 2(c), the non-Latin alphabetics would be as-

igned to columns 10 through 13 (Fig. 18.9). The proposal made to ANSI
X3L2 at this time met this assumption. However, the proposal had two
tharacteristics: (1) the 47 basic Katakana symbols would be assigned to

360 Katakana and the Hollerith Card Code

cum] of a1t2[slelele]7lelelal#lel°]=*|-
Bit | oo 01 10 11

Row Par oo | 01 | 10 | 11 oo} 01 io | 41 oo | o1 10 | 11 | oo} o1 10 | 11

o |0000 NO N32

1 10001 Nl N10 N48 N56

2 |o0010 N2 NLL | N19 | N49 N57

3 70071 N3 N12 | N20 | N50 N58

4 10100 N4 N13 | N21 | N51 N59

5 10101 N5 N14 | N22 | N52 N60

6 |0170 N6 N15 | N23 | N53 N6L

7 [0111 N7 | N16 | N24 | N54 N62

8 |1000 N8 N17 | N25 | N55 N63

9 |1001 NO | N18 | N26

A |1010 N27 | N33 | N37 | N42

B |1011 N43

¢ |1100 N28 N38 | N44

D }1101 N29 | N34 | N39 | N45

E |1110 N30 | N35 | N40 | N46

Fo 114114 N31 | N36 | N4l | N47
Fig. 18.20 Proposed revised EBCDIC non-Latin

positions N1 through N47, and the small Katakana and Katakana punctu-
ation symbols would be assigned to positions N48 through N63;* (2) the

assignment of these non-Latin code positions into EBCDIC was not only
noncontiguous (which was acceptable under Assumption 6), it was also
not in correct collating sequence, as shown in Fig. 18.20.

*It is interesting that the proposal to change the gross collating sequence of the

Katakana symbols in ISO-8 implied that JISCII should also be modified accord-

ingly. As was stated earlier in this chapter, it had been reckoned that JISCII could
not be changed, but nevertheless an attempt was being made here, indirectly, to

make that change happen.

18.11 Katakana Collating Sequence 361

Column| 0 | 1 2 3 4 | 5 6 | 7 8 | 9 | A | B c | D | E | F

Bit 00 01 10 11

Row Par oo | o1 | 10 | 47 | 06 | 01 | 10 4 11 | oo | 01 | 10 | 11 | OO} 01 | 10 4 411

0 |o000 sP | - N32 0)

1 |o0001 Nl | NIO} / 1

2 |oo10 n2 | n11 | N19 2
3 {0013 N3 | N12 | N20 3

4 |0100 N4 | N13] N21 4

5 |0101 N5 | N14} N22 5

6 | 0110 N6 | N15 | N23 6

7 [0111 N7 N16 | N24 7

8 |1000 N8 | N17] N25 8

9 {1001 NO | N18] N26 9

A |1010 N27 | N33 | N37 | N42

B |1011 . ¥ ’ N43

c |1100 * N28 N38 | N44

D {1101 N29 | N34 | N39 | N45

—]1110 N30 | N35 | N40 | N46

Fo f14a1 N31 | N36 | N4i | N47

Fig. 18.21 Proposed revised EBCDIC Katakana

Comment. The rationale put forward to justify the proposed change in
the Katakana gross collating sequence was as follows. The small
Katakana and Katakana punctuation symbols had been provided on data
processing equipment by few if any manufacturers, so both had been used
little (if at all) in user applications. In any event, if it was necessary for
some user application, to provide the “correct” collating sequence for all
53 Katakana symbols, then it was a fact that manufacturers, in their
system sorting programs, provided easy methods for a user to achieve any
-ollating sequence whatsoever, regardless of the native collating sequence
of the CPU.

The intent behind the proposal was to preserve the folding capability
n EBCDIC for Katakana and Cyrillic printing sets. Figure 18.21 shows

362 Katakana and the Hollerith Card Code

how the 47 basic Katakana symbols would, under the proposal, be
repositioned in EBCDIC (compare with Fig. 18.13). Figure 18.22 shows
the folded 64-character Katakana set derivable from this EBCDIC posi-
tioning (compare with Fig. 18.14).

b

o000 SP N32 - 0

0001 Nl N10 / 1

oa70 N2 NLL N19 2

0011 N3 N12 N20 3

o100 N4 NL3 N21 4

0101 N5 N14 N22 5

0110 N6 N15 N23 6

0114 N7 N16 N24 7

1000 N8 N17 N25 8

1001 No N18 N26 9

10140 N27 N33 N37 N42

1011 . x > N43

1100 N28 * N38 N44

1101 N29 N34 N39 N45

1110 N30 N35 N40 N46

1111 N31 N36 N41 N47
Fig. 18.22 Proposed revised folded Katakana-64

18.12 CYRILLIC IN EBCDIC

Figure 18.23 shows how the 32 capital Cyrillic alphabetics would be
repositioned in EBCDIC under the proposal (compare with Fig. 18.18). It
should be noted that the first 26 capital Cyrillic alphabetics would go into
EBCDIC positions N1 through N26, while the 27th through the 32nd
capital Cyrillic alphabetics would go into EBCDIC code positions N28,
N30, N32, N38, N43, and N44. The 48-character folded Cyrillic set

resulting from the EBCDIC positioning is shown in Fig. 18.24 (compare
with Fig. 18.19).

cum of 1tatesl[elelel7lelelalelel»= lel
BE 00 01 10 14

Row Pay oo | o1 | 10 | 14 | oO | o1 | 10 | 11 | 00 | 01 | 10 | 11 | 08 | 01 | 10 | 14

0 |0000 SP - N32 0

1 [0001 N1 | N1O} / 1

2 |o0010 N2 | N11 | N19 2

3 |oo11 w3 | wi2 | w20 3

4 |0100 N4 | N13 | N21 4

5 [0104 NS | N14 | N22 5

6 |o1to N6 | N15 | N23 6

7 |o111 N7 | N16 | N24 7

8 |1000 N8 | N17] N25 8

9 {100% N9 | N18 | N26 9

A 11010

B {1011 cs ’ N43

c |1100 * N28 N38 N44

5 1101

E |1110 N30

F |1114

‘ig. 18.23 Proposed revised EBCDIC Cyrillic

Pattern —___——+ 00 01 10 11

9000 SP N32 - 0

0007 NL N10 / 1

0010 N2 Nil N19 2

0011 N3 N12 N20 3

0100 N4 N13 N21 4

017101 N5 N14 N22 5

0110 N6 N15 N23 6

0111 N7 N16 N24 7

1000 N8 N17 N25 8

1001 No N18 N26 9

1010

1011 cs ; N43

1100 N28 * N38 N44

17101

1110 N30

1711

Fig. 18.24 Proposed revised folded Cyrillic-48

364 Katakana and the Hollerith Card Code

18.13 THE U.S.A. PROPOSAL

The proposal for a revised EBCDIC had been put forward to the U.S.A.
code standards committee X3L2. Subsequently, X3L2 proposed it to
ISO/TC97/SC2, where it became known as the “U.S.A. Proposal.”

It was realized that the “incorrect”? gross collating sequence for

Katakana in the proposed revised EBCDIC was not a serious “defect,”
since any collating sequence whatsoever could be provided by sort
programs. Nevertheless, this defect disturbed people, and an alternate
proposed revised EBCDIC came forward in France.

18.14 THE FRENCH PROPOSAL

The essence of the “French Proposal,” as it came to be known, was that

the coding positions NO through N63 and GO through G31 in ISO-8 (see
Fig. 18.9) should be assigned consecutively (though not contiguously) in
the 94 remaining code positions of EBCDIC. This is shown in Fig. 18.25.

coum] o | 1 | 2] 3 a | s |e] 7 ej] 9 [als c{ ofe| r

Bit | 00 01 10 11

Row Per oo | o1 | 10 | 11 | OO] O1 10 | 11 | 00 | 01 10 | 11 | OO} O1 10 | 11

0 |0000 N26 | N35 | N42 | N49 | N56

1 {0001 NO | NO N27 N57

2 |oo10 NI | NLO | N18 | N28 N58

3 |0071 N2 } NIL} N19 | N29 N59

4 |0100 N3 | N12 | N20] N30 N60

5 |o104 N4 | N13 | N21| N31 | NOL

6 |}0110 NS N14 | N22] N32 N62

7 Jo1tt N6é | N15] N23] N33 N63

8 {1000 N7 N16] N24] N34 GO

9 |1001 N8 | N17] N25 Gl

A |1010 N36 | N43 | N50 | G2 | G8 | G14 | G20 | G26

B {1011 N37 | N44 | N51 | G3 | G9 | G15 | G21 | G27

c 11100 N38 | N45 | N52] G4 | GLO] G16 | G22 | G28

D {1101 N39 | N46] N53} GS | G1i| G17 | G23 | G29

&€ {1110 N40 | N47 | N54 |].G6 | G12] G18] G24 | G30

Fo.4111 N41 | N48 | N55 | G7 | G13] G19} G25] G31

Fig. 18.25 Alternate proposed revised EBCDIC

18.16 The Hollerith Card Code, Final Version 365

18.15 FOLDING VERSUS COLLATING

Two points can be made with respect to the alternate proposed revised
EBCDIC: (1) the collating sequence of Katakana (and, indeed, of any
non-Latin alphabet correctly sequenced in ISO-8) would be maintained in
EBCDIC, and (2) there would be no way whatsoever to set up a simple

folding algorithm for either 48-character or 64-character sets from the NO
through N63 code positions.in EBCDIC.

These two aspects—collating sequence (the French proposal) and
folding capability (the U.S.A. proposal)—came to characterize the two
proposals in discussions on the standards committees. Eventually, the
French proposal won more adherents in ISO/TC97/SC2, and it was
adopted.

It should be borne in mind that the objective of the standards
committees was not to standardize a revised EBCDIC (although it might
seem so from the previous discussion) but to standardize a 256-character
Hollerith Card Code. There was, perhaps, a realization that, regardless of

whether it was called the EBCDIC card code, or the Hollerith Card Code,

or the Twelve-Row card code, it should be the same. For example, the

hole pattern 12-1 should be the hole pattern for the alphabetic A and the
hole pattern 12-8-5 should be the hole pattern for the “left parenthesis”
in all these card codes.

18.16 THE HOLLERITH CARD CODE, FINAL VERSION

In any event, a one-to-one correspondence had now been established

between the 256 bit patterns of EBCDIC and the 256 bit patterns of
ISO-8. Given this correspondence, what remained to be done to specify
the 256-character Hollerith Card Code was quite mechanical. The al-

gorithm was as follows:

" Take an EBCDIC bit pattern;

"take its associated EBCDIC hole pattern;

"associate this hole pattern with the ISO-8 bit pattern corresponding

to the EBCDIC bit pattern;

"Do this for all 256 EBCDIC bit patterns.

The final result is shown in Fig. 18.26. This reflects the notation in Fig.
18.9, where the control characters and graphic characters shown in
columns 0 through 7 of that figure are used in Fig. 18.26, and the
position-designators KO through K31, NO through N63, and GO through
G31 in columns 8 through 15 of that figure are also used in Fig. 18.26.

366 Katakana and the Hollerith Card Code

Hole Hole

Pat. | 12 12 | 12 12 | 12 12_ | 12 12 |, Pat
Ll Li [11 | 2) 11 fir fu |

Q Q Q 0 Q Qt 9

& - o jsp | f } | N26]N8 | N17/}N25 | ~) N35} N42 | N49.1 N56] 8-1

11 Aq dg / 1 a | ji ~ (N57 [SOH |} DCL | KL |K17 {NO [NO | K3L | N27 1

2 B K 5 2 b k s |N58]STX |DC2}]K2 | SYN |) NL | N10 | N18 | N28 2

3 c L T 3 c 1 t |N59 | ETX | DC3 |} K3 | K19 |}N2 | N11 | N19 | N29 3

4 D M U 4 d m u | N60] K28 |] K29 | K4 | K20]N3 {N12 | N20 | N30 4

5 E N Vv 5 e n. v |N6i 7 HT | K5 | LF K21 | N4 | N13 | N21 | N31 5

6 F 0 W 6 f£ ° w |N627K6 | BS | ETB | K22|N5 | N14 | N22 | N32 6

7 G P xX 7 g P x | N63 | DEL | K7 ESC | EOT | N6 | N15 | N23 | N33 7

@/ulaqiyx{eat|{n=tqaé=isdy jceo [23 |can}K8 |K24|N7 | N16 | N24 | N34] 8

2h r}eRtizgtstofaif-er | 2 jet }xi3}]em {xo | x25] nut] DLE] Ko | x16} 8-1

8-2 C 7 \ : N36 | N43 |N50 |G2 | K14 | K18 | K10 | K26|G8 | G14 | G20 | G26 | 8-2

8-3 . $ ’ # |N37)N44 [N51]G3 | VT | KL5 | Kil | K27 {G9 | G15 | G21 | G27 | 8-3

8-4 < * hs @ |N38]N45|N52|G4 | FF | FS |} K12 | DC4 | G1O | G16 | G22 | G28 | 8-4

8-5 () _ ' 1N39|N46]N53|G5 [CR | GS | ENQ | NAK | G11 | G17 | G23 | G29 | 8-5

8-6 + : > = 1N401N47!/N54]GCG6 7 SO | RS | ACK] K30] G12] G18 | G24 | G30] 8-6

8-7 | “ ? " | N41 | N48]N55|1G7 [SI | US | BEL] SUB | G13 | G19 | G25 | G31 | 8-7

7 9; 9 tT oT of ot ot of 9
. 12 12 | 12 12

Hole 11 11 | 11 [11
Pat. 0 0 0 0

2 Block | Hole Patterns at:

1 Top and Left

2 | Top and Right
 3 Bottom and Right

Fig. 18.26 256-character Hollerith card code

18.17 REVISED KATAKANA IN EBCDIC

The final revised Katakana for EBCDIC is shown in Fig. 18.27 (compare
with Fig. 18.5). The original EBCDIC Katakana (Fig. 18.5) had been
implemented on the IBM System/360, and was also implemented on the
IBM System/370. The revised EBCDIC Katakana of Fig. 18.27 was
implemented on the IBM System/3.

18.17 Revised Katakana in EBCDIC 367

Column of 1] 2] 3 a|[s|s6]| 7 e}|2|ale c]poje|r

Bit | oo 01 10 11 2

Pat.”
oo o1 190 vw 00 a1 10 V1 ae 01 10 V1 aq 01 10 v1

Row

0 joo000 q T Nn b y

1 {0001 9 ty Ww
- af

2 10010 ° I 4 y U

3 [00171 f a yg Zz o

4 10100 J P I P 9

5 |0101 ’ a q y »

6 }0110 . 3 fj 8 ‘

7 0111 3 y + F °

8 |1000 ? _ 2 4)

9 |1001 t P vi)

A [1010 k E x
-—4

B [1011 + 2 E

c |1100 = A p |

D 1101 z ih 2

E |1110 x z 3

F Jt111) = 5 1
Fig. 18.27. Final revised EBCDIC Katakana

It was considered at that time that there would be a data interchange
problem if users wanted to interchange the Katakana data between a
System/3 and a System/370, or if a user wanted to migrate from a
System/3 to a System/370, which has greater capabilities, and still use the
System/3 Katakana data bases. As it turned out, there was little or no
user interchange of Katakana data between System/3’s and System/370’s.
Additional capabilities were provided for the System/3 itself over the
years, so that there was little or no user migration from System/3’s to

System/370’s. In short, neither of the two potential problems

materialized.

19
What

Is aCPU Code?

19.1 INTRODUCTION

Central Processing Unit (CPU): The unit of a computing system that
includes the circuits controlling the interpretation and execution of in-
structions.

What is a CPU Code? To answer this question by saying that a CPU
code is the code used by a CPU answers the letter but not the spirit of the
question. A CPU inputs, manipulates, processes, and outputs data in
many shapes and forms. It is not uncommon to view a character code as
being the only code form of significance to a CPU. But many other code
forms—packed decimal, signed numerics, binary numbers, floating-point

numbers, bit strings, and so on—are processed and manipulated by a CPU.
The question would have been more meaningful if it had been

What are the attributes of a character code, the presence or absence

of which would cause the code to be categorized as a viable or

nonviable CPU code?

As a preliminary to answering the question, the attributes of codes of
more limited context, such as a magnetic tape code, a data transmission
device code, and a punched card code are analyzed.

19.2 MAGNETIC TAPE CODE

What are the attributes that make a code suitable or desirable for

magnetic tape? There are two attributes—one speaking to the format of

data recorded on magnetic tape, the other speaking to control of the
magnetic tape drive.

369

370 What Is a CPU Code?

Suppose a magnetic tape has nine recording tracks, with one track
dedicated to parity and the other eight tracks available for recording data,
or for recording a code. Then the code should be eight bits or less in byte
size. Similarly, for seven-track tape, with one track dedicated to parity
and six tracks for the recording of either data or a code, the magnetic tape

code should be six bits or less in byte size. The phrases ‘eight bits or less”
and “‘six bits or less” were used with the realization that if, for example, a

code of less than eight bits is to be recorded on eight data tracks, it is
simple to fill (or pad in) zero bits to bring the byte size of the magnetic
tape up to eight. By contrast, to record, for example, a seven-bit or
eight-bit code on six data tracks would take a scheme which, while
feasible, is complex. The hardware to implement such a recording scheme
would be more complex than the hardware to record a seven-bit code on

eight data tracks.
The other attribute of a magnetic-tape code is that it must contain

the control characters necessary both to control the tape drive and to format

or to structure the records recorded on tape. For seven-track magnetic tape

and six-bit codes, as many as seven different control characters were used

to control the tape movement or to implement various data formatting
schemes on different CPU systems. On early nine-track tape drives, only
one control character was used to control tape movement, and on recent

nine-track tape drives, no control characters are used. For the latter type

of tape drives, control is exercised by the execution of either computer
instructions or channel commands.

19.3 DATA TRANSMISSION DEVICE CODE

When the environment of a transmission medium involves printing or

display devices, another attribute is necessary besides those described
above. The code for such a medium must also provide the graphic
characters to meet the requirements of applications that use the medium
and associated devices. For such environments, three attributes are neces-

sary:

a) byte size commensurate with the transmission format of the medium;

b) control characters to control the terminal, printing, or display de-
Vices;

c) graphic characters to meet the application requirements that use the
transmission medium and associated devices.

19.4 PUNCHED CARD CODE

A punched card code such as Hollerith has attributes that, though desira-
ble, are conflicting. As a consequence, manufacturers of punched card

19.5 CPU Code 371

equipment have to make trade-off decisions on these conflicting attri-

butes.
In order to process on computing systems the data from punched

cards, the punched card code must be translated to some other code form.

In some computing systems, for example, the digit punches were trans-
lated to their binary-coded decimal equivalents, so that the system could
add and subtract the data. In these computing systems, the hardware
translation was implemented in electronic logic. The translation circuitry
was usually located in the computer, not in the reader/punch unit. Such
logic was costly. It was estimated that compared to a card reader/punch
used as input/output to a computer, the cost of the translation hardware
was one third of the cost of the total hardware circuitry of a
reader/punch.

A desirable attribute of a card code, then, is that the translation

to/from a related bit code should be as simple as possible. The translation
hardware for a binary punched card code would have been substantially
less complex than it would have been for the Hollerith punched card

code.
The punched card code chosen by standards committees for standar-

dization, however, was not binary, because a binary card code has two
consequences that are quite undesirable. A binary card code requires
more holes per character than the Hollerith card code. For example, a
binary card code to represent a 64-character six-bit code would require as
many as six holes per character, whereas the 64-character Hollerith Card

Code requires no more than three holes per character. The additional

holes per character of a binary card code have undesirable consequences:
(1) the punched card itself would be structurally weak, and hence unreli-

able; (2) if there are more holes per character, the punch dies and plate
must be of much more rugged construction (that is, higher manufacturing
cost), and maintenance costs will be higher. (For a fuller discussion of
these points, see Chapter 16.)

To sum up for punched card codes, translation simplicity to/from a
related bit code is certainly a desirable attribute, but the simplest transla-
tion scheme, binary, has undesirable consequences—card unreliability,
and higher manufacturing and equipment maintenance costs.

19.5 CPU CODE

By looking at magnetic tape codes, punched card codes, and data trans-
mission device codes, three fundamental attributes of a media code have

been discerned:

= The byte size of the code must be commensurate with the recording
or transmitting format of the associated physical medium.

What Is a CPU Code?

Pattern nad A B BA

Hole
Pattern—> 0 11 12

SP 6 Ly - & or +

1 1 L / j A

2 2 2 s K B

21 3 3 T L c

4 4 4 U M D

4 1 5 5 Vv N E

42 6 6 W 0 F

421 7 7 x P c

8 8 8 Y Q H

8 1 9 9 Z R I

8 2 0 0 + L2| ! 2

8 21 8-3 # or = ; $

84 a-4 @ or ' % or ¢ * Wor)

84 1 8-5 Y] [

842 8-6 > \ ; <

8421 8-7 v # A +

Hole Patterns:
SP - Space

[1] 8-2
[2] 0-8-2

Fig. 19.1 BCDIC

The code must provide control characters to control associated

devices.

If there are associated printing or display devices, the code must

provide graphic characters to meet the requirements of applications

using the devices.

In short, a code must meet the functional requirements of the associated

medium and associated product(s).

The functional requirements for CPU codes are much broader, more

subtle, and more complex than they are for the media codes discussed

above. For example, since a CPU may control the media and products

discussed above, it must meet their functional requirements as well as its

own intrinsic functional requirements.

19.6 Control Characters for Associated Products 373

A number of functional requirements of CPU codes will be

discussed:

"control characters for associated products,

=" graphic characters for associated products,

=" numeric capabilities,

collating sequence,

=" translation simplicity to media codes,

= compatibility with other codes.

(Contiguity or non-contiguity of alphabetic characters will be discussed in

Chapter 25.)
These aspects will be discussed for three prominent character codes:

=" BCDIC, BCD Interchange Code, a 64-character, 6-bit bit code and

12-row card code (Fig. 19.1).

EBCDIC, Extended BCD Interchange Code, a 256-character, 8-bit

bit code and 12-row card code.

s» ASCII, A 128-character, 7-bit bit code.

Other character codes that will be discussed in less detail are:

= Hollerith Card Code, a 256-character, 12-row card code, with 64-

character and 128-character subsets,

» CCITT #2, a 58-character, 5-bit bit code,

=" Fieldata, a 128-character, 7-bit code.

19.6. CONTROL CHARACTERS FOR ASSOCIATED PRODUCTS

19.6.1 BCDIC

The seven control characters in BCDIC and the graphics provided to
represent them are shown below.

Graphic Control character

Substitute Blank
Word Separator
Mode Change

Record Mark

Group Mark
Segment Mark

Tape Mark 2
f
t
+
+

p
e
e

Such graphics were useful in printouts for debugging programs.

374 What Is a CPU Code?

These control characters controlled either the movement of the
seven-track magnetic tape associated with the computing systems current
at that time or the formatting and structuring of data to be recorded on

magnetic tape. Not all of these control characters functioned on all
computing systems, and indeed, some of them functioned differently from

one system to another.

Tape Mark and Segment Mark were used to control the movement
of tape. Record Mark and Group Mark were used for formatting and
structuring of data to be recorded on tape.

Magnetic tape systems of those days were described as odd-parity
systems, or as even-parity systems, according as the seven-track magnetic
tape associated with the system was odd or even parity. On even-parity
systems, the Space character (whose bit pattern is all zero bits), if
recorded on tape, would be indistinguishable from blank tape. This
situation rendered the Space character essentially unusable on such tapes.
Instead, the Substitute Blank was used in its place.

The Word Separator character was necessary on 1401-1410 systems,
which in a sense had 7-bit memories. One of the options available on the
system was that when a bit pattern that had a one-bit as its seventh bit
was recorded from memory on tape, the seventh bit would be stripped

off, and a Word Separator bit pattern would be injected in the string of
bit patterns being recorded on tape. On reading from magnetic tape to
memory, the opposite process would ensue. The Word Separator charac-
ter, then, was a means of making the 7-bit CPU code commensurate with
the 6-bit byte size of magnetic tape.

The Mode Change character was used on magnetic tape for 7070
systems to indicate the beginning and end of numerical mode.

19.6.2 General Definitions for Control Characters

The control characters of EBCDIC (Fig. 19.2) and ASCII (Fig. 19.3) fall

into seven classifications by function. Ten of these control characters are
subclassified as data communication systems control, and are indicated by
an asterisk (*) in the listings below.

Customer use

Characters used to designate user-assigned function, which may be

realizable by user software:
ASCII EBCDIC

CU1 Customer Use 1 x

CU2 Customer Use 2 xX

CU3 Customer Use 3 x

19.6

Fig. 1

Control Characters for Associated Products

Column 0

00

12

Hole

Pat.

Hole Patterns:

[1] 9-12-0-8-1 11 [13] 0-1
[2] 9-12-11-8-1 12-11-0 9-11-0-1
[3] 9-11-0-8-1 12-0 [15] 12-11

(4] 9-12-11-0-8-1 11-0

[s] No Pch [a] 0-8-2

[e] 12 {12} 0

9.2 EBCDIC

375

Block | Hole Patterns at:

1 Top and Left

2 | Bottom and Left

3. | Top and Right
 4 Bottom and Right

376 What Is a CPU Code?

b7| 0 0 0 0 1 1 1 1

b6 0 0 1 1 0 0 1 1

b5 0 1 0 1 0 1 0

Col
0 1 2 3 4 5 6 7

b4b3 b2b1 | Row

NUL DLE SP 0 @ P P
0000 0

SOH DC1 ! 1 A Q a q
0001 1

STX DC2 " 2 B R b r

00310 2

ETX DC3 i 3 c S c s

00141 3

EOT DC4 $ 4 D T d t

0100 4

ENQ NAK a 5 E U e u
01041 5

ACK SYN & 6 F Vv £ Vv
0110 6

BEL ETB ' 7 G W g w
01141 7

BS CAN (8 H x h x
1000 8

HT EM 5) 9 T Y i y
1001 9

LF SUB x : J Z 5 Z
1010 10

VT ESC + ; K c k {
1011 11

FF FS ’ < L \ 1 i

1100 12 ,

CR GS = = M J m }
11041 13

so RS : > N “ n ~
1171710 14

ST US / ? 0 _ ° DEL
1711771 15

Fig. 19.3 ASCII

19.6 Control Characters for Associated Products 377

Device control

Characters used to control devices or to control major functions of

devices:

ASCII EBCDIC

PF Punch Off

PN Punch On

RS Reader Stop

DC1 Device Control 1

DC2 Device Control 2

DC3 Device Control 3

DC4 Device Control 4 a
K
 mM

|

M
K

|

K
M

~
M
X

|.

Error control

Characters used for error control, for indicating ‘“‘alarms,”’ or for identify-
ing or requesting identification of stations in a communications system:

ASCIT EBCDIC

DEL Delete

CAN Cancel

*ENO Enquiry
*ACK Acknowledge

*NAK Negative Acknowledge
BEL Bell

SUB Substitute

EO Eight Ones

~
1

mm
x

|
K
M

|

K
X

mx
]

KM
]

mK
]

K
X

378 What Is a CPU Code?

Formatting or editing control

Characters used for formatting or editing data:

ASCII EBCDIC

HT Horizontal Tab

VT Vertical Tab

Xx

FF Form Feed
CR Carriage Return

Xx

x
Xx

NL New Line

BS __ Backspace ms

LF Line Feed

RLF Reverse Line Feed

~

DS _ Digit Select

SOS Start of Significance

FS Field Separator
SP Space A

x

|

KR
M]

R
K

KM
]

m
M

|

K
K

Grouping control

Characters used to group data or information:

*SOH

*STX

Start of Heading

Start of Text

ASCII EBCDIC

*ETX End of Text

SMM Start of Manual Message

EM

CC

End of Medium

Cursor Control

*

IFS

IGS

Interchange File Separator

Interchange Group Separator

IRS

{US

Interchange Record Separator

Interchange Unit Separator

*ETB

*EOT

End of Transmission Block

End of Transmission ~m
K

|
Mo
M]

K
M

~
A

|

K
M

K
K

|

K
K

|

K
M

|

OM
X

19.6 Control Characters for Associated Products 379

In ASCII, the following nomenclature is used:

FS File Separator

GS Group Separator
RS Record Separator
US Unit Separator

Mode control

Characters used to set, change, or restore a mode of operation:

ASCIL EBCDIC

LC Lower Case

UC Upper Case

SI Shift In
SO — Shift Out

ESC Escape

*DLE Data Link Escape x
x

|
K
M

GE | Graphic Escape

BYP Bypass

RES Restore

SM Set Mode mm
,

M
K

|
RM

]
O
M
]

K
M

Synchronization control

Characters used for synchronization of communication systems, or for
synchronization of data within a format, or for synchronization of data

streams with certain timing characteristics of a function of some device:

ASCII EBCDIC

NUL Null xX Xx

IL Idle Xx

*SYN_ Synchronous Idle Xx xX

ASCII lacks many of the control characters deemed essential for the
CPU Code, EBCDIC, but such characters could be assigned into code

‘xtensions of ASCII.

380 What Is a CPU Code?

19.7 GRAPHIC CHARACTER CAPABILITY

19.7.1 BCDIC

BCDIC has 68 graphic characters, as follows:

26 Alphabetics _ A to Z

10 Numerics 0 to 9

15 Specials . 3 ; *

[|]) §$
f\ $$ 9 =

10 Duals HH & HK % @

= +) (-
7 Graphics to

represent controls + Vv y A

+ += 6

Note. There are 68 graphics, but with the five dual pairs, only 63 code

positions are utilized.
The graphics used to represent control functions were considered to

be useful for printouts in debugging programs.
The other graphics were sufficient for the commerical and

scientific/engineering applications of the time, and for some programming

languages (FORTRAN, COBOL, and various Assemblers).

The duals of BCDIC were not created or invented at the same time.

On the tabulating and accounting products and systems of the early

1950s, a 48-graphic set adequate for “commercial” applications was

provided:

1 Space

10 Numerics 0 to 9
26 Alphabetics A to Z

11 Specials ., * | = § % 4 & # @

With the advent of FORTRAN, for “‘scientific’” applications, a different
48-graphic set was required:

1 Space

10 Numerics 0 to 9
26 Alphabetics A to Z
11 Specials ., * | - §$ () + = '

19.8 Numeric Capability 381

The “inventors” and users of these overlapping graphic sets thought
that the application areas were separable. They were, until COBOL

created a requirement for both the ‘commerical’? and “scientific”
graphics within a single application, or at least within a single computing
installation. Intended application has a profound bearing on code design.

19.7.2 EBCDIC

EBCDIC has 192 code positions reserved for graphic characters. The

Space character and the 94 graphic characters of ASCII are assigned.
Graphics are assigned for various non-Latin alphabets:

« Katakana (see Fig. 10.10)

=" §6Cyrillic (see Fig. 2.34)

" Hebrew (not shown here)

Arabic (not shown here)

" Greek (not shown here)

Graphics are assigned for various Latin alphabets which require
more than the 26 letters of English-speaking countries (not shown here).

Graphics for FORTRAN, COBOL, PL/I, and ALGOL (standard subset)

are assigned.

For text processing applications, 120 graphics are assigned (see

Chapter 26).

19.7.3 ASCII

ASCII has 94 graphic characters, sufficient for most data processing
applications. It lacks others for applications such as text processing,

non-Latin alphabets, but these could be assigned into code extensions of
ASCII.

19.8 NUMERIC CAPABILITY

An aspect of numeric capability of a CPU code, signed numerics, will be
discussed.

19.8.1 Signed numerics

BCDIC, EBCDIC, and ASCII are alike in one very important

characteristic—they can be called, generically, BCD codes. The four

‘ow-order bits of the bit patterns that represent the numerics are binary

382 What Is a CPU Code?

coded decimal (BCD), as shown in Fig. 19.4. Note that the sequence in

BCDIC—1, 2, 3, 4, 5, 6, 7, 8, 9, O—will not affect the train of the

discussion to follow. The arithmetic circuitry of BCDIC computers took
into account the particular BCD bit pattern 1010, for 0.

Numeric BCDIC EBCDIC ASCII

0 IAAT 1111 0000 011 0000
1 00 0001 1111 0001 011 0001

2 00 0010 1111 0010 011 0010

3 00 0011 1111 0011 011 0011

4 00 0100 1111 0100 011 0100

5 00 0101 1111 0101 011 0101

6 00 9110 1111 0110 011 0110

7 00 0111 1111 0111 011 0111

8 00 1000 1111 1000 011 1000

9 00 1001 1111 1001 011 1001

0 00 1010 HAT AEE

Fig. 19.4 BCD numerics

The BCD characteristic, in fact, is the source of the names BCDIC and

EBCDIC—BCD Interchange Code and Extended BCD Interchange
Code. And this BCD characteristic was quite intentionally built into
ASCII.

From ANSI X3.4-1963, ASCII, Criterion C2.6 reads:

The numerals 0 through 9 shall be so coded that the four low-order

bits shall be the binary coded decimal form of the particular numeral
that the code represents.

The same criterion worded slightly differently, is found in ANSI X3.4—

1968.
The BCD concept, as it relates to signed numerics, grew from the

Hollerith Card Code (Fig. 19.5). The concept of overpunching a numeric

with a 12-punch or 11-punch to indicate positive or negative numerics
was, and is, common practice in punched-card applications. Thus 12-0,
12-1, 12-2,...,12-9 punches represent +0, +1, +2,...,+9, respec- =

tively; 11-0, 11-1, 11-2,...,11-9 punches represent —0, —1, —2,...,
—9 respectively; and 0, 1, 2,...,9 punches represent absolute numerics 0,..

1, 2,...,9, respectively.

19.8 Numeric Capability 383

Block | Hole Patterns at:

1 3 1 | Top and Left

 Bottom and Left

2

2 4 3. | Top and Right

4 Bottom and Right

Fig. 19.5 Hollerith Card Code

All three bit codes, BCDIC, EBCDIC, and ASCII, have a specified

relationship to the Hollerith Card Code. In order for the signed-numerics
concept to carry over into a CPU code, the bit patterns from the positive,

negative, and absolute numerics of the Hollerith Card Code must exhibit
the following characteristics in the bit code:

a) For all numerics, signed or absolute, the numerics 0 through 9 have

the four low-order bits as BCD bit patterns.

384 What Is a CPU Code?

Pitter 00 01 10 11

Hole

Pattern 12 1

00660

0001 1 +1 -1 1

0010 2 +2 ~2 2

0011 3 +3 -3 3

0100 4 +4 ~4° 4

0101 5 +5 ~5 5

0110 6 +6 ~6 6

01114 7 +7 -7 7

1000 8 +8 ~8 8

1¢01 9 +9 ~9 9

1010 0 +0 ~0 0

Fig. 19.6 BCDIC signed numerics

b) For all positive numerics 0 through 9, the high-order bits* are the

same.

c) For all negative numerics 0 through 9, the high-order bits* are the
same.

d) For all absolute numerics 0 through 9, the high-order bits* are the

same.

The code positions into which the Hollerith overpunched numeric
hole patterns will translate for BCDIC, EBCDIC, and ASCII are shown

in Figs. 19.6, 19.7, and 19.8, respectively. It may be seen that BCDIC
and EBCDIC exhibit characteristics (a), (b), (c), and (d), but ASCII does

not exhibit characteristics (a), (b), and (c).

*The actual high-order bits for parts (b), (c), and (d) do not matter, What matters -
is that within each category, (b), (c), and (d), the high-order bits are the same. The ~

actual high-order bits will be accommodated by the arithmetic circuitry of the-
CPU implementing the code. :

19.8 Numeric Capability 385

Cotumn 0 1

00

Hole

Pat.
Fig. 19.7 EBCDIC signed numerics

Note that the American National Standard Hollerith Punched Card
Code (ANSI X3.26-1970) contains the following caution about the
practice of overpunching:

Section 3.4

Punched card systems have used the convention of overpunching
digits with 12 or 11 to represent signed numbers or for other
purposes. This standard does not provide a simple translation of over-
punched digits to the ASCII representation of digits. Where possible,

signs of numbers should be in separate columns. Overpunched digits
should be used in information interchange only by specific agreement
between sender and receiver.

Uhe admonition does not state that the practice of overpunching numerics

386 What Is a CPU Code?

Column 0 1 2 3 4 5 6 7

Bit b7 | 0 0 0 0 1 i 1 1
Paver b6 0 0 1 1 0 0 1 1

b5 0 1 0 1 0 1 0 1

Row b4 b3 b2 b1

0 0000 0 -7

1 000 1 1 +1 ~8

2 0010 2 +2 -9

3 0011 3 +3

4 0100 4 +4

5 01041 5 +5

6 0110 6 +6

7 0111 7 +7

8 1000 8 +8

9 1001 9 +9

10 1010 ~1

W 101171 <2 +0

12 1100 =3

13 1101 -4 -0

14 11710 5

15 11171 ~6
Fig. 19.8 ASCII “signed numerics” from Hollerith

is bad per se. It does point to a problem in translation (to be discussed in

Section 19.10). Nor does the admonition say not to use the practice. It

says to carry the signs in separate card columns “where possible.” Indeed,

the admonition does not enjoin against the use of the practice in informa- .

tion interchange, but says that use in information interchange should be -

only “by specific agreement between sender and receiver.” That is @

19.9 Collating Sequence 387

reasonable precaution. This agreement, and many others, are obvious
precursors to information interchange. A receiver who does not know the

card layout of the sender will not be able to process the cards.
The problem is not the use of overpunched numerics. The problem is

in translation to ASCII. Doubtless, some scheme of translation of over-

punched numerics (similar to that of Fig. 19.7) could be devised for

ASCII but then that scheme would be different from the scheme of Fig.
19.8. While it would no doubt be feasible to build two different transla-
tion schemes—Hollerith to ASCII—into a translator, there is no way,

intrinsic just to the data itself, for the translator to know when to activate
one or the other translation scheme. That is to say, to build logic into the
translator to recognize and respond to “‘the specific agreement between
sender and receiver’”’ would be quite impractical, and probably impossi-

ble. Signed numerics and ASCII are mathematically incompatible.
It has been argued that the solution to this dilemma is to forbid the

use of overpunched numerics and to require that the sign for a numeric
card field be carried in a separate field position. Certainly, this is a
theoretical solution. It is a solution, however, contrary to a widespread

and entrenched user practice. To implement such a solution would
require conversion of card data fields, and a reprogramming of the user’s
application programs.

19.9 COLLATING SEQUENCE

The graphics, as assigned in a code, have a certain bit sequence. For

reasons outside the code, the graphics may be assigned to a particular
sequence, which is called the collating sequence. The bit sequence may or

may not match the collating sequence.

19.9.1 BCDIC

An undesirable attribute in BCDIC as a CPU code was that the standard
collating sequence for BCDIC did not match the bit sequence. In the
code table of Fig. 19.1, BCDIC is shown in bit sequence. The collating

sequence of BCDIC is shown. in the code table of Fig. 19.9. The

convention for this table is that the collating sequence, from low to high,

is

space through % or (,

then y through F,
then G through T,

then U through 9.

The disparity between bit sequence and collating sequence is evident.

388 What Is a CPU Code?

SP Y G U

\ H Vv

Hor) al I W

C 6 ! x

< # or = J Y

@ or '' K Zz

& or + L 0

$ > M 1

* v N 2

] 2 0 3

A P 4

A B 5

- Cc R 6

/ D t 7

’ E 5 8

Zor (¢ F T 9
Fig. 19.9 BCDIC in collating sequence

The disparity between BCDIC bit sequence and collating sequence

led to “‘costs” for users of the 6-bit computing systems which would not
have been incurred if the two sequences had matched. For the 7090

system, the cost was for computer usage time. Data fields that were to be

operated on by comparison operations were, in advance, converted by a

program to bit patterns that matched the collating sequence, and recon-

verted back to their original bit patterns (again, by a program) after the
sorting or collating operations. For the 1400 and 7080 systems, the cost

was additional hardware. A hardware comparator was provided which
matched the bit sequence to the collating sequence during the comparison

operations of sorting and collating.

19.9.2 EBCDIC

There are 256 character positions in EBCDIC, with bit patterns ranging ~
from 0000 0000 to 1111 1111. The collating sequence of EBCDIC.

19.10 Translation Simplicity 389

from low to high, is prescribed to match the bit sequence. As a result, in

sorting and collating operations, no hardware comparator is needed, and
no pre- or post-conversion by software is needed.

19.9.3 ASCII

There are 128 character positions in ASCH, with bit patterns ranging
from 000 0000 to 111 1111. As with EBCDIC, the collating sequence,

from low to high, is prescribed to match the bit sequence.

19.10 TRANSLATION SIMPLICITY

CPU codes as related to magnetic tape and punched card codes will be
discussed.

19.10.1 BCDIC

The translation from the 6-bit CPU code to the 6-bit magnetic tape code
was a one-to-one bit translation. The translation to the 64-character
punched card code was quite simple; digit punches 0 to 9 translated on a
binary coded decimal basis, and zone punches 0, 11, 12 translated on a

binary basis, as shown by the code chart of Fig. 19.1 (with the two
exceptions noted, 8-2 and 0-8-2).

19.10.2 EBCDIC

The magnetic tape code for EBCDIC matches the CPU code, bit for bit
and bit pattern for bit pattern. No translation is required for magnetic
tape.

For punched card codes, the situation is different. The optimum
theoretical EBCDIC, from a card-code-translation-simplicity point of
view, would be the card code shown in Fig. 19.10. The four high-order

bits of EBCDIC would translate to the four zone punches 12, 11, 0, and 9

on a pure binary basis, and the four low-order bits would translate to the
digit punches, 0 through 9, on a binary coded decimal basis. However,
this theoretical EBCDIC was rejected for two primary reasons—

translation simplicity to BCDIC and collating sequence compatibility with
BCDIC.

If the graphics of BCDIC had been positioned in theoretical EBC-
DIC according to the BCDIC card code, they would have been positioned

as shown in Fig. 19.10. For these 63 graphics and Space, the EBCDIC

card hole patterns would have matched precisely the assignments in

common usage, a very desirable attribute. However, the translation from
BCDIC bit patterns to EBCDIC bit patterns, under the scheme of Fig.

19.10, would have been complex and hence undesirable.

Row | 45867

9 0000

1 0001

2 0010

0011

0100

0101

0110

aiid

1000

1001

101710

1011

1100

1101

1110

1111

390 What Is a CPU Code?

0 1 2

oo

10

Column 3 5

01

23; 00

Hole

Pat.

4

11

Hole

Pat.

Fig. 19.10 Theoretical EBCDIC, based on optimum bit-pattern-to-hole-
pattern relationship

More significantly, the bit sequence of the BCDIC graphics in Fig.
19.10 would have been radically different from the BCDIC collating
sequence; that is, BCDIC and EBCDIC would have been incompatible

from a collating-sequence point of view.

In short, four desirable attributes of a CPU code were conflicting,

and not all could be achieved:

a)

b)

c)

d)

translation simplicity to a punched card code;

translation simplicity to a previous CPU code (BCDIC);

collating-sequence compatibility to a previous CPU code, BCDIC;

card-code compatibility to the card code in common usage.

19.10 Translation Simplicity 391

Column 0 1 2

00

00 o1 10 11

Fig. 19.11 Embedded collating sequence

[t was decided that two of these attributes, collating-sequence compatibil-
ty to BCDIC and card-code compatibility to the card code in common

Isage, were more important than the other two attributes.
After numbering the Space and the 63 graphics of BCDIC (Fig.

19.9), from 0 to 63, in collating sequence order, it was decided to embed
hese 64 characters in EBCDIC as shown in Fig. 19.11. The BCDIC
collating sequence is embedded in the EBCDIC collating sequence, but
1ot contiguously. .

A consequence of these two attributes for EBCDIC is that the

ranslation relationships, BCDIC bit patterns to EBCDIC bit patterns,
ire somewhat complex-—more complex than for the simple scheme of Fig.

19.10.

392 What Is a CPU Code?

19.10.3 ASCII

Is it feasible to translate ASCII to/from EBCDIC? Certainly, taking into
account the facts that ASCII is a 128-character, 7-bit code and that

EBCDIC is a 256-character, 8-bit code, the translation relationship is

well known. Software for automatic translation has been provided by
some manufacturers.

The straightforward translation is immensely complicated if the user

intermixes pure character code forms (ASCII or EBCDIC) with other

code forms, such as signed numeric, packed numeric, binary data, bit
strings. The complication is both administrative and technical.

The representation of ASCII on magnetic tape is prescribed by an
American National Standard. That same Standard prescribes the record-
ing of pure ASCII character data only; that is to say, other code forms are
ruled out. Magnetic tape with ASCII character data intermixed with other

code forms is nonstandard, and would pose administrative problems.
Technically, the problem has an interesting aspect; it cannot be

solved by manufacturers, only by users. The mixture of code forms in a
user’s application would vary from application to application, and even
within applications. For a given application, translation is always possible,

but a generalized translation program applicable to all applications, such
as a manufacturer might provide, is not possible in the absence of a data
descriptive language. A user who conforms ASCII data on magnetic tape
to American National Standards has no translation problems. A user who
chooses to intermix other code forms with ASCII data would create
translation problems only he could solve.

With respect to punched card code, the situation for ASCII is not
simple. ASCII is in a one-to-one correspondence to 128 characters of the
American Standard Hollerith Card Code, so translation is certainly

feasible. But no logical translation relationships (or almost none) exist, so

the translation is on a brute-force, character-for-character basis.

It is interesting to note that in 1963 a card code called Decimal
ASCII was proposed as an American National Standard, which had the
characteristic of optimum translation simplicity to ASCII. Further, the

concept of signed numerics could, from this card code, have been incor-

porated into ASCII. It had, however, a very undesirable attribute. The
card hole patterns assigned to the numerics and to the alphabetics A

through I matched the assignments in common usage in the data proces-

sing industry, but the assignments for the alphabetics J through Z, and for

virtually all special graphics, did not match those of common usage. This
mismatch implied such considerable conversion costs that users rejected
Decimal ASCII when it was voted on at X3.

19.11 Compatibility 393

19.11 COMPATIBILITY

There are a number of aspects involved in compatibility between two
different codes:

=" The codes should be structurally similar. BCDIC and EBCDIC are
structurally similar, but ASCII is structurally dissimilar to both.

= The collating sequence of the two codes should be the same. If the
codes are of different size, the collating sequence of the smaller code
should be embedded, not necessarily contiguously, in the collating
sequence of the larger code. |

" The codes should be functionally equivalent; that is, they should
have the same set of control and graphic characters, although not
necessarily with the same bit patterns. A smaller code is functionally
equivalent upward to a larger code if the smaller code’s set of graphic

and control characters is contained in the larger set of characters.
EBCDIC and the Hollerith Card Code are functionally equivalent.

ASCII is upward functionally equivalent to EBCDIC.

Translation relationships between the two codes should be simple.

In debates on code compatibility, it often turns out that one debater
views the codes as incompatible because not all of the four aspects above
are present, while the other debater views the codes to be compatible
because at least one of the aspects above is present.

19.11.1 BCDIC

The magnetic tape code, punched card code, and CPU code of BCDIC
are deemed to be compatible, in that they are functionally equivalent and
translate simply to each other.

19.11.2 EBCDIC and BCDIC

EBCDIC is structurally similar to BCDIC. The collating sequence of

BCDIC is embedded in the collating sequence of EBCDIC. All charac-
ters of BCDIC are included in EBCDIC, so there is upward functional
equivalence. The translation relationship, BCDIC to EBCDIC, is not as
simple as it could theoretically be, but it is certainly feasible.

19.11.33. EBCDIC and ASCII

EBCDIC and ASCII are structurally dissimilar and the collating se-
quences are different. However, all characters of ASCII are included in
EBCDIC, so there is upward functional equivalence. The translation

394 What Is a CPU Code?

Bit Letter Figure Bit Letter Figure

pattern case case pattern case case

00000 Not used Not used 10000 E 3

00001 T 5 10001 Z +or”

00010 CR CR 10010 D (2)
00011 O 9 10011 B ?

00100 SP SP 10100 S ’
00101 H (1) 10101 Y 6

00110 N , 10110 F (1)
00111 M . 10111 Xx /

01000 LF LF 11000 A -
01001 L) 11001 WwW 2

01010 R 4 11010 J Bell
01011 G (1) 11011 FS FS

01100 I 8 11100 U 7
01101 P 0 11101 Q 1

01110 C 11110 K (
01111 Vv = or; 11111 (3)LS LS

(1) For National Use
(2) Used for Answer Back
(3) Also used for Delete

Fig. 19.12 CCITT #2

relationship, ASCII to/from EBCDIC, is quite complex but certainly

CR Carriage Return
SP Space
LF Line Feed
FS Figure Shift
LS Letter Shift

feasible, in view of the upward functional equivalence.

Other codes in common use are CCITT #2 (Fig. 19.12) (sometimes

called the Baudot or Teletype code) and Fieldata (Fig. 19.13).

19.11.4 CCITT 2 AND ASCII

ASCII and CCITT #2 are structurally dissimilar, have different collating

sequences, and have a complex translation relationship. CCITT #2 is

upward functionally equivalent to ASCII.

19.11 Compatibility 395

Column| 0 1 2 3 4 5 6 7

Bit b7 | 0 0 0 0 1 1 1 1
Pattern b6| 0) 1 1 0 0 1 1

bS 0 1 0 1 0 1 0 1

Row

0 K) 0

1 L - 1

2 M + 2

3 N < 3

4 0 = 4

5 Pp > 5

6 Q _ 6

7 R $ 7
CONTROL

(NOT DEFINED) =

8 : 8 * 8

9 T (9

10 U tt 1

"1 Vv : ;

12 Ww 2 /

13 x ! .

14 Y : SPEC

15 Zz STOP | IDLE

Fig. 19.13 Fieldata

19.11.5 BCDIC and ASCII

ASCII and BCDIC are structurally dissimilar, have different collating
sequences, and do not have a translation relationship because they are

functionally inequivalent.

396 What Is a CPU Code?

19.11.6 FIELDATA

Fieldata is incompatible in all four aspects with BCDIC, EBCDIC, and

ASCII, mainly because of the control functions assigned to columns 0, 1,

2, and 3 in various implementations.

19.12 SUMMARY OF FUNCTIONAL REQUIREMENTS OF A CPU
CODE

7 Control characters for associated media and for associated media

products.

=“ Control characters for intrinsic CPU operations, such as editing.

=" Graphics for associated printing/display products, to satisfy data

processing applications, such as

Commerical applications,

Scientific/engineering applications,
Applications such as meteorology, text processing, chemical
abstracting, library bibliographing,
Programming languages,

Latin alphabetics,

Non-Latin alphabetics,

Graphics to represent control characters.

Arithmetic capability, such as signed numerics.

= Collating sequence matching the bit sequence.

* Translation simplicity to media codes.

« Compatibility with other codes:

Structural similarity,
Functional equivalence,
Same collating sequence,
Translation simplicity.

An additional attribute, contiguity or noncontiguity of alphabetics, will be

discussed in Chapter 25.

20
ASCII

in an 8-Bit
Interchange

Environment

It had been decided by the standards committees in 1963 that the format
for the standard magnetic tape would be 9 tracks (Fig. 20.1). One track
would contain the parity bit; the other 8 tracks would contain “informa-
tion bits.”

Row

 9 Tracks

Figure 20.1

In consequence of this decision, 8 tracks were available on which to
record the 7 bits of the 7-Bit Code. After some technical discussion, and

some pushing and shoving, 7 specific tracks (of the 8 available tracks) and
the specific track-to-bit relationship were decided upon.

20.1 ENGINEERING CONSIDERATIONS

The solution of the problem now exposed a new problem. What should

be done with what came to be called ‘“‘the eighth track’’? Various sugges-

tions, which might be described as being of a magnetic tape engineering
nature, were presented to the standards committee with respect to the

397

398 ASCII in an 8-Bit Interchange Environment

eighth track. The following list, while certainly not exhaustive, is represen-

tative of the variety of suggestions that were put forward:

1. Record all bits on the eighth track as zero-bits.

2. Record all bits on the eighth track as one-bits.

3. When recording the 7-bit bit-patterns of the 7-Bit Code, record all
bits on the eighth track as zero-bits. This is not quite the same as part

(1) above. In part (1) all bits on the eighth track would be set to

zero, regardless of what information (7-Bit Code or otherwise) was

being recorded. In part (3), only when the 7-bit bit patterns of the
7-Bit Code were being recorded would the bits on the eighth track
be set to zero. But when other kinds of data (packed numeric data

which requires 8 bits or the 8-bit bit patterns of an 8-bit code, for
example) were being recorded, let the bits on the eighth track be
recorded as either zero- or one-bits as required.

The thought here was that 7-bit code data on the tape could be

distinguished from non-7-bit code data on the tape. A record of 7-Bit
Code data would have the characteristic that the eighth track would be

uniformly zero. Non-7-bit code data would have some one-bits in the

eighth track.
This proposal came to take on a different implication. The supporters

of the 7-Bit Code considered it to be “‘the standard code,” and all other

codes as “nonstandard.’”’ Hence, the above approach could be used to
distinguish between “‘standard data” and ‘“‘nonstandard data.”

The weakness of this proposed facility for testing was that it is quite

possible to envisage a string of 8-bit bytes containing packed numerics or

a string of 8-bit bytes containing the 8-bit bit patterns of an 8-bit code,

which would fortuitously exhibit the characteristic that for every byte, the

bit to be recorded on the eighth track was, in fact, a zero bit. Therefore,

even a string of so-called nonstandard data would pass the test for

“standard data.”

The supporters of this approach, while admitting the theoretical

possibility of such data strings, claimed that they were very unlikely to

occur in actual applications, and so the test would generally be valid in

actual practice.

4. Use the 8 tracks as a clocking track to improve reliability of the tape

drive.

As it turned out, none of the various suggestions was sufficiently

appealing to gain a majority concensus on the standards committees. So

the standards committees had arrived at that singularly frustrating situa-

20.2 8-Bit Environment 399

tion in the drafting of a standard where every technical detail except one
had achieved committee agreement. They decided, therefore, to proceed,

even lacking agreement on what to do with the eighth track. The standard
was drafted and approved with a specific statement that the eighth track
was ‘“‘undefined.’’ Any bits in this track, however, were to be included in

parity. ‘“‘Undefined”’ meant, in the minds of the committee members, that

it could be used for any purpose whatsoever. That is, any of the proposals

above, or any other, could be implemented without violating the letter or

spirit of the standard.

The committee, thus having sent the draft standard on its way to

higher levels of standards authority, now tackled the remaining question
of the “undefined” track with great vigor. But a new aspect more
oriented to the aspects of coded character sets in general, than to the
specific field of magnetic tape, now came on the scene. Consideration of
this new aspect overshadowed all previous discussions and became the
central topic of discussion in the standards committees.

20.2 8-BIT ENVIRONMENT

This aspect was the 8-bit environment which emerged in the data proces-
sing world as a result of the introduction of IBM’s System/360. An 8-bit
CPU code provided by the System/360 was EBCDIC (which is discussed
in other chapters of this book). From the viewpoint of the standards
committees, the main aspect of EBCDIC was that, structurally, it bore

absolutely no relationship whatsoever with the 7-Bit Code. The most
obvious structural difference was that the alphabetics were contiguous in

bit sequence in the 7-Bit Code and noncontiguous in EBCDIC.
However, also provided by the System/360 was another 8-bit CPU

code, called USASCII-8 (Fig. 20.2). This 8-bit code was structurally

related to the 7-Bit Code. The eight columns of the 7-Bit Code had been
distributed unaltered, albeit not contiguously, into eight of the sixteen
columns of USASCI-8. This version of ASCII was slightly different from
the 1963 version (see Fig. 14.11) and also slightly different from the

ASCII 1967 version (see Chapter 24).

The attention of the standards committees was now focussed on the
concept of an 8-bit code and, more particularly, on an 8-bit code

structurally related to the 7-Bit Code. This standards development work
rejoiced in the euphemistic title of ‘an 8-bit representation of the 7-Bit
Code in an 8-bit environment.”

Relating this standards effort back to the problem of what to do with
the eighth track on 9-track magnetic tape, it was clear that if the structure
of an 8-bit code was determined, then the recording of this 8-bit code on

400 ASCII in an 8-Bit Interchange Environment

Cotumn| 0 | 1 | 2 3 4 5 6 7 8 9 A B c D | E F

Bit | 00 01 10 11

Pat. "|
Row oo | o1 | 10 | 11 | 00 | O78 10 | 11 | 00 | 01 10 | 11 | oo | 07 | 10 | 11

o |}oocoy NUL | DCO SP 0 @ P Pp

1 | 0007) SOM] DC1 { 1 A Q a q

2 {001701 EQOA {| DC2 " 2 B R b r

3 |001711] EOM| DC3 # 3 c S c 8

4 |}0100] RoT| pc4 $ 4 D T d t

5 101017 WRU| ERR % 5 E U e u

6 |0110] Ru | SYN & 6 F Vv f Vv

7 |0%117 BEL] LEM ' 7 G W g Ww

8 $1000] gs | so ¢ 8 H x h x

9 |1001] HT Sl) 9 T Y ti y

A |1010] LF S2 x 2 J Z j Zz

B |i011) Vr | 83 + ; K [k

c |1100] FF | $4 ’ < L \ 1

D {17017 CR | 85 - = M] m

E |1110f so S6 . > N 4 n | ESC

F |it1if st | 87 / 2 0 + Oo | DEL
Fig. 20.2 USASCII-8

the 8 data tracks of 9-track magnetic tape would necessarily define the

contents of the eighth track.

The problem, which had initially been addressed as a magnetic tape

engineering problem, was now addressed as a coded character sets prob-

lem. The problem was now restated. How should the 128 characters of the

7-Bit Code be embedded in the 256 code positions of an 8-bit code?

20.3 EMBEDMENT OF 7 BITS IN 8 BITS

It should be realized that, mathematically, the number of different possi-
ble embedments is very large. In the case of embedding 128 characters
(of a 7-bit code) in the 256 code positions (of an 8-bit code), the number

of different possible embedments is

256!
256 X 255 X254x:++ 131x130 129 = 75a) ~ 2.2% 107°"

which is quite a large number indeed. However, if constraints are placed

20.3 Embedment of 7 Bits in 8 Bits

Row

Column

Bit

renee

b7

b6

b5

b4 63 b2 b1

0000

10

1

12

13

14

16

Fig. 20.3 7-bit code table

401

on the nature of the embedment, the number of different possible

embedments reduces in size. Suppose the 7-bit code table and the 8-bit
code table are exhibited in the customary columnar fashion (see Figs. 20.3

and 20.4).

402 ASCII in an 8-Bit Interchange Environment

Column | g 1 2 3 4 5 6 7 & 9 {10 1 12 | 13 | 14] 15
— oo 01 10 14

Bit
& |Pat. oo 01 to | 11 oo | o1 10 1 =| oo | 91 en oo | of | to | 14

@ (0000

1 \0001

2

3

4

111
Fig. 20.4 8-bit code table

20.4 EMBEDMENT CONSTRAINTS

Columnar constraint. Suppose the constraint is to maintain columns;
that is, each column from the 7-bit code table must be embedded

unaltered into a column in the 8-bit code table. Then the number of

different possible embedments is 1615x14x13x12x11x10x9=
518,918,400, which although smaller than the previous number, is still a

respectably large number.

Sequence constraint. Suppose an additional constraint is applied;
namely, that the eight columns of the 7-bit code table must be embedded
in the sixteen column positions of the 8-bit code table in the same

columnar sequence, although not necessarily contiguously. Then the
number shrinks to 10,776.

Contiguous column-pair constraint. Suppose the columns of the 7-bit

code table must be embedded in sequence, and in contiguous pairs, so as
to maintain both the contiguous upper-case alphabet and the contiguous

lower-case alphabet; the number of possible embedments reduces to 486.

20.5 Embedment Notation 403

Contiguous 8-column constraint. Finally, if the 8 columns of the 7-bit
code table must be embedded in sequence, and the 8 columns must
remain contiguous, the number of different possible embedments is 9.

These constraints—the columnar restraint, the sequence constraint, the

contiguous column-pair constraint, and the contiguous 8-column

constraint—are nested; that is, an embedment meeting the last constraint
meets the immediately preceding constraint, which in turn meets its
immediately preceding constraint, and so on.

The standards committees did not seriously consider all the vast
number of possible embedments. Only six embedments received serious
considerations (see Fig. 20.5). All of these embedments met the columnar
constraint, the sequence constraint, and the contiguous column-pair
constraint.

These three constraints, then, became the three major criteria for

embedment. However, since all six candidate embedments met these

three criteria, these criteria were clearly not factors for decision between
the six candidates.

Two of the candidate embedments met the contiguous 8-column
constraint, four candidates did not. So this criterion was a factor for

decision between the six candidates.

20.5 EMBEDMENT NOTATION

While considering the embedments, the committees used a notation
which helped to exhibit the embedments compactly. The eight columns of

the 7-bit code table were named as follows:

Column 0 C for Control character

Column 1 C for Control character

Column 2 S column of Specials

Column 3 N_ column with Numerics

Column 4 A column with upper case A

Column 5 Z column with upper case Z

Column 6 a column with lower case a

Column 7 z column with lower case z

The 7-bit code table could then be compactly exhibited as follows:

Columns> 0} 1/2) 3 |4)5 [6] 7

clelsInlalzlalz

The problem was now restated. How should the eight columns of the
7-Bit Code be embedded in the sixteen column positions of an 8-bit code
table?

404 ASCII in an 8-Bit Interchange Environment

Column Opt} 273 fF 5] O] 748] 9] tO] tty 12 | 23 | 14 | 15

clcl | IsIwl | TT talzl | fale
Candidate 1

Columns— a ee

sInl | lalzl | Jalal |
Candidate 2

Columns 0/1/2/3/4]/5{/[6]7]8]9]10j,11]12|13 |] 14] 15

clel |

Columns 0/1/2/3[/4/5|]6]7]8 {9 |10{11 | 12]13 | 14] 15

Columns> 0/1/2[3/41/15[6[7[8[9 {110 {111]12{13 | 14115

Columns> 0{1]2/3)]445 6|7 8 9 | 10 11] 12 | 13 | 14 | 15

Candidate 6

Fig. 20.5 Candidate embedment schemes

20.6 EMBEDMENT SCHEMES

Six embedment schemes were proposed to the standards committees.

These are shown in Fig. 20.5. Candidate 6 is the embedment scheme first
proposed (late 1963) to the standards committees. Candidate 1 is the

embedment scheme actually implemented on the System/360 (see Fig.
20.2).

20.7 TRANSFORMATION ALGORITHM

It would be reasonable to suppose that, in determining the optimum 8-bit
representation of the 7-bit code in an 8-bit environment, the only factor

that would need to be considered would be the simplicity of the transfor-
mation algorithm, when transforming a 7-bit byte into an 8-bit byte and
when transforming an 8-bit byte into a 6-bit byte. As a step in evaluating
the superiority or inferiority of various transformation algorithms, it is

20.7 Transformation Algorithm 405

Column 0 1 | 2 | 3 4 | 5 | 6 | 7 8 | 9 | 10 | 11 12 | 13 14 | 15

01 00 10 11
Bit
Pat.

a0 01 10 11 00 071 10 it 00 o1 10 v1 00 01 10 11

000} 001 010] O11 100 | 101 110; 111} 1

000] O01) 010; O11 100] 101 110] 111 2

000] 001] 101} O11] 100} 101] 110; 111 3

000| 002} 010} O1L| LOO} 101 | 11O{ Lily 4

000] 001 010} 011} 100} 101] 110) 111] 5

00O| O01; 010] O11 100} 101; 110} lil] 6

Candidates

Fig. 20.6 Three high-order bits, as embedded

necessary to number or name the bits of a 7-bit byte and the bits of an
8-bit byte. The notation used by the standards committees was as follows:

7-bit byte b7 b6 b5 b4 b3 b2 b1

8-bit byte E8 E7 E6 ES E4 B3 E2 El

The six candidates evaluated by the committees are shown in Fig. 20.5. In

Fig. 20.6, the three high-order bits, b7, b6, b5, of the 7-bit byte are

shown in relation to the four high-order bits, E8, E7, E6, ES, of the 8-bit

byte. It is to be observed that, for all candidates, b5 = E5.

The columnar restraint referred to earlier ensured that, for all

candidates, the four low-order bits, b4, b3, b2, b1, of the 7-bit byte are

identical to the four low-order bits, E4, E3, E2, E1, of the 8-bit byte.

In summary, for all candidates, the transformation algorithm, with

respect to the five low-order bits, 7-bits to 8-bits or 8-bits to 7-bits, is

E5 E4 E3 E2 E1=b5 b4 b3 b2 bi

The relationship between E8 E7 E6 and b7 b6 is, however, different for

all candidates and the candidates came to be characterized by the transfor-

mation algorithms of the high-order bits.

406 ASCH in an 8-Bit Interchange Environment

Candidate Transformation Algorithm

E8 = b7
1 E7 = b6

E6=b7

E8 =b7
2 E7 = b6

E6=0

E8 =0
3 E7=b7

E6 = b6

E8=1
4 E7=b7

E6 = b6

E8 = b7|b6
5 E7=b7

E6 = b6

E8 = b7
6 E7=b7

E6 = b6

Boolean analysis of Fig. 20.6 shows that the transformation al-
gorithms for the six candidates are as follows. (The notation E8 = b7|b6

means that E8= 1 if b7 = 1, or if b6=1, or if b7 and b6=1.)

It is to be observed that all the transformation algorithms involve

fairly simple logic. They could be rated in degree of complexity, which

could then be a factor to decide for the optimum (least complex)

algorithm. However, the logic circuits to implement these algorithms

would, in fact, be trivially different in complexity. The relative complexity

of the transformation algorithms cannot sensibly be taken as a significant

factor for decision. The standards committees recognized this, and de-

veloped other criteria.
Although the committees were ostensibly trying to determine the best

8-bit representation of the 7-bit code in an 8-bit environment, and were

not supposed to be developing an 8-bit code,” all the criteria below except

*In short, the committee was indeed working to develop an 8-bit code. The

rationale was that the committee was not working to develop an 8-bit code, but

rather to develop an 8-bit representation of the 7-bit code in an 8-bit environ-

ment. However, some day in the future, an 8-bit code might be needed. There-

fore, the 8-bit representation should be designed now so that it could serve as an

8-bit code if needed.

0.8 Embedment Criteria 407

the first four would be considered of significance for a code. The first four

criteria relate to the transformation algorithm. Of these four, three were

met by all six candidates, and so were not factors for decision.

20.8 EMBEDMENT CRITERIA

rhe standards committee developed and considered the eighteen criteria
sresented below. It is to be emphasized that

a) Some of these criteria are important for environments that are
mainly computer oriented.

b) Some of these criteria are important for environments that are
mainly communications oriented.

c) Some of these criteria are important for both environments.

d) It is a matter of individual judgment as to which criteria fit under
parts (a), (b), and (c) above.

e) It is a matter of individual judgment as to how the criteria are ranked
or weighted in order of importance.

f) The set of criteria are mutually self-conflicting. In particular, Criteria
11 and 13 are conflicting, and Criteria 16 and 17 are conflicting. In
consequence, no 8-bit representation can satisfy all criteria.

For purposes of reference later in this chapter, the criteria are headed by
a “short form.”

1. Column integrity. Each column of the 7-bit code should be embed-
ded unaltered in a column of the 8-bit representation.

2. Column sequence. The cight columns of the 7-bit code should be
embedded in the same columnar sequence in the sixteen column positions
of the 8-bit representation, although not necessarily in contiguous column

sequence.

3. Contiguous column pairs. Contiguous column pairs (columns 0 and
1, columns 2 and 3, columns 4 and 5, columns 6 and 7) of the 7-bit code

should be embedded in contiguous column pairs in the 8-bit representa-

tion.

4. Contiguous 8-columns. The eight columns of the 7-bit code should
be contiguous in the 8-bit representation.

5. Collating sequence. The 6-Bit Subset,* the 7-Bit Code, and the 8-Bit
Representation should have the same relative collating sequence.

*The 6-Bit Subset referred to here consists of the 64 characters in columns 2, 3,

4, and 5 of the 7-Bit Code. The bit patterns of this subset are derivable by
dropping b6 of the bit patterns of the 7-Bit Code.

408 ASCII in an 8-Bit Interchange Environment

6. Katakana 64. A contiguous 64-character block should be available in
the 8-Bit Representation to which the 64 Japanese Katakana graphics
could be assigned.

7. Latin-Katakana contiguity. A 64-character block for the Katakana
alphabet and the Latin alphabet should be contiguous in the 8-Bit
Representation.

8. Contiguous controls. Unassigned positions in the 8-Bit Representa-
tion should be available contiguous to the columns containing control
characters from the 7-Bit Code to which new control characters could be
assigned.

9. Single-bit test, Latin alphabetics. Latin alphabetic characters should
be distinguishable from nonalphabetic characters in the 8-Bit Representa-
tion, as in the 7-Bit Code, by a single-bit test.

10. Symmetry. The columns of the 7-Bit Code should be distributed
symmetrically in the 8-Bit Representation.

11. Space collate low. The Space character should collate low to the
graphic characters from the 7-Bit Code and also to all (unassigned)
graphic positions in the 8-Bit Representation.

Comment. The committee had the concept that if an 8-bit code were

developed providing 128 code positions additional to those from the

7-Bit Code, 32 of these code positions, or two columns, would be

assigned to new control characters, and 96 code positions, or six columns,

would be assigned to new graphic characters.

12. Signed numerics greater than 9. In the 8-Bit Representation, the
four high-order bits for the column containing the numerics, interpreted
as a binary coded decimal, should be numerically greater than 9, to
facilitate checking on arithmetic operations in computers.

13. Packed numerics. Packed numerics, if used in interchange and

interpreted as 8-bit bytes, will have bit patterns from columns 0 through 9

and rows 0 through 9 of the 8-Bit Representation. Control characters

may be assigned to these bit patterns without causing trouble, but the

graphics from the 7-Bit Code should not be assigned to these columns.

14. Null=all zeros. The Null character from the 7-bit Code should be

in the all-zeros bit-pattern position of the 8-Bit Representation; that is, in

column 0, row 0.

15. Delete = all ones. The Delete character from the 7-Bit Code should

be in the all-ones bit-pattern position of the 8-Bit Representation; that is,
in column 15, row 15.

20.9 Analysis of Embedments 409

16. Low-order 7 bits, 7 to/from 8. The seven bits of the 7-Bit Code

should become the low-order seven bits of the 8-Bit Representation.

17. Low-order 6 bits, 6 to/from 8. The six bits of the 6-Bit Subset

should become the low-order six bits of the 8-Bit Representation.

18. Single-bit test, 7 versus non-7. In the 8-Bit Representation, all bit
patterns from the 7-Bit Code should be distinguishable from all bit
patterns not from the 7-Bit Code by a single-bit test.

20.9 ANALYSIS OF EMBEDMENTS

The six candidates of 8-Bit Representation (Fig. 20.5) were than analyzed

against the 18 criteria, as shown in Fig. 20.7. (An “‘X” in the table means
the candidate meets the criterion.)

oo Landidate 1 2 3 4 5 6
Criterion

1. Column integrity Xx Xx Xx x x x

2. Column sequence x X x x Xx x

3. Contiguous column pairs XxX x xX x x x

4. Contiguous 8 columns xX x

5. Collating sequence x x xX x x x

6. Katakana 64 x xX xX xX x

7. Latin-Katakana contiguity x x

8. Contiguous controls xX x x

9. Single bit test, Latin alphabetics xX X x

10. Symmetry x x

11. Space collate low x x x x

12. Signed numerics greater than 9 x xX x x

13. Packed numerics xX xX

14. Null = all zeros x x xX x x

15. Delete = all ones xX x x x

16. Low-order 7 bits, 7 to/from 8 xX xX X xX

17. Low-order 6 bits, 6 to/from 8 xX

18. Single-bit test, 7 versus non-7 x x x
Fig. 20.7 Candidates and criteria

410 ASCII in an 8-Bit Interchange Environment

20.10 COMMITTEE DECISION

It is an interesting exercise, weighting the various criteria as deemed
appropriate, to judge which of the six candidates is the superior 8-Bit
Representation. The standards committees, by majority but not by unani-
mous vote, decided in favor of candidate 3, characterized by its transfor-
mation algorithm:

E8=0

E7, 6, 5, 4, 3, 2, 1=b7, 6, 5, 4, 3, 2, 1

This transformation algorithm having been decided by the coded charac-
ter sets committees, the magnetic tape committees now specified in
9-track magnetic tape standards that what was previously called the
‘“‘eighth”’ or undefined track would now be set uniformly to zero.

They might have (should have?) specified the eighth track more
precisely as being set to zero for every row in which is recorded a bit
pattern from the 7-Bit Code. Instead they chose to specify the eighth
track as uniformly recorded with zero bits. A consequence of this particu-
lar specification is that any 9-track tape that records either an 8-bit code
(such as EBCDIC) or packed numerics or binary data, such that a one-bit

is recorded anywhere along the eighth track, is deemed to be nonstan-
dard.

Since virtually all 9-track tapes recorded in computing installations
will have packed numeric data or binary data, virtually all computing
installation magnetic tapes are nonstandard. A curious consequence in-
deed.

21
The

Alphabetic
Extender Problem

As described in Chapter 4, accommodation of European countries with

Latin alphabets of 29 letters was provided on products by duals. The

three additional letters were associated with card hole patterns as shown

in Fig. 21.1.

Subsequently, as described in Chapter 9, these card-code assign-

ments were carried forward into EBCDIC. The EBCDIC code positions

assigned to such graphic meanings were designated as alphabetic-

extender positions.

BCDIC was a monocase alphabet code, while EBCDIC was a

duocase alphabet code. The card hole patterns for the BCDIC alphabetic

extenders were assigned to EBCDIC as capital alphabetic extenders, and

new code positions were assigned to small alphabetic extenders, as shown

in Fig. 21.2.

Hole

pattern ULSS.A. Germany Sweden Finland Norway Denmark

8-3 # A A A z E
8-4 @ oO O O @ O

11-8-3 $ U A A A A

Fig. 21.1 Monocase and capital alphabetic extenders

Hole

pattern U.S.A. Germany Sweden Finland Norway Denmark

8-7 " A A 4 x we
12-8-2 ¢ 5 5 5 g Q
11-8-2 ii 4 A A A

Fig. 21.2 Small alphabetic extenders

411

412 The Alphabetic Extender Problem

21.1 THE ISO 7-BIT CODE

In 1967, the ISO 7-Bit Coded Character Set for Information Processing

Interchange was standardized in an approved ISO Recommendation,

R646-1967 (see Fig. 21.3).
Of particular significance were the third and fourth footnotes. They

are reproduced here (in part).

Column 0 1 2 3 4 5 6 7

Bit b710 0 0 0 1 1 1 1
Pattern b6 0 0 1 1 0 0 1 1

b5 0 1 0 1 0 1 0 1

Row b4 b3 b2 b1

By Lu |
0 0000 NUL | DLE | SP 0 @ P . P

1 0001 SOH DCL ! 1 A Q a q

2 0010 STX DCc2 " 2 B R b r

3 0011 ETX DC3 £ 3 Cc s c 8

4 0100 EOT DC4 $ 4 D T d t

5 0101 ENQ NAK 4 5 E U e u

6 0110 ACK SYN & 6 F Vv £ v

7 0111 BEL ETB ' 7 G W g w

8 1000 BS CAN (8 H x h x

9 1001 HY EM) 9 I Y i y

10 1010 LF SUB * : J Zz 4 Zz

LB La]
1 10171 VT ESC + ; K c k

L3 [3 |
12 1100 FF FS ; < L 1

13] io
13 1101 cR GS - = M J ™m

Le] Le]
14 1110 sO RS : > N “ n ~

15 1111 SI US / 9 0 _ oO DEL
Fig. 21.3 ISO 7-Bit Code

1.3 EBCDIC and the Hollerith Card Code 413

* Reserved for National Use These positions are primarily intended

for alphabetic extension. If they are not required for that purpose,

they may be used for symbols.

*Positions 5/14, 6/0, and 7/14 -+-+may be used for other graphical
symbols when it is necessary to have 8, 9, or 10 positions for national

use.

In the ISO 7-Bit Code, therefore, the requirement for alphabetic

extender positions was recognized, as it had been in EBCDIC.

21.2 EBCDIC AND THE 7-BIT CODE

At this point in time, then, there was a slight mismatch between EBCDIC

and the ISO 7-Bit Code, in that the former assigned 6 positions for

alphabetic extenders, and the latter assigned 7 ‘‘primary”’ positions and 3

more “secondary” positions if needed by some country.

This mismatch could have been rectified easily by assigning addi-

tional alphabetic extender positions in EBCDIC. But a much more

worrisome mismatch arose when the ISO/TC97/SC2 was working on the

standardization of the Hollerith Card Code (called, by SC2, the Twelve-

Row Card Code).

21.3. EBCDIC AND THE HOLLERITH CARD CODE

As described in Chapter 17, a slight mismatch existed between the

American Standard Hollerith Card Code and the EBCDIC Card Code, as

shown below:

Hole pattern MHollerith EBCDIC

12-8-7 ! |
11-8-7 . 7
12-8-2 [¢
11-8-2]

The first pair of these, ! (exclamation point) versus | (Logical OR)
and * (circumflex) versus ™ (Logical NOT), was resolved, as described in

Chapter 24, by text in the American Standard which specifically permit-

ted the “‘stylization’” of * as “, and of ! as |.
The second pair of these, [(left bracket) versus ¢ (cent sign), and |

(right bracket) versus ! (exclamation point), was not resolved in the

American Standard, but was resolved in EBCDIC by permitting dualiza-

tion; which is to say, by permitting the left bracket and the right bracket
to be provided instead of the cent sign and the exclamation point.

414 The Alphabetic Extender Problem

The more worrisome mismatch referred to above resulted from

applying the following algorithm:

=" Take a graphic in an ISO 7-Bit Code code position.

=" Take the card hole pattern corresponding to that ISO 7-Bit Code

code position.

«" Take that hole pattern and the corresponding EBCDIC code posi-

tion.

Take the EBCDIC graphic in that EBCDIC code position.

21.4 THE GERMAN 7-BIT CODE

In applying this algorithm, it is necessary to apply it not to the ISO 7-Bit

Code but rather to some national variant; the German 7-Bit Code (DIN

66003-1967, Informationsverarbeitung 7-Bit Code) is used here for

illustrative purposes. The result is shown in Fig. 21.4.

It should be pointed out that this alphabetic extender mismatch did

not exist between the American Standard Hollerith Card Code and

EBCDIC, as shown in Figure 21.5; however, the slight mismatches

referred to earlier in this chapter are seen.

The mismatches between EBCDIC and the Hollerith Card Code in

the U.S.A., then, were with respect to specials (albeit in alphabetic

German EBCDIC

7-bit code Hole Code

Graphic | position | pattern | position Graphic

2/3 8-3 7B A
@ 4/0 8-4 5B O

$ 2/4 11-8-3 7C U

A 5/11 12-8-2 4A 6

O 5/12 0-8-2 EO Not assigned*
U 5/13 11-8-2 5A iu

a 7/11 12-0 CO Not assigned*
6 7/12 12-11 6A | Not assigned*
il 7/13 11-0 DO Not assigned*

" 2/2 8-7 7F a

Fig. 21.4 DIN 66003 and EBCDIC mismatch. (Asterisk
refers to year 1967.)

21.5

Significance of Mismatches

415

U.S.A. EBCDIC

7-bit code} Hole Code

Graphic | position | pattern | position Graphic

2/3 8-3 7B 7

@ 4/0 8-4 5B @
$ 2/4 11-8-3 TC $

[5/11 12-8-2 4A ¢

\ 5/12 0-8-2 EO Not assigned*
] 5/13 11-8-2 5A !

{ 7/11 12-0 CO | Not assigned*
7/12 12-11 6A | Not assigned*

} 7/13 11-0 DO Not assigned*

” 2/2 8-7 7F "
Fig..21.5 Hollerith and EBCDIC mismatches. (Asterisk
refers to year 1967.)

extender positions), but in Germany and also in the four Scandinavian

countries the mismatches were with respect to alphabetic extenders
themselves.

21.5 SIGNIFICANCE OF MISMATCHES

There is a substantial difference in the significance of these two kinds of

mismatches. As described earlier, the mismatch in the U.S.A. was rectifi-

able very easily—simply by providing, on printers or displays, the left

bracket and right bracket in place of the cent sign and exclamation point.

But the mismatch between alphabetic extenders (in Germany and in the

Scandinavian countries) could not be rectified in such a simple way.

To begin to understand the significance of these two different kinds

of mismatches, consider the effect on, for example, the IBM 029

keypunch. Let us look first at the mismatch in the U.S.A. To modify the

keypunch, two “‘fixes’? would have to be made:

« Provide keytops (and the emphasis here is on the engraved symbols

on the tops of the keys) engraved [and] to replace the keytops
engraved ¢ and !.

" The mechanism that interprets along the top of a keypunched card is
called a “‘code plate.” Provide a new code plate that, for the hole

patterns 12-8-2 and 11-8-2, would interpret [and].

416 The Alphabetic Extender Problem

Both of these fixes could be made to keypunches in the field and the cost

would be moderate.

Before considering the equivalent fixes for an IBM 029 keypunch for

Germany, it should be recalled (as was described in Chapter 10) that one

of the keytops has no graphic engraved on it, but instead has 0-8-2

engraved. When this key is depressed, the 0-8-2 hole pattern is punched

in the card, and no symbol is interpreted on the card; that is to say, for

that column of the card, it would appear to a human viewer that, from an

interpretation point of view, the Space bar had been depressed. The fixes,

then, for the German 029 keypunch would be

Provide keytops engraved

A OU # @ $
to replace, respectively, the keytops engraved

0 0-8-2 i A O U
= Provide a new code plate which would interpret

AOU #4 @ $

for the hole patterns 12-8-2, 0-8-2, 11-8-2, 8-3, 8-4, 11-8-3, re-

spectively.

Both of these fixes could be made in the field, at very close to the same

moderate cost of making the fixes in the U.S.A.

If we look at another aspect, output printing from the CPU, and

consider the printer to be a chain/train printer, then the fix would be

simply a new chain/train, with the necessary substitutions. The cost would

be very moderate.

It can be concluded that the cost to modify equipment would be

moderate. But the cost to a user to fix existing punched card data files

could be horrendous. The user would have to convert all card files which

contained alphabetic information so that they could be processed cor-

rectly by the modified equipment.

In addition, any user programs that are code dependent on the

alphabetics (and many users have many such programs) would have to be

reprogrammed.

These two fixes, conversion of card files and reprogramming, could

prove to be an uneconomical burden.

21.6 THE FRENCH SOLUTION

It might well be asked if ISO/TC97/SC2 did not foresee this economic

consequence. In fact, ISO/TC97/SC2 did foresee it. One proposal was

put forward (by France) which had a “‘solution.”’

21.6 The French Solution 417

It was proposed that a footnote be added to the card-code table,

pointing at code-table positions 2/3, 2/4, 4/0, 5/11, 5/12, and 5/13:

Within six positions, presentations of card codes shall be allowed;

i.e., the assignment of the six card codes 8-3, 11-8-3, 8-4, 12-8-2,

11-8-2, and 0-8-2 to the six positions 2/3, 2/4, 4/0, 5/11, 5/12, and

5/13 may vary by permutation when required to take into account

well-established national usage.

It is to be noted that this footnote would not point at code-table positions

7/11, 7/12, 7/13, The reason was that, at this time, there was little if any

usage of small alphabetics, and therefore of small alphabetic extenders, in

punched-card applications. In consequence, little if any economic conse-

quence was foreseen for users in respect to small alphabetic extenders.

Figure 21.6 shows an example of how this could be implemented in

Country 1, “where no established usage opposes,” and in Countries 2 and

3 “to comply with established usage.” In Country 2, a single national

character is used in both upper and lower case. In Country 3, three

national characters are used in both upper and lower case.

This proposal clearly would have met the requirement to comply

with established usage within a country, but there were two undesirable

aspects.

Position |Card code to
in the j|be used when Character and card code assigned

ISO 7-Bit |no established to this character to comply with
Table |usage opposes established usage

Country 1 Country 2 Country 3

2/3 8-3 £ 8-3 £ 12-8-2

2/4 11-8-3 $ 11-8-3 $ 0-8-2

4/0 8-4 @ 0-8-2 @ 11-8-2

5/11 12/8-2 [12-8-2 A 8-3

5/12 0-8-2 N 8-4 |O] 11-8-3
5/13 11-8-2] 11-8-2 U 8-4

7/11 12-0 { 12-0 a 12-0

7/12 12-11 ni 12-11 6 12-11

7/13 11-0 } 11-0 u 11-0

Fig. 21.6 Permutation of card codes

418 The Alphabetic Extender Problem

21.6.1 Undesirable Aspects of the French Solution

A. Consider the graphics @ # and $. Under this proposal each of these

graphics would have different hole patterns in different countries, with the

following consequences:

= For manufacturers of punched-card equipment, different and incom-

patible lines of card equipment.

=» For the manufacturer, dual or multiple maintenance and distribution

of programming decks.

For the users in different countries, difficult or impossible inter-

change of card deck.

B. Under this proposal a given ISO 7-bit bit pattern could be associated

with different Hollerith hole patterns, and a given Hollerith hole pattern

could be associated with different ISO 7-bit bit patterns, in different

countries. The consequence of this, for the manufacturer of card-code

to/from bit-code equipment, would be different and incompatible lines of

equipment between countries.

As reviewed by ISO/TC97/SC2, these two aspects were deemed suffi-

ciently undesirable that the proposal was rejected.

The alphabetic extender problem remains unsolved to this day.

Manufacturers of punched-card equipment continue to implement the

card codes “of established usage,” not the ISO card codes, for the

alphabetic extenders. Users continue with the card codes “‘of established

usage.” Short of government intervention to force compliance, the ISO

Standard card code will evidently not be implemented in Europe with

respect to alphabetic extenders.

22
Graphic Subsets

for the
Government

22.1 A AND H SUBSETS

As described in Chapters 4, 9, and 10, there were various subsets of

BCDIC and of EBCDIC. The most popular of these, the A and H sets,

manifested themselves on 48-character trains/chains.

BCDIC EBCDIC

A to Z 26 A to Z 26

0 to 9 10 0 to 9 10

,/* -§ 6 -,/+* -$Rk& 8

H) <)
% (% (

& + 5 # = 4

it = @ ’
@ ' |

A-Set | H-Set A-Set | H-Set

Total 47 Total 48
It is to be noted that the BCDIC subsets shown above are actually

47-graphic sets. The 48th graphic on the chain/train was sometimes +,

sometimes — (repeated), sometimes a company logo, and sometimes

something else.

In fact, there were quite a number of 48-graphic trains/chains

available. Consider, then, the problem of a computing installation that

received from some source outside the installation a report to be listed.

This report might come to the installation on punched cards or on

420 Graphic Subsets for the Government

magnetic tape. If the source installation had prepared the report using an
A-train and if the receiver installation used an H-train to list the report,

there would be some unintelligibility in the listing, the amount depending

on the extent to which the source installation had used special graphics

beyond the period, comma, slash, asterisk, minus sign, and dollar sign.

This kind of confusion was compounded where many installations

sent data from one to another to be listed and where a variety of

48-graphic trains/chains were used in the installations. An obvious solu-

tion to such situations would have been for somebody in authority over

all the installations to issue an edict to all installations to always use the

same train/chain.

Such a simplistic solution would probably not have worked very well

in real life. Installations had particular trains/chains for a particular

reason, and users would have resisted the bureaucratic order to change.

22.2 DEPARTMENT OF DEFENSE SOLUTION

During the early 1960s, a different kind of solution was tried in the

Department of Defense. Recognizing that 42 graphics—26 alphabetics,

10 numerics, and 6 specials (period, comma, slash, asterisk, minus sign,

and dollar sign)—were common to all trains/chains, an edict was issued

that only these 42 graphics could be used on reports. (Incidentally, it was

exactly this set of 42 characters, together with the Space character, that

formed the “hard core 43” described in Chapter 17.

This solution had moderate success. A countervailing factor was that

military part numbers used the left parenthesis, the right parenthesis, and

the number sign, and part numbers were in much of the report data

interchanged between military installations.

22.3 FIPS PUB 15 SOLUTION

In the late 1960s, a Federal Information Processing Standards Publication

(FIPS PUB) 15 was approved. FIPS PUB 15 stated that “all applicable

equipment ordered on or after the date of this FIPS PUB must be in

conformance with this standard...”’.

“Applicable equipment” included printers, display devices, punched-

card equipment, and other data processing or communications equipment.

The standard specified three graphic subsets:

=» a 16-character graphic subset,

= a 64-character graphic subset,

=» a 95-character graphic subset.

The graphic subsets were derived from ASCII, shown in Fig. 22.1.

The 16-graphic subset consisted of the 10 numerics and 6 specials in
column 3 of the code table.

22.3 FIPS PUB 15 Solution 421

Column 0 1 2 3 4 5 6 7

Bit b7 10 0 0 0 1 1 1 1

Pawn los 0 0 1 1 0 0 1 1

b5 0 1 0 1 0 1 0 1

Row b4 b3 b2 b1

0 0000 SP 0 @ P . p

1 0001 ' 1 A Q a q

2 0010 tt 2 B R b xr

3 0011 # 3 c s c 8

4 0100 $ 4 D T d t

5 0101 4 5 E U e u

6 a1 10 & 6 F Vv £ v

7 0111 ' 4 c W 5 w

8 tooo ¢ 8 H x h x

9 1001) 9 t Y 1 y

10 1010 * ; J Zz j z

11 1011 + ; K [k {

12 1100 ; < L \ 1 1

13 1101 - - M 1 n }

14 1110 : > N A n ~

15 11141 / ? 0 _ °

Fig. 22.1. ASCII

The 64-graphic subset consisted of the Space character and the 63

graphics in columns 2 through 5 of the code table.

The 95-graphic subset consisted of the Space character and the 94

graphics in columns 2 through 7 of the code table.

The wording of FIPS PUB 15 was such that these graphic subsets
were to be provided regardless of the code of the equipment. Thus, for

example, FIPS PUB 15 was applicable not only to ASCII-based equip-

ment, but also to EBCDIC-based equipment, or, indeed, to equipment

based on any code whatsoever.

422 Graphic Subsets for the Government

Since this federal standard applied to all equipment entering the

federal inventory, manufacturers had to supply these graphic subsets if

they wished to market to the federal government. FIPS PUB 15 had,

therefore, considerable clout.

22.4 FIPS PUB 15 TRADE-OFF

The federal government had made an interesting trade off here. As

described in Chapter 10, the nominal printing speeds (LPM, lines printed

per minute) for train/chain printers, depending on the number of graphics

in the repeated sets of the train/chain, were as follows:

Number of graphics Repeated sets Nominal printing speed

40 6 1250 LPM

48 5 1100 LPM

60 4 950 LPM

120 2 570 LPM

240 1 300 LPM

The number 64 does not divide evenly into 240, so for a 64 (really 63

plus Space) graphic set, the ‘‘preferred”’ graphic approach would have to

be used. For the 64-graphic subset, the nominal printing speed would be

approximately 940 LPM. Assume, for the purposes of discussion, that the

train/chain printer would run without stopping for 8 hours. Then the

48-graphic printer would produce 528,000 lines of print, whereas the

64-graphic printer would produce approximately 451,000 lines of print;

that is, approximately 77,000 lines of print less during 8 hours.

The federal government was making a trade-off between productiv-

ity of lines printed and intelligibility of interchanged data as printed.

FIPS PUB 15 did recognize that the bulk of printing in an installa-

tion would probably not come from data interchanged from another

installation, and that productivity of printed lines for such noninter-

changed data should not be reduced. FIPS PUB states:

Printers of the “chain” or “train” or other replaceable symbol

technology must be provided with the ability to conform to one of

the subsets herein but may also be provided with optional subsets

having a different number of characters than those specified herein in

order to increase either the printer repertoire of symbols or the

printer speed in local use.

That is to say, federal departments and agencies could order 48-character

train/chain printers, as long as a 64-character train/chain could be

mounted if needed. And that is an easy and simple thing to do with

train/chain printers.

23
Which ASCII?

23.1 ASCII-1963

A national standard, even when approved, may nevertheless not remain

fixed and unchanging. When ASCII became an approved American

standard in 1963, it was not complete. As may be seen from Fig. 23.1, 28

code positions in columns 6 and 7 were not filled. In addition, the control

character in position 0/8 was defined very broadly as a “format effector”

(in contrast with the other ‘format effectors’? Horizontal Tab, Line Feed,

Vertical Tab, Form Feed, and Carriage Return that were defined very

specifically), and the control characters in positions 0/8 through 015 were

broadly called “‘separators.”’

23.2 ASCII-1965

As can be seen from Fig. 23.2, ASCII in 1965 was changed from

ASCII-1963. Some of these changes, such as the addition of small

alphabetics in columns 6 and 7, the change of name without change of

essential meaning of some control characters—Start of Message (SOM)

changed to Start of Header (SOH); End of Message (EOM) changed to
End of Text (ETX)—can be described as evolutionary, in that they did

not change what existed before, but simply added to it.

Other changes, such as moving Escape (ESC) from position 7/14 to
position 1/11; “...Are you?” (RU) in position 1/6 being replaced by
Acknowledge (ACK); changing \ ft and <— to ~ * and _in positions 5/12,

5/14, and 5/15, respectively, can be described as revolutionary, in that

they did change what existed before.

424 Which ASCII?

Column

Bit

Pesere

b7

b6

b5S

Row b4 b3 b2 b1

0 0000 NULL pco 6

1 0001 SoM | DCl !

2 oo10 EOA | DC2 "

3 6011 EOM | DC3 #

4 9100 EOT DC4 $

5 0101 WRU ERR %

6 9110 RU | SYNC &

7 0111 RELL LEM '

8 1ooo FEO | 80 (

9 1001 HT/SK| Sl)

10 1010 LF 52 *

11 1011 VTAB $3 +

12 1100 FF 84 ; ACK

13 1101 CR 85 - (2)

14 11170 so S6 ESC

15 1111 SI 87 / DEL

2]

Fig. 23.1 ASCII-1963

As described in Chapter 16, a proposed American national standard

which specified a card code radically different from the well-established

Hollerith Card Code was resolutely voted down at X3 by users who

clearly foresaw the substantial economic impact of such a revolutionary

change. As described in Chapter 21, a draft ISO standard that specified a

change to well-established card hole patterns for alphabetic extenders was

approved, but has not been implemented—again because of the economic

impact on users.

23.3 Economic Impacts

Column| 0 1 2 4 5 6 7

Bit b7 | 0 0 1 1 1
Pacer b6 0 0 1 0 1 1

bS 0 0 1 0 1

Row b4 b3 b2 b1

0 0000 NUL DLE SP P @ P

1 0001 SOH Del ! A 0 a q

2 0010 STX DC2 " R B r

3 0011 ETX DC3 # Ss c 8

4 0100 EOT DC4 $ T d t

5 0101 ENQ NAK % U @ u

6 0110 ACK SYN & F v f v

7 0111 BEL ETB ' W g w

8 1000 BS CAN (H x h x

9 1001 HT EM) I Y i y

10 1010 LF Ss * Zz j z

"1 10171 vt ESC + K C k {

12 1100 FF FS : L ~ 1 7

13 1101 CR GS - M 1 m }

14 111.0 so RS N * n |

15 1111 SI US / 0 _ o DEL

Fig. 23.2 ASCII-1965

23.3. ECONOMIC IMPACTS

It is reasonable to inquire, therefore, whether changes to ASCII, such as

those described above, have had similar economic impacts. Two examples,

to be described below, will give insight on this question.: (Both these

examples are drawn from the author’s experience.) However, t the follow-

ing explanation must preface the examples.

425

Reference was made above, and will be made below, to ASCII-

1965. Some rather unusual circumstances surround ASCII-1965. ASCH-
1963 had been approved and published in June 1963. Since that time, the

426 Which ASCII?

American subcommittee X3.2 (now X3L2) had been working to com-

plete the code table. There was considerable interplay between the

American subcommittee and the ISO subcommittee ISO/TC97/SC2
(which will be referred to in the remainder of this chapter as SC2). SC2

was working on the ISO Draft Proposal for a 7-Bit Code. The two

subcommittees, X3.2 and SC2, were striving to achieve compatible 7-bit

codes. Some graphics, and some controls, were under contention and

controversy.

By January of 1965, X3.2 had completed its ‘‘revision” of ASCII and

forwarded it to X3 for further processing. During the X3 balloting, a

controversy arose with respect to graphics for Logical OR and Logical

NOT (see Chapter 24). This controversy delayed further processing of the

revised ASCII at that time.
Meanwhile X3.2 had received information that, at the upcoming

April 1966 meeting of SC2, changes would be made to the ISO Draft

Proposal. These changes would create incompatibilities between the ISO

7-Bit Code and ASCII.
Therefore, X3.2 requested X3 to request ASA to delay publication

of the revised ASCII until after the SC2 meeting. This request was

granted and ASCII-1965, although approved by ASA, was, in fact, never

published or distributed.

23.4 THE 2260 DISPLAY STATION

IBM’s first ASCII transmission product, the 2260 Display Station and

2848 Display Control, announced in 1965, was based on ASCII-1965.
As can be seen from Fig. 23.3, not every character of ASCII-1965 was

implemented. Eight control characters (sufficient for the data communica-

tions protocols of the day), the Space character, and 59 graphic characters

were implemented. These 59 graphics, shown below, were the graphic set

of the programming language PL/I:

26 capital letters A to Z

3 alphabetic extenders # $ @

10 numerics 0 to 9
20 syntactics () < = >.,: 5°?

a | % &' [* + - =

The symbols shown below the code table of Fig. 23.3 had the

following meanings:

‘Displays on the 2260 Display as ™ (End of Message symbol). Prints
on 1053 Printer as ! (exclamation mark).

*Displays on the 2260 Display as Ii (Check symbol). Prints on the
1053 Printer as ‘‘ (quotation marks).

23.4 The 2260 Display Station 427

Column 0 1 2 3 4 5 6 7

Bit ' |b7]0 0 0 0 1 1 1 1
Pattern | bé 0 oO 1 1 0 0 1 1

: b5 0 1 0 1 0 1 0 1

Row b4 b3 b2 b1

0 ooo00 SP 0 P @

2]
1 0001 SOH 1 A Q

[2 |
2 0010 STX 2 B R

3 °~ 0011 ETX i 3 c s

4 0100 EOT $ 4 _ OD qT

5 9101 NAK 4 5 E U

6. 0110 ACK & 6 . *-F Vv

7 04111 ' 7 G Ww

8 1000 CAN (8 H x

9 1001) 9 L Y

3
10 1010 LF * : J Zz

1 1011 + . K
a

12 1100 ; é L “

Le |
13 1101 - = M

14 11140 > N |

15 111471 : / 2 oO

Display 1053 Printer —

Fig. 23.3 2260-1965

*Displays on the 2260 Display as A (New Line symbol). Causes the

1053 Printer to execute a New Line function.

‘Displays on the 2260 Display as }» (Start Manual Input symbol).

Prints on the 1053 Printer as ¢ (cent sign).

428 Which ASCII?

23.5 THE 1053 PRINTER

It is to be noted, then, that 62 graphics were printable on the 1053

Printer. The 1053 Printer was a typewriter-based product with a printing

capability of 88 graphics. However, the capital letters were duplicated,

that is, they printed whether the typewriter was in upper-case or lower-

case shift. Accordingly, 88 — 26 = 62.

23.6 ASCII-1967

The standards committee X3.2 continued with its work to arrive at an

agreed-upon ASCII, and ASCII-1967 was the result.

23.7 ASCII-1965 VERSUS ASCII-1967

A comparison of ASCTI-1965 (Fig. 23.2) and ASCII-1967 (Fig. 23.4)
shows changes in 6 code positions:

Code position ASCII-1965 ASCII-1967

1/10 SS SUB
4/0 . @

5/12 ~ \
6/0 @ °

7/12 7 |
7/14 | ~

23.8 THE 2265 DISPLAY STATION

The changes in code positions 1/10 and 5/12 do not affect the discussion

in this chapter, since they had not been implemented on the 2260. But a

follow-on product to the 2260, the 2265 Display Station and 2845

Display Control, was being developed, and the pertinent question was

Should the 2265 be compatible with the 2260 and hence in noncon-

formance to ASCII-1967, or should the 2265 be in conformance to

ASCII-1967 and hence incompatible with the 2260?

Since the 2265 was planned to replace installed 2600’s, compatibility was

a requirement. The question then became “Which was more important,

compatibility or conformance?” In the end, it was decided that compati-

bility was more inportant. The nonconformance to ASCII-1967 (but

conformance to ASCII-1965) was carefully explained in the 2265

manuals.

A dilemma of a different kind was posed because of an incorrect

guess on the ultimate shape of a draft standard. Before discussing this

23.9 System/360 Decimal Arithmetic

Column 0 1 2 7

Bit b7| 0 0
Pacer b6 0 0 1 1

b5 0

Row b4 b3 b2 b1

0 9000 |} not |] DLE | sP P

1 ooo01 SOH | DC i q

2 09010 STX DC2 " r

3 oo11 ETX DC3 i# s

4 0100 EOT DC4 $ t

5 0101 ENQ | WNAK % u

6 014110 ACK SYN & v

7 0111 BEL ETB ' w

8 1000 BS CAN (x

9 1001 HT EM) y

10 1010 LE SUB * Zz

11 1011 VI ESC + {

12 1100 FF FS ; i

13 1101 CR Gs - }

14 1110 SO RS ~

15 1111 St US / DEL

Fig . 23.4 ASCII-1967

429

problem, it is necessary to understand the operation of Pack/Unpack and

Decimal Arithmetic instructions on the IBM System/360.

23.9 SYSTEM/360 DECIMAL ARITHMETIC

In the System/360, decimal arithmetic is performed with operands in the

packed format. What does this mean?

In what is called the ‘‘zoned format’? for numerics, each numeric

occupies an 8-bit byte, with the high-order 4 bits called the “‘zone”’ and

430 Which ASCII?

the low-order 4 bits being the familiar BCD representation for numerics.

Referring to an EBCDIC code chart (Fig. 23.5), we see that the represen-
tation of the numerics is as follows:

Numeric Zone BCD numeric

0 1111 0000

1 1111 0001

2 1111 0010

3 1111 0011

4 1111 0100

5 1111 0101

6 1111 0110

7 1111 0111

8 1111 1000

9 1111 1001

come [12 [*[*Tel*l*[*l*l*l*yelelels
Bit 00 01 10 4

how "| oo | ov | 10 | 11 | oo | 01 | 10 | 11 | oo | 01 | 10 | 11 | 00 | 01 | 10 | 44

o |o000 sp | & | - 0

1 |oo001 / A | J 1

2 |o0010 B | K s 2

3 }0011 c L T 3

4 [0100 D M U 4

5s |or01 E| Ni v 5

6 |ot10 F | oj] W 6

7 |o111 G | P x 7

8 |1000 H/] Ql y 8

9 |1001 ~ I R Z 9

aA [1010 ¢ !

B {1011 . $: #

c |1100 < * 4 @

D [1101 () _ '

— |1110 + 13 > =

F faaa4 | a 9 "

Fig. 23.5 EBCDIC

23.11 USASCII-8 431

A string of zoned numerics, then, occupies a string of 8-bit bytes as

follows:

| Zone | Digit | Zone | Digit | | Zone | Digit | Sign | Digit |

Note that in the rightmost (low-order) byte, the high-order 4 bits are not

a “zone”’ but are a “‘sign.”” More will be said about this later.

When the Pack instruction is executed on an operand in the zoned

format above, a ‘‘packed decimal number” results as shown below:

| Digit | Digit | Digit | [Digit | Digit | Digit | Sign |
 eee mew meee ween ee

The high-order 4 bits of the low-order 8-bit byte from the zoned format
now occupy the low-order 4 bits of the packed decimal format, all zones

have been removed, and the 4 bits of the decimal numbers are now

‘“‘packed’”’ together from right to left. If necessary, four zero-bits are filled

in to the extreme left 4 bits of the resultant high-order 8-bit byte.

23.10 PACKED DECIMALS

This, then, is a packed decimal number, and on such numbers the

System/360 performs decimal arithmetic (which includes comparison)
instructions. As described elsewhere in this book (Chapter 19), the

concept of signed numerics was incorporated into EBCDIC. A number

with a zone of 1100 was considered a positive numeric, a number with a
zone of 1101 was considered a negative numeric, and a number with a

zone of 1111 was considered an absolute numeric. The zones over the

low-order numeric in a string of zoned numerics, when that string was

packed, became the sign of the packed numeric string. The arithmetic

circuitry of the CPU would recognize these signs during execution of

decimal arithmetic instructions, and would also generate the appropriate

sign for the result.

23.11 USASCII-8

In order to appreciate the significance of this zone-to-sign relationship,

consider another CPU code implemented on the System/360, called

USASCII-8 (Fig. 23.6).
USASCII-8 was an 8-bit representation of ASCII-1963 (Fig. 23.1).

More will be said later about why this particular 8-bit representation was

chosen. For now, however, consider the zone-to-sign relationship. In Fig.

23.6, the numerics are in column hex 5, with high-order zone bits of

0101; therefore, 0101 was chosen as the zone for absolute numerics.

For reasons which will be described a little later, column hex A, with

high-order zone bits of 1010, and column hex B, with high-order zone

432 Which ASCII?

Column| 0 | 1 2 | 3 4 | 5 | 6 | 7 8 | 9 | A B c | D | E | F

Bit. 00 01 10 11
Pat. *|

Row oo | 01 | 10 | 11 |] OO | 01 10 | 11 | 00 | 01 10 |} 11 | oo | 01 to | 11

0 |oo00] yuL | Dco SP 0 @ P P

1 |o000%] SOM| Dc1 ! 1 A Q a q

2 |0010 4 EOA | DC2 " 2 B R b r

3 |0011} EOM! DC3 # 3 c Ss c s

4 }o0100]7 EOT| DC4 $ 4 D T d t

5 |0101, WRU] ERR % 5 E U e u

6 |o170) RU SYN & 6 F Vv £ Vv

7 $0111] BEL | LEM ' 7 G W g w

8 {10001 BS | SO (8 H x h x

9 $1001] HT St) 9 I Y i y

A |1010] LF | S2 * : J Z 3 Zz

B {10117 VI | 53 + 5 K C k

c [1100] FF | 84 ; < L \ 1

D {1707} CR | S5 - = M J m

— [1110] SO S6 . > N + n ESC

Fo J4114] SI S7 / 2? 0 + oO DEL

Fig. 23.6 USASCII-8, 1964

bits of 1011, were chosen as zones for positive and negative numerics

respectively. We have then, the following:

| EBCDIC | USASCI-8

Absolute 1111 0101

Positive 1100 1010

Numeric 1101 1011

The Pack and Unpack instructions operated independently of whether the

numeric data was EBCDIC or USASCII-8. But the decimal arithmetic

instructions had to take the differences in signs into account. This was

controlled by bit 12 in what was called the Program Status Word (PSW).
If bit 12 in the PSW was set to zero, the decimal arithmetic instructions

assumed EBCDIC signs on input to the arithmetic circuits, and generated

EBCDIC signs on output from the arithmetic circuits. If bit 12 in the
PSW was set to one, the decimal arithmetic instructions assumed and

generated USASCII-8 signs. (Bit 12 of the PSW was normally set at zero

(EBCDIC). Setting it to one (USASCII-8) was under control of the

System/360 Operating System, but a discussion of that is beyond the

scope of this book.)

23.13 Compilers 433

In any event, the particular bit patterns chosen for absolute, positive,

and negative numerics in USASCII-8 established the code structure of

USASCH-8. More precisely speaking, the code structure of USASCII-8

established the bit patterns for absolute, positive, and negative numerics.

Why was that code structure chosen? This question is answered in some

detail in Chapter 20, and need not be discussed further here.

It is clear why column hex 5, which contained the numerics, was

chosen for the zone for absolute numerics. But why columns hex A and
B for positive and negative numerics?

23.12 DECIMAL ASCII

As described in Chapter 16, a new card code had been proposed to the
standards committees in November 1963 that came to be called Decimal
ASCII. This card code, which was initially accepted by the ANSI, ECMA,

and ISO standards committees, was planned to be the card code for the

System/360 when functioning in the USASCII-8 mode.

In those days, the input/output card reader/punch was considered to

be a vital part of a computing system; a keypunch to prepare input card

data was considered as equally essential. One assumption was made. The

practice, widespread in Hollerith punched card applications, of over-

punching the units position of a numeric field with a 12-punch or
11-punch to indicate a positive or negative numeric field: would be carried

over to Decimal ASCII punched card applications.

Since, in the Decimal ASCII card code, the 12-punch was associated

with the alphabetics A through I, and the 11-punch with alphabetics P

through Y, the association of these card columns in USASCII-8 with

positive and negative numerics was the natural choice.

23.13 COMPILERS

Another part of the computing system which may be, and usually is,

dependent on the CPU code is the programming system.

For example, when a FORTRAN compiler is scanning FORTRAN

statements, it “looks” for left and right parentheses, which enclose

FORTRAN expressions. Actually, of course, it looks for the bit patterns

which represent left and right parentheses; they would be 01001101 and

01011101, respectively, for EBCDIC and 01001000 and 01001001,

respectively, for USASCII-8.

All compilers are similarly code dependent for all the bit patterns for

which they “look.”

In the spring of 1964, work was underway in IBM designing the

Decimal ASCII keypunch and input/output card reader/punch. Also,

programmers had been instructed to identify all code-dependent parts of

434 Which ASCII?

their programs so that programming systems dependent on USASCII-8

could be developed in due course.

In June of 1964, at the meeting of X3.2.3 (the task group responsible

for developing the punched card code standard), strong words against

Decimal ASCII and for Hollerith were spoken (by the UNIVAC rep-

resentative).

A review of the merits of Decimal ASCII versus Hollerith was
commenced vis-a-vis customers. It was concluded that, in general, cus-

tomers would not accept Decimal ASCII. (Ultimately, as demonstrated

by the rejection of the draft Decimal ASCII standard by users at the X3

level, this conclusion turned out to be correct.) Work on the Decimal

ASCII card equipment was halted, and never resumed.

As explained in Chapter 16, the main concept behind the Decimal

ASCII card code was a simple translation to ASCII. It is quite feasible to
translate from the Hollerith card code to ASCII and hence also to
USASCII-8, but the translation is very complex and the translation
hardware would, in those days, have been costly. Also, signed numerics

would present a problem. For example, in the Hollerith card code, the

11-2 hole pattern represents K, and so it should be translated, for

USASCII-8, to hex position AA (see Fig. 23.6). But if the 11-2 hole

pattern represents — 2 as a signed numeric, it should be translated to hex

position B2. And there is no way to tell, just from the hole pattern,

whether it represents K or —2.

A more serious problem arose. The 8-bit representation of ASCII

known as USASCII-8 had been proposed to X3.2 and, apparently,
accepted. But in mid-1965, this representation was opposed in X3.2, and

eventually another representation was adopted (see Chapter 20).
Further work to support USASCII-8, therefore, was not done. The

CPU hardware described above for decimal arithmetic was provided in

every model of the System/360, but without programming systems sup-

port. The guess on the 8-bit representation of ASCII had turned out to be

incorrect.

Logical OR,
Logical NOT

24.1 ASCIF1963

When ASCII became an approved American National Standard in 1963,

it was not complete. There were 28 code positions in columns 6 and 7

that had no assigned meaning. There was some controversy on whether

small alphabetics or additional control characters should be assigned to
these positions. This controversy was resolved when, at the 1963. October

meeting of ISO/TC97/SC2, it was decided to assign small alphabetics in

the ISO 7-Bit Code then being developed.

24.2 ASCII-1965

By January 1965, X3.2 had completed work on the Proposed Revised

ASCII, which was compatible with the ISO 7-Bit Code. The code table is
shown in Fig. 24.1.

24.3 PL/I

In this code table, a problem was perceived with respect to PL/I, the new

programming language which had been announced with the System/360

in April 1964. The graphics of PL/I were of five kinds:

1 space

10 numerics 0 to 9
26 alphabetics A to Z

3 alphabetic extenders # $ @
20 syntactics /*+-=&/ln4<>

",.32:()% —?

435

436 Logical OR, Logical NOT

Column| 0 1 2 3 4 5 6 7

Bit b7 | 0 0 0 0 14 1 1 1
een b6 0 0 1 1 0 0 1 1

b5 0 1 0 1 0 1 0 1

Row b4 b3 b2 b1

0 oo000 NUL DLE SP 0 * P @ P

1 0001 SOH DCL { 1 A Q a q

2 0010 STX DCc2 " 2 B R b r

3 0011 ETX DC3 i# 3 C 5 c 5

4 0100 EOT pDc4 $ 4 D T d t

5 0101 ENQ NAK % 5 E U e u

6 0110 ACK SYN & 6 F V £ v

7 0111 BEL ETB ' 7 G W g w

8 1000 BS CAN (8 H x h x

9 1001 HT EM) 9 I Y i y

10 1070 LF Ss * : J Zz j Zz

1 1011 VI ESC + 3 K [k {

12 1100 FF FS ; < L ~ 1 ™

13 1101 CR GS - = M] nm }

| 14 1110 SO RS . > N “ n i

15 11171 SI US / 2 O _ o DEL
Fig. 24.1 ASCII-1965

The term syntactic meant that the programming language would assign

some specific function to a graphic when that graphic was used in a

programming language source statement. For example,

* would mean multiplication,
/ would mean division,

& would mean Logical AND,

| would mean Logical OR,
would mean Logical NOT.

24.5 Ground Rules 437

24.4 THE PROBLEM

The problem that was perceived was based on the assumption that, some

day, PL/I would become a candidate for international standardization.

(That assumption turned out to be correct.) At that time, among the

many aspects of PL/I that would be reviewed would be the character set.

Presumably, the committee would agree on the 29 alphabetic, 10

numeric, and 20 syntactic functions, but they might well debate the actual

graphics to be associated with the syntactic functions. For example, is ©
the appropriate graphic to be associated with the syntactic function of

“Logical NOT’?

A further assumption was made, which was that the committee

would set two ground rules with respect to the graphic character set of

PL/I.

24.5 GROUND RULES

Ground rule 1

All graphics for the PL/I character set would be chosen from the set of 63

graphics in the center four columns of the ISO 7-Bit Code.

Ground rule 2

The graphics associated with the syntactic of PL/I should not be as-

sociated with a code position reserved in the ISO 7-Bit Code for

alphabetic extenders.

The reasoning behind these ground rules was as follows. For Ground

rule 1, it was the judgment of many people at that time that most

upcoming printing and display devices would have a repertoire of 63

graphics and Space. The 63 graphics, in fact, would be those in columns
2, 3, 4, and 5 (the center four columns) of the 7-Bit Code. For Ground

rule 2, although alphabetic extender code positions might have graphics

like {] and \ in English-speaking countries, in Germany and the four
Scandinavian countries, alphabetics would indeed be in those positions.

Therefore, no matter how appealing a graphic in an alphabetic extender

position of the code for English-speaking countries might be, it could not

be used as a syntactic for any programming language.

As can be seen from Fig. 24.1, three of the PL/I graphics, @ | and ~,

were not in the center four columns (Ground rule 1), and also ™ and |,

PL/I syntactics, were in alphabetic extender positions (Ground rule 2).

The reason for @ being in code position 6/0 is interesting. It was

forecast that, in the French national variant of the ISO 7-Bit Code, @

would be replaced by a. Since 4 is an accented small letter, it should be in

columns 6 or 7 where the other small alphabetics were positioned. With

the U.S.A. requesting that @ be in code position 4/0, and with France

requesting that it be in 6/0, it actually moved back and forth at successive

438 Logical OR, Logical NOT

meetings of ISO/TC97/SC2. Ultimately, it was agreed to position it in

4/0, and thus this part of the PL/I graphic set problem resolved itself

satisfactorily.

The problem with | (Logical OR) and ~ (Logical NOT) remained.
User groups SHARE, GUIDE, and COMMON, becoming aware of this

problem, became concerned. Letters were written from various com-

panies in these user groups to the Chairman of X3 requesting that the

problem be solved. Representatives from these user groups attended

X3.2 meetings and X3 meetings to lobby for their requirement.

Column 0 1 2 6 7

Bit b7| 0 0 1
Pane b6 0 0 1 1 1

b5 0

Row b4 b3 b2 b1

0 doo 0 NUL | DLE SP . Pp

1 9001 SOH | DC1 ! a q

2 0010 STX | DC2 " b x

3 0071 ETx | DC3 # c 8

4 0100 EOT DC4 $ d t

5 0101 ENQ MAK % e u

6 0110 ACK SYN & £ v

7 0111 BEL ETB ' g w

8 1000 BS CAN (h x

9 1001 HT EM) i y

10 1010 LF SUB * j 2

"4 1011 VT ESC + ek | ¢f

12 1 00 FF FS ; 1 |

13 1101 CR Gs - m }

14 1110 so RS n ~

15 1111 SI US / o DEL

Fig. 24.2 ISO 7-Bit Code

24.7 The Solution for ASCII 439

Various proposals were made to solve the problem. For example, it

was proposed that | and replace ! and “*, respectively, in the code table.

All such proposals to change the set of graphics in the ASCII code table
were rejected by a majority of the X3.2 members. X3.2 completed its

work on the draft Proposed Revised ASCII and forwarded it to X3.

On the X3 letter ballot, the Joint Users Group (which included

SHARE and COMMON among its members) voted no. A sufficient
majority of X3 affirmative votes was received, however, and the draft

standard was forwarded to ASA. In December 1965, the Information

Processing Standards Board of ASA approved the Revised ASCII.

In January 1966, X3.2 received information that changes would be

made to the 4th Draft ISO Proposal for (6 and) 7-Bit Codes. These

changes would not speak to the Logical OR/Logical NOT problem; they

would be with respect to some control characters. The consequence

would be that ASCII would then be incompatible to the ISO 7-Bit Code.
Therefore, X3.2 requested X3 to request ASA to delay publication of the

revised ASCII until after the April 1966 meeting of ISO/TC97/SC2. This

request was granted. In fact, ASCII-1965, although approved by ASA,

never was published. ;

Changes were indeed made to the ISO 7-Bit Code at the April 1966

meeting. The SS (Start of Special) character in position 1/10 was replaced
by SUB (Substitute); @ and * flip-flopped again, @ ending up in 4/0 and ~
in 6/0; ? replaced ~ in position 5/12; | was moved from 7/14 to 7/12; and ~
(overline, or tilde) was placed in 7/14. This was the final version of the

ISO 7-Bit Code. It became an approved ISO Recommendation, R646, in

1967 (see Fig. 24.2).

The Logical OR/Logical NOT problem was discussed at this meeting

and a solution (of sorts) was set into the document. (This solution will be

described later in this chapter.)

24.6 REVISED ASCII

ASCII itself now had to be revised to bring it into line with the changes

made to the ISO 7-Bit Code. Once again, a draft Proposed Revised

ASCII was under preparation by X3.2. The Logical OR/Logical NOT

problem continued to concern X3.2.

24.7 THE SOLUTION FOR ASCII

Ultimately a solution was found. The solution has two parts. The first part

is the inclusion of the following text in Section 6.4 of the ASCII standard:

6.4
No specific meaning is prescribed for any of the graphics in the code

table except that which is understood by the users. Furthermore, this

440 Logical OR, Logical NOT

standard does not specify a type style for the printing or display of

the various graphic characters. In specific applications, it may be

desirable to employ distinctive styling of individual graphics to facili-
tate their use for specific purposes as, for example, to stylize the

graphics in code positions 2/1 and 5/14 into those frequently as-

sociated with Logical OR | and Logical NOT %, respectively.

This text was taken to mean that manufacturers could, if they wished,

substitute the graphics | for !, and ™ for *.

24.8 THE SOLUTION FOR THE ISO 7-BIT CODE

It should be pointed out that positioning the Logical NOT graphic in

position 5/14 does not strictly satisfy Ground rule 2, since position 5/14 is

an alphabetic extender position. However, the 10 positions designated as

alphabetic extender positions in the ISO 7-Bit Code are viewed as being

divided into ‘‘primary” and “‘secondary”’ by virtue of the footnotes which
speak to them. For the 7 “‘primary”’ positions, 4/0, 5/11, 5/12, 7/11, 7/12,

7/13, the footnote reads (in part):

Reserved for National Use. These positions are primarily intended

for alphabetic extensions. If they are not required for that purpose,

they may be used for symbols...

By contrast, for the 3 ‘“‘secondary” positions, 5/14, 6/0, and 7/14, the

footnote reads (in part):

Positions 5/14, 6/0, and 7/14...are normally provided for the

diacritical signs ‘“‘circumflex,” “‘grave accent,” and “‘overline.’’ How-

ever, these positions may be used for other graphical symbols when it

is necessary to have 8, 9, or 10 positions for national use.

It was reckoned that, in Germany and in the four Scandinavian countries

where the Logical OR/Logical NOT problems would exist, these three

“secondary” positions would not be needed for national use, so Ground

rule 2 would not really apply to these code positions.

The second part of the solution had to do with the graphic | (Vertical

Line) in code position 7/12 (Fig. 24.2). Suppose a manufacturer im-

plemented | (Logical OR) in code position 2/1, as permitted by Section

6.4 of the ASCII standard. These two graphics, as printed or displayed,

would be indistinguishable to the human eye. The solution to this

problem was to change the actual graphic in position 7/12 slightly. It

became | (still called Vertical Line) but now clearly distinguishable from |

(Logical OR).

24.8 The Solution for the ISO 7-Bit Code 441

As an interesting sidelight, IBM had previously called the graphic |

Logical OR or Vertical Bar in its internal EBCDIC standard and in

reference manuals. From this point in time, IBM called it Logical OR, to

avoid confusion in nomenclature:

The “‘solution”’ previously mentioned for the ISO 7-Bit Code was the

following text in Section 4.3 of ISO R-646:

4.3 Interpretation of graphics

The meaning of the graphics is not defined by this ISO Recommen-

dation. It will be necessary to reach agreement on the meaning and

this will depend upon the particular application except in cases where

other ISO Recommendations already exist. However no interpreta-

tion may be chosen which is contradictory to the customary meaning.

A graphical symbol can have more than one meaning, e.g., the
graphical symbol — (minus) also can have the meaning of hyphen or
separation mark. The font design of the symbol is not part of this

ISO Recommendation.

It is to be noted that, in contrast to the explicit solution in ASCII, this is

an implicit solution based on the following point. The last sentence of

Section 4.3 leaves the question of “‘font design” open; that is, a manufac-

turer could design ! to look like | and * to look like ~.

The Logical OR/Logical NOT problem had finally been solved.

25
A Comparison

of Contiguous,
Noncontiguous, and
Interleaved Alphabets

25.1 THE COMPILER

For programming languages, PL/I, COBOL, FORTRAN, ALGOL, and
so on, a compiler is a software product which takes a user’s program and

turns it into the set of CPU instructions that, when executed, will perform

the calculations or operations specified in the user’s program. The user’s

program, written in source language, is mapped into object language by

the compiler. a

One task performed by the compiler is the analysis of the graphics in

the user’s source language. While we may, anthropomorphically, view the

compiler as “looking for’’ a left parenthesis, or a right parenthesis, the
compiler really “looks for” the bit patterns representing those graphics.

Compilers, then, are based on the CPU code of the computing system.

One of the requirements of the compilation process is the ability to

separate, that is, distinguish between, the bit patterns of alphabetics,

numerics, and nonalphamerics.

25.1.2 Separability Requirement

There are operations during the compilation’ process for programming

languages that require the determination of whether a bit pattern is or is

not in the set of bit patterns for alphabetics; that is, whether a character is

or is not an alphabetic. “‘Variables’” or “‘names” in programming lan-

guages are permitted to be alphameric. Names such as PAYFILE, MAN-

NUMBER, CHKPT, SAM, A123, A124, JUMP2, JUMP3 are accepta-
ble. Such names are called symbolic. During the compilation process, they

443

444 Contiguous, Noncontiguous, and Interleaved Alphabets

will be converted into absolute numeric memory addresses (and relative
numeric addresses, in today’s technology).

The programmer may also use absolute addresses, which will be pure

numerics, such as 17326 or 4653. The compilation process must, in an

early phase, be able to distinguish between absolute and symbolic addres-

ses. Absolute addresses are always pure numerics; symbolic addresses

may be pure alphabetics or mixed alphamerics. The rule is that absolute

addresses must be pure numeric, and symbolic addresses must have the

first character an alphabetic. The rule for distinguishing, then, applies to

the first character: if it is numeric, the address is absolute; if it is

alphabetic, the address is symbolic. The need to determine whether a

character is or is not alphabetic, and whether a character is or is not a

numeric, is fundamental to the compilation process.

Note that this rule must be quite rigorous. If the first character of an

address is not a numeric, it does not follow that it is necessarily an

alphabetic. An error may have introduced an initial character that is

neither a numeric nor an alphabetic, and the compilation process must be

able to detect such errors.

It is in the context of this compilation requirement that the contigu-

ous alphabet of ASCII and the noncontiguous alphabet of EBCDIC may

be compared.

25.2 ASCil AND EBCDIC

The 7-Bit Code, ASCII, and the 8-Bit Code, EBCDIC, are structurally

dissimilar. Both codes, generically, may be termed BCD codes; that is,

the four low-order bits of the bit patterns for numerics are binary-coded

decimal. The structural dissimilarity arises from the bit patterns assigned

to alphabetics. For ASCII, the alphabetics are assigned to a contiguous

set of bit patterns. For EBCDIC, the alphabetics are noncontiguous.

Computers process bit patterns. Let us examine the bit patterns of

the alphabetics in ASCII and in EBCDIC, and apply them to the

compilation requirement. The fact that ASCII is a 7-bit code, and
EBCDIC an 8-bit code, is immaterial to this discussion.

Consider Fig. 25.1, which shows the bit patterns for the alphabetics

of ASCH and of EBCDIC. The alphabetic bit patterns for ASCII run in a

contiguous block from 100 0001 for A to 101 1010 for Z. The alphabe-

tics for EBCDIC run in three blocks, contiguous within blocks, but with

gaps between blocks:

1100 0001 for A to 1100 1001 for I,
a gap from 1100 1010 to 1101 0000,
1101 0001 for J to 1101 1001 for R,
a gap from 1101 1010 to 1110 0001,

1110 0010 for S to 1110 1001 for Z.

ASCII and EBCDIC

ASCII EBCDIC

Bit pattern Meaning Bit pattern Meaning

000 0000 Null 0000 0000 Null

100 0000 @ 1100 0000 {

100 0001 A 1100 0001 A

1100 1001 I

. . 1100 1010 Unassigned

101 1010 Z . .

101 1011 [. :

: : 1101 0000 \

. : 1101 0001 J

141 1111 Delete . .

1101 1001 R

1101 1010 Unassigned

1110 0000 \

1110 0001 Unassigned

°1110 0010 S

1110 1001 Z

1110 1010 Unassigned

1111 1111 Eight ones

Fig. 25.1. ASCII and EBCDIC alphabetics

445

446 Contiguous, Noncontiguous, and Interleaved Alphabets

25.2.1 Tests for Alphabetics

There are three methods by which the determination of alphabetics may
be made:

Method 1. High-order bit test.

Method 2. Bracket test.

Method 3. Translate and test.

High-order bit test

It is not uncommon to find the statement: “The contiguous alphabet of

ASCII may be determined by a high-order bit test, whereas the noncon-

tiguous alphabet of EBCDIC cannot.” This is an imprecise, and indeed,

incorrect statement.

It was certainly an objective, in the design of ASCII, that the

alphabetics be determined by a “‘single high-order bit test.’” However, this

objective was not accomplished.

In order to examine this aspect of ASCII and EBCDIC, it will be

necessary to introduce some elementary Boolean notation and concepts.

Three Boolean operators will be used, NOT, Exclusive OR, and AND, as

defined in Chapter 2. (Note: The derivation is not given for the Boolean

equations that follow.)

If we interpret the meaning of “alphabetic” to mean “‘columns in the

code table which contain alphabetics, upper or lower case,”’ then it can be

shown that

for ASCII alphabetic = b7 (Fig. 2.26),

for EBCDIC alphabetic = e0 a (e2 v e3) (Fig. 2.28).

If we interpret the meaning of “alphabetic” to mean “‘columns in the

code table which contain upper-case alphabetics”’ (this is closer to the

requirement for the compilation process), it can be shown that

for ASCH alphabetic = b7 A b6,

for EBCDIC alphabetic = e0 Afel A (e2¥ e3)].

In the first interpretation, it could be said that ASCII meets the objective

of a “high-order bit test.’’ Perhaps this is what is meant when it is stated
that ““ASCII had a high-order bit test for alphabetics.”’

Both of the interpretations above, however, are inadequate for the

requirement of the compilation process. There is a nonalphabetic in

column 4, and there are five nonalphabetics in column 5 of ASCII. And

there are nonalphabetics in each of hex columns C, D, and E of EBCDIC.

There are six nonnumerics in column 3 of ASCII and six in hex column F

of EBCDIC. It is necessary, in the compilation process, to determine

precisely and rigorously whether a particular bit pattern is, or is not, in

the sets of alphabetic or numeric bit patterns.

25.2 ASCIl and EBCDIC 447

If the high-order bit test were actually used by compilers (it isn’t—

because there are more efficient and less cumbersome methods available),

it would be necessary to evaluate Boolean equations. As a matter of

interest, the Boolean equations for alphabetics, numerics, and al-

phamerics for ASCII and EBCDIC are shown (with some simplification,

taking common expressions into account).

EBCDIC

Common Expressions

A=e0ael

B=e2Ae3_

C=e4 (esa 6)

D= [ed ne5]¥ [e5 A(e4re6)]

alphabetic = AA{[BAD] [e2, A(CAe7)}}
alphameric = AA{D v {Ca [(e2\e7) vy BP}

ASCII

Common Expressions

E=b3Ab2

F=[b7 A (b6Ab5). S)IA [b4 v (b4 \E)]

G=b7Ab6n C{b5 A 64}. {Eabl}
¥ {{b5 A b4}A {[b3 A (b2 Ab1)] v b3}H)

alphabetic =G

alphameric = Fv G |

For the compilation process described above, the programming flow

chart* would be as follows:

Is it an alphameric? —~> Error routine

[es

Is it an alphabetic? "> Numeric routine

yes

Alphabetic routine

The relative complexity of the programs for EBCDIC and ASCII can

be estimated by counting the number of Boolean operators A for AND,

+ for OR, and — for NOT, in the equations.

*The determination of “numeric” in the above flow chart was achieved not by

evaluating a specific Boolean equation but as a consequence of determining first

‘alphameric,”’ then “alphabetic” or ‘“nonalphabetic.”

448 Contiguous, Noncontiguous, and Interleaved Alphabets

EBCDIC ASCII

AND OR NOT AND OR NOT

Common expressions 7 1 5 14 3 10

Alphameric 3 2 1 0 1 0

Alphabetic 4 1 2 0 0 0

Totals 14 4 8 14 4 10
It may be seen, therefore, that the relative complexity of determining

alphamerics, alphabetics, and numerics for ASCII and EBCDIC by

high-order bit test is approximately the same.

Bracket test

In this method, the question is whether a bit pattern under examination is

within the outermost bit patterns of a contiguous block of bit patterns.

Suppose the minimum bit pattern of the block is Emin, the maximum bit

pattern of the block is Emax, and the bit pattern of the character under

examination is X. Then four computer-comparison instructions—two
comparison and two branch instructions—will determine if X is in the set

bracketed by Emin and Emax.

Step 1. Is X less than, equal to, or greater than Emin?
|yes yes yes

X is notinset Xisinset go to Step 2.

Step 2. Is X less than, equal to, or greater than Emax?

[yes yes [yes

X is in set X isin set X is not in set.

A bracket test consisting of four instructions determines if a bit

pattern is within a set of contiguous bit patterns. Note then that to make

the rigorous determination, two bracket tests (eight instructions) are

required for ASCII—one for the alphabetic block and one for the

numeric block. For EBCDIC, four bracket tests (sixteen instructions) are

required—one for each of the three alphabetic blocks and one for the

numeric block.

Translate and test

In some modern computers, there is an instruction (in the System/360 or

System/370, this instruction is called ‘“Translate and Test’’) that, by

25.2 ASCli and EBCDIC 449

reference to a table of bit patterns stored in memory, can determine

whether a bit pattern is or is not in a set of bit patterns, regardless of

whether the set is contiguous or noncontiguous. That is to say, to make

the rigorous determination, we have one instruction for ASCII or one

instruction for EBCDIC.

Is it an alphabetic, a numeric, or a nonalphameric?
|yes . [yes [yes .

alphabetic numeric error

routine routine ' routine

In summary, the high-order bit test would be approximately the same

for ASCII and EBCDIC; the bracket test requires eight instructions for
ASCII and sixteen instructions for EBCDIC; translate and test requires
one instruction for either ASCII or EBCDIC. Note that while the bracket

test was the method that would be used with older 6-bit computers, it is

doubtful if any of those 6-bit computers now process 7-bit ASCII data.

It may be concluded that while contiguity and noncontiguity of

alphabetics certainly characterize a difference between ASCII and EBC-

DIC, this characteristic cannot be used to determine superiority or

inferiority in any determinative way.

25.2.2 Translation to Hollerith Card Code

There is another aspect of the ASCII and EBCDIC alphabets that

serves as a basis for comparison. This aspect is the translation relationship

to the Hollerith card code. (See Figs. 2.26, 2.28, and 17.23.).
The well-known BCD relationship-holds for numerics 1 through 9 in

both ASCII and EBCDIC.

Low-order

Digit punch ~— four bits

0001

0010

0011

0100

0101

0110

0111

1000

1001 O
m
M
A
A
D
A
D
P
W
N
 eR

For EBCDIC, this BCD relationship holds for alphabetics A through I, J

through R, and S through Z. For ASCII, it holds only for alphabetics A

450 Contiguous, Noncontiguous, and Interleaved Alphabets

through I. In building a hardware translator (card code to/from bit code)

the BCD relationship must be provided for numerics 1 through 9 for both
ASCII and EBCDIC. Then, for EBCDIC, this same part of the translator

can be used for all 26 alphabetics, while for ASCII it can be used only for

alphabetics A through I, and the alphabetics J through Z require addi-

tional hardware circuitry.

As long as the punch card persists both as a data entry and as a data

storage medium (volume of punched card sales continues to increase each

year, at least at the time of writing this book, despite the competition of

other media), EBCDIC will be a less complex code than ASCII to
implement in hardware. And the lesser complexity is attributable specific-

ally to the particular noncontiguous alphabet for EBCDIC.

25.2.3 Collating Sequence of Alphabetics

In both ASCII and EBCDIC, the collating sequence for alphabetics

corresponds to the bit sequence either directly or relatively. American

manufacturers who market computing systems in Europe. must consider

the ISO 7-Bit Code, and the 29-letter alphabets of Germany, Norway,

Sweden, Denmark, and Finland. The three additional letters for these

countries are as shown in Fig. 25.2.

Germany A O U

Denmark A @ A

Norway E @ A
Sweden A O A

Finland A oO A

Fig. 25.2 Diacritical letters

In developing the ISO 7-Bit Code, provision was made for these addi-
tional alphabetics by assigning three code positions contiguously following

the letter Z in the code table. Provision for these diacritical letters is also
made in EBCDIC, but not in code positions contiguous to the other

alphabetics. |
The fact that the bit patterns for these 29 letters are not in relative

binary sequence in EBCDIC means that additional steps must be taken in

sorting passes.

Interestingly, the fact that the 29 bit patterns are in relative binary

sequence in the ISO 7-Bit Code does not improve the sorting situations

by an iota. For Germany, the three umlaut letters A, O, U collate
adjacently to the non-umlaut letters A, O, U and do not follow the letter

Z as shown in the code table.

25.3 Interleaved Alphabets 451

In Sweden, by contrast, the diacritical letters do collate immediately

after the letter Z. But, by a strange quirk (the discussion of which is
beyond the scope of this book), the Swedish national standard for the

7-Bit Code positions the three diacritical letters following the letter Z,

but in a sequence different from their official collating sequence. This

anomalous situation also exists in Finland.

Exactly the same extra steps must be taken in sorting passes to sort

ISO 7-Bit Code data in Germany, Sweden, and Finland as are taken to

sort EBCDIC data.

25.2.4 Signed Numerics

Another factor for comparison is the inherent inability of ASCII, and the

inherent ability of EBCDIC, to provide for signed numerics. This has

been discussed in Chapter 19. The inability of ASCII and the ability of

EBCDIC are direct consequences of their contiguous and noncontiguous

alphabets. The noncontiguous alphabet of EBCDIC is based on the

Hollerith Card Code, and it was from punched card applications that the

practice of overpunching numerics to represent signed numerics arose.

25.3 INTERLEAVED ALPHABETS

During the early days of code development and standardization, the

concept of interleaving small and capital letters in the code was frequently

proposed. Indeed, as described in Chapter 3, the Stretch Code (Fig. 25.3)

and the Information Processing Code (Fig. 25.4) did provide interleaved

alphabets.

The first question for an interleaved alphabet was whether the small
or capital letter should precede within the alphabetic pair. The primary

reason cited for interleaving the alphabetics was to make sorting and

collating more efficient. It is engaging that the designers of the Stretch

Code decided that the small letter should precede the capital letter in the

pair, whereas the designers of the Information Processing Code chose

that the capital letter should precede the small letter.

During the development of ASCII, it was proposed that the al-

phabets should be interleaved. Various factors spoke against such a

decision (not the least of which was the fact that the ASCII designers had

not, at that time, decided whether or not to include small letters in the

code), but the example which spoke most strongly against interleaving

was the “Telephone Directory Problem.”’

25.3.1 The Telephone Directory Problem

When the telephone directories of different cities are studied, it will be

observed that there is no common rule for sequencing names. Different

452 Contiguous, Noncontiguous, and Interleaved Alphabets

Row

cum] o Ta l2telelelel7l lel *lelelel*l+

00 01 10 11 00 O14 10 13 00 01 10 11 oo 01 10 11

o000] sp [& c k 8 0 8

OooT; + > + Cc K s 0 8

0010 > J $ d 1 t 1 9

3 10011 z ° = D L T 1 9

4 jor100] a es * e m u 2

s joioi] { = (E M U 2

6 |o1710f + ” / £ n v 3 -

o111] } ¥) F N V 3 ?

8 |1000] v % : g ° w 4

9 |1001, x \ ; G oO W 4

A {1010} ¥+ © ' h Pp x 5

B j1oisy [I | "Tl wa] pl] x 5

1100] > i a i q y 6

1101 > ! A I Q Y 6

1110 < @ b j Cr Zz 7
 1111 lA

oo

lo
ne

a

N

“I

Fig. 25.3 Stretch, 120-character set

cities have different rules. For the purposes of illustration, consider the

following rules:

A. A name shall be given in the following sequence:

First, the last name;

then, the first name or initial;

then, the second name or initial;

and so on.

. Names and initials shall be separated by a space, but with no periods

Or commas.

““Space”’ shall collate low to all alphabetics.

. The alphabetics shall collate in their natural sequence. Thus, A, B, C,

D,...,X, Y, Z, or a, b, c, d,...,X, y, z.

A capital letter shall collate low to its corresponding small letter.

Thus, ““MacDonald”’ shall collate low to ‘““Macdonald.” And ‘“‘Mac-

donald Peter” shall collate low to ‘““Macdonald Robert.”

25.3 Interleaved Alphabets

Column 0 4 5 6 7

Bit b7 1
Pattern b6 0 0 0 1 1

b5S 1

Row b4 b3 b2 b1

pen
0 0000 0 (Oo z

[2]
1 0001 l { x hy

2 0010 2 2 8 < ®

3 0011 3 # + 6 @)

4 0100 4 ° = 2 Bky

5 0101 5 / - % Bky

6 0110 6 _y oo Bk3

7 0111 7 f + Bk,

8 1000. 8 * 8

9 1001 9) ; + Cy

10 1010 SP . @ $ C5

11 1011 RES , x + C3

12 1100 A 1 n K G,

13 1101 '

14 1110 B w $ c Ce

15 11114 b + é 7 C,

Fig. 25.4 IPC, 7-bit subset

Then, under these rules, consider a name with five spellings:

Van De Water
Van de Water

van De Water

van de Water

Vandewater

453

454 Contiguous, Noncontiguous, and Interleaved Alphabets

And consider another name also with five spellings: —

Van De Wenter

Van de Wenter

van De Wenter

van de Wenter

Vandewenter

And, finally, suppose that for each of these ten names, there exists a

“John” and a “Peter.”

What will be the sequence for these twenty names? (We must also

assume, of course, that there are other names, and these are indicated

below by dots.)

* Van De Water John

Van De water Peter

Van De Wenter John

Van De Wenter Peter

* Van de Water John

Van de Water Peter

Van de Wenter John

Van de Wenter Peter

Vandewater John

Vandewater Peter

Vandewenter John

Vandewenter Peter

5.3 Interleaved Alphabets 455

* van De Water John

van De Water Peter

van De Wenter John

van De Wenter Peter

van de Water John

van de Water Peter

van de Wenter John

van de Wenter Peter

Consider now the problem of a stranger to the city who wants to look

up a name in the telephone directory. He knows he wants to find, let us

say, John Van De Water, but is not sure which of the five possible

spellings is the correct one. Then he must search the telephone directory

in five separate sections, as indicated by the asterisk above. The separa-

tion of these sections depends on how many intervening names there are.

[f he checks all five sections, he will locate five names, one of which is the

one he wants. By a process of phoning and elimination, he can thus locate

the one he wants.

There are two adverse attributes of this particular sequence: (1) the
five possible names may be widely separated, and thus not easy to find.

(2) Unless the stranger knows that there are five possible spellings, he

may possibly not locate all five names, and may, in fact, not find the

actual name that would turn out to be the correct one.

Is it possible to construct different rules for sequencing names so that

the particular problem above is simplified? Consider the following:

A. A name shall be given in the following sequence:

First, the last name;

then, the first name or initial;

then, the second name or initial;

and so on.

456 Contiguous, Noncontiguous, and Interleaved Alphabets

B. Names and initials, as printed, shall be separated by a space, but with
no periods or commas. However, on sorting or collating operations,
the spaces shall be ignored; that is, the names and initials will be
treated as if concatenated with ‘“‘space” characters removed.

C. The alphabetics shall collate in their natural sequence. Thus, A, B, C,
D,...,X, Y, Z, or a, b, c, d,...,x, y, z.

D Capitalization will be ignored in sorting and collating operations,
unless two names are otherwise identical, in which case a capital

letter shall collate low to its corresponding small letter. Thus ‘‘Mac-

Donald John” and “Macdonald John” will both collate low to
“Macdonald Peter,” but “MacDonald John” will collate low to
“Macdonald John.”

Under these rules, the twenty names of the example will collate as
follows:

* Van De Water John
Van de Water John

Vandewater John

van De Water John

van de Water John

* Van De Water Peter
Van de Water Peter

Vandewater Peter

van De Water Peter

van de Water Peter

* Van De Wenter John
Van de Wenter John

Vandewenter John

van De Wenter John

van de Wenter John

* Van De Wenter Peter
Van de Wenter Peter

Vandewenter Peter

van De Wenter Peter

van de Wenter Peter

The stranger’s problem is clearly much simplified by such a sequence,

for all names that ‘“‘sound”’ the same (which is what he knows) appear in a
block, regardless of idiosyncratic spelling with capital/small letters or

spaces.

25.3 Interleaved Alphabets 457

This example has been given, not in order to champion any particular

set of rules for sequencing names, but rather to point out that there can

be different rules, depending on particular requirements. It may be

pointed out that the first set of presented rules above makes for simple

sorting and collation algorithms but a complex look-up algorithm, while

the second set of rules makes for a simple look-up algorithm but complex

sorting and collation algorithms. Indeed, if the second set of rules was

implemented in a data processing application, it would be helpful to carry

the ‘“‘name”’ twice, first without spaces for collating purposes, and again

with spaces for printing purposes. Then the ignoring of capitals except

when two names are otherwise identical can be programmed more simply.

It was in the light of examples such as the above that it was

recognized that whether capital letters should collate low or high to the

corresponding small letters was a matter of taste (that is, depended on the

particular application), and that the interleaving of capital and small

letters in a coded character set might be useful in some applications but,

in general, would not serve a useful purpose.

In fact, a more general realization emerged. With respect to alphabe-

tics, numerics, and specials, the collating sequence depends on the appli-

cation and will be different for different applications. It was this realiza-

tion that said the interleaving of alphabetics was much less significant

than other code criteria that spoke against interleaving.

26
Code Extension

and
Examples

A problem that eventually arises with almost any code is that the code
positions become full, but new and additional requirements are put on the
code. New equipment designed to operate with the code may need new
control functions, or applications for new or old equipment may require

additional graphic characters. How may these additional characters be

provided, if there are no unused bit patterns in the code? This problem
and its solution are the subject of what is called code extension. The

solutions generally fall under the headings of substitution, precedence

codes, and Escape sequences.

26.1 SUBSTITUTION

Examples of substitution, particularly to provide graphic characters, are
common. Some have been described in this book; the “scientific”? and

“commerical” duals of BCDIC (Chapter 4); the alphabetic extenders for

certain European alphabets (Chapter 4); Katakana and other non-Latin

alphabets (Chapter 18).
Substitution to provide additional control functions is less frequent

than graphic substitution, but not unknown. In fact, the designers of

coded character sets, realizing that such a requirement will eventually, if
not initially, be put on the code, have placed what are called general

purpose control characters in the code.

For example, in the 7-Bit Code and in EBCDIC, there are four
control characters called Device Control 1, Device Control 2, Device

Control 3, and Device Control 4 (DC1, DC2, DC3, and DC4, respec-

459

460 Code Extension and Examples

tively). The definition of these control characters is intentionally broad
and unspecific—““A device Control character is used for the control of a
device.” The nature of the control is not specified. When a particular
device needed one or more of the Device Control characters, the code

designers would define them specifically and for functions peculiar to that

device. Some other kind of device would use one or more of the DC’s for
some specific control functions, but the functions for the DC’s of one

device need not, and probably would not, match the functions for the
DC’s of the other devices.

Under this philosophy, the code designers realized that interchange
of data between these different kinds of devices would then be expected
to be difficult or impossible without human intervention, but they pre-
sumed that interchange of data between unlike devices would seldom if
ever be required. When rare instances arose where such interchange was
required, the humans operating the different devices would have to
understand the difference in the DC’s, and accommodate it in some

fashion.
Four additional general-purpose characters, the so-called informa-

tion separators, were designed into the 7-Bit Code and into EBCDIC.
File Separator, Group Separator, Record Separator, and Unit Separator
were defined broadly to be used to separate blocks of information. But

how they were to be used to separate blocks, what philosophy of file and
record structuring was to be used, was intentionally not specified. Such
detailed specification would be left to the particular data processing
application in which the separators would be used. Initially, a hierarchial
philosophy of structuring information blocks was defined. A ‘“‘file’’ was
larger than, and would enclose, “groups.” A “group” was larger than,

and would enclose, “‘records.’”’ And a ‘record’? was larger than, and

would enclose, “‘units.’”’ Eventually, the standards committees made this

hierarchial specification optional; that is, the separators need not be used
hierarchially, but if they were, then the hierarchy would be as described
above. The standards committees realized that, as with the Device

Controls, the unspecificity of the information separators could lead to
difficulty of information interchange, but such difficulties could be worked
out in the rare instances when they arose.

26.2 PRECEDENCE CODES

Another general technique for extending the repertoires of codes was the

technique of precedence or shift characters. This technique has been
described with respect to CCITT #2 (Chapter 3), and with respect to

PTTC (Chapter 6). Under this technique, the meanings of a bit pattern in

26.3 Escape Sequences 461

a specific subset of bit patterns (of the total set of different bit patterns)
depends not only on the bit patterns itself, but also on which precedence
character preceded it. By this technique, although the total number of
different bit patterns of a code is mathematically prescribed, the total

number of meanings associated with the bit patterns can be extended.
In CCITT #2, a 5-bit code, there are 32 different bit patterns, but 52

graphic meanings and 6 control meanings—a total of 58 different mean-
ings. In PTTC, a 6-bit code with 64 different bit patterns, there are 94

graphic meanings and 17 control meanings—a total of 111 different
meanings.

The designers of the 7-Bit Code, realizing that the future might well
see the requirement for more than 128 different code meanings, placed
two precedence characters in the code, Shift In and Shift Out. These two

characters are also included in EBCDIC. The standards committees are
(as this book is written) studying the ways in which these two precedence

characters may be used for extension of the 7-Bit Code.

26.3 ESCAPE SEQUENCES

Another means of extending the repertoire of meanings of a code is by
use of the Escape character. Under this technique, the Escape character
and the succeeding character are to be regarded as an entity, defining
some control function. The character directly following the Escape
character is to be regarded as not having its normal meaning. The two
characters to be regarded as an entity are called, in the literature, an
Escape sequence. Meaning is associated with the Escape sequence. Es-
cape sequences may consist of more than two characters and may be

variable in length. (The philosophy of variable length Escape sequences is
not described in this book.) It is to be noted that this technique is a form
of a precedence code. It is interesting to observe the difference between
this form of precedence code and the one described above.

Under the techniques described for CCITT #2 and for PTTC, the

precedence or shift character establishes a mode, which remains in effect
until another shift character appears, which establishes, in its turn, its

mode. Such characters are described in the literature as “‘locking shift

characters’; that is, a shift character “‘locks’” a mode, which remains

“locked” until the other shift character “unlocks” that mode and “locks”
its mode. By constrast the Escape character affects the meaning of only
the following character. It has been described in the literature as a

nonlocking shift character.
Another character in the code is called Data Link Escape (DLE).

The DLE character is to function in a manner similar to the Escape

462 Code Extension and Examples

character, but its use, and the meanings assigned to DLE sequences, is for
use on data communication products only (hardware or software). DLE
sequences will not be discussed in this book.

As an example of the use of Escape sequences, let us look at PTTC.
PTTC was designed before the 7-Bit Code was designed, and its nonlock-
ing shift character was called Prefix, instead of Escape. There are 20
Prefix sequences assigned in PTTC. The meanings assigned to them are

control meanings, not graphic meanings. The second character of a Prefix

sequence is a graphic character (with two exceptions). Since PTTC is a
shifted 6-bit code, the graphic bit pattern of a Prefix sequence will have

Prefix sequence Control meaning

II PRE 1 or PRE Printer 1 on

PRE 2 PRE x Printer 2 on

PRE 3 PRE ; Punch 1 on

PRE 4 PRE : Punch 2 on

PRE 5 PRE % Printer 1 off

PRE 6 PRE ’ Printer 2 off

PRE 7 PRE ” Punch 1 off

PRE 8 PRE * Punch 2 off

PRE 9 PRE (Reader 1 on, Reader 2 off

PRE 0 PRE) Reader 2 on, Reader 1 off

PRE a PRE A Ribbon shift up

PRE b PRE B Ribbon shift down

PRE c PRE C Select single line feed
PRE d PRE D Select double line feed

PRE e PRE E Card punch duplicate
PRE g PRE G Card punch alternate program

PRE h PRE H Card punch release

PRE j PRE J Reader skip stop

PRE LF PRE LF Form feed

PRE SP PRE SP Vertical tab

Figure 26.1

26.4 Text/360 463

two graphic meanings, but this difference in graphic meaning does not
affect the meaning assigned to the Prefix sequence itself. That is to say,
the control meanings of Prefix sequences (like the control meanings of
single character controls) are independent of the preceding shift character
(Upper Case or Lower Case). The 20 Prefix sequences of PTTC and their
meanings are shown in Fig. 26.1.

Products using either Escape or Prefix sequences not only have to

build in the hardware to execute the control meaning assigned to the

sequence, but also have to suspend the normal reaction to the second

character of the sequence. That is, once either an Escape or Prefix bit

pattern has been detected in the data stream by the product, the product

must then be set not to react normally to the bit pattern(s) immediately
following. For example, when a ‘““PRE A” sequence appears in the data
stream on the IBM 1050 (a product implementing PTTC) not only is the

typewriter ribbon shifted up, but the letter A is not printed, nor is the

typewriter carriage spaced.

Escape sequences of two, and even three, characters have been
implemented on modern printers, display devices, and terminals, provid-
ing many and varied control functions.

An interesting current development on the standards committees is
that an Escape sequence itself (for certain Escape sequences) is being
regarded as having locking-shift meaning. That is, a particular Escape
sequence is to be regarded as establishing a particular mode of meanings
to be associated with subsequent bit patterns in the data stream, which is
to remain in effect until some other particular Escape sequence disestab-
lishes that mode and establishes its own mode of meanings to be as-
sociated with subsequent bit patterns in the data stream. Further details
of this philosophy of code extension are not given in this book. It would
take a book itself to explain and describe fully the intricacies of code

extension envisaged by the standards committees under the current
philosophy of Escape sequences.

26.4 TEXT/360

A particular example of code extension, text processing under Text/360
(an IBM software product), will now be described. It is interesting to

appreciate the design criteria placed on this system for text processing

and to see how the design criteria affected the system design.

26.4.1 Text Processing Defined

First, it is necessary to understand what is meant by “text processing.”

Most data processing applications are satisfied from a printing or display

464 Code Extension and Examples

point of view with 26 alphabetics, 10 numerics, and a varied number of

specials. The vast majority of fast, parallel printers provides character sets
up to 64 characters. These various character sets, from 48 to 64, have one

aspect in common. They have one set of alphabetics—26 letters in
English-speaking countries, up to 29 letters in some European countries.
And, in general, the alphabetics are block capitals (sometimes referred to

as upper-case letters, but this is a misnomer in the context of only one set

of alphabetics).
In everyday life, books, magazines, newspapers, etc., are printed in

two cases of alphabet, capital letters and small letters. The printing of a
particular document may involve many different fonts of letters but only
two cases. The question arose, Could such documents be printed by data
processing equipment, and would it be economical to do so?

The answer to the first part of the question is affirmative. What is
required is a printing element with two alphabetic cases. Such printing

elements are entirely feasible. In general, parallel printers with such

elements are either more costly or they print more slowly (which in-
creases printing costs), or both. This realization leads naturally to the
second part of the question. Since most data processing applications are
satisfied with one case of alphabetics and since the provision or use of
parallel printing with two alphabetic cases leads to higher costs, it is, in

general, uneconomical to use two alphabetic cases.

However, there is a certain class of data processing where it is either
economical or necessary to use two alphabetic cases. This class of

applications is grouped under the name of text processing. Let us look at
the characteristics of text processing.

There are four identifiable requirements. A particular text-processing

application may not have all of these requirements:

1. Two cases of letters, for ease of human reading. Humans find that a

page of text with capital and small letters is easy to read; that

text with small letters only is less but not much less easily readable;

and that text with capital letters only is much less easily read-

able. For example,

John and Peter went to Poughkeepsie.
john and peter went to poughkeepsie.
JOHN AND PETER WENT TO POUGHKEEPSIE.

2. Two cases of letters for unambiguity. In chemical abstracting, tor

example, carbon monoxide (CO) and cobalt (Co) can be disting-

uished only if upper and lower case letters are used.

3. A large body of text that is expected to require numerous changes of

greater or lesser degree.

26.4 Text/360 465

4. Symbols not normally found on data processing printers. For

example,

"corners, intersections, vertical and horizontal lines for drawing

charts, tables, boxes in flow diagrams;

=" arrows for drawing flow charts and electronic circuits;

= mathematical symbols, for use in some of the more exotic

programming languages;

=" accents and diacritical marks (for European, Russian, etc.,

names and book titles) in library bibliographic work.

Some of these applications, where duocase alphabetic capability is
the only requirement, can be processed without the use of a computer. A
skilled operator of a typewriter with some means of storage—paper tape,

magnetic tape, tape cassette/cartridge, magnetic cards, punched cards—
can, and frequently does, perform text processing, including the frequent
changes. (The initial and subsequent drafts of this book were prepared on
an IBM Magnetic Tape Selectric Typewriter.)

An available computer will enter the application when the skilled

operator and typewriter with storage are not available..With.a computer,

of course, a program is necessary, as well as an appropriate printing

capability.

26.4.2 Development

Text/360 is the name of a program that is the extension of an earlier
program, Text 90. Text 90 was a program written for the IBM 7090
computing system. It was developed to meet a requirement which had
arisen in internal operations. As a computing system is designed, and goes
through succeeding stages of development to completion, the functional

specifications change, often from day to day. The document containing

the functional specifications changes in consequence.
It was found that the process of typing and retyping these documents

was too slow to keep up with the design and development schedules. It

was suggested that a computer program, with appropriate input and

output equipment, could produce these documents, and could produce

them with sufficient rapidity to meet the schedule demands. The program
was written, debugged, and used. It was called Text 90. The functional

specifications for the System/360 were documented by Text 90. Some

System/360 reference manuals for customers were printed by Text 90
(and then reproduced by other printing and publishing methods).

Text/360 was an extension of Text 90 which was written to operate
on the System/360. It also was developed for internal operations. But it

466 Code Extension and Examples

was judged it would be useful externally and it was therefore announced
and made available to customers. The customer reference manual itself
for Text/360 was printed by Text/360.

Let us look at the criteria that were set for Text 90, and subsequently

for Text/360. These criteria came from constraints on the input character
set and requirements on the output (printed) character set.

1. The output character set should contain

= the Space character,

= numerics,

=" small alphabetics,

=" capital alphabetics,

=" specials normally found on the date processing printers of the
time,

=“ symbols for drawing charts, tables, programming flow charts,
etc.,

symbols for plotting graphs,

“ mathematical symbols beyond those normally found on printers
of the time.

2. The input character set should

" be keypunchable without multipunching; that is, the set should
not exceed 48 characters numerically, for the 48-character
keypunches of the day. This criterion, was extended for
Text/360 to 64 characters, but the 48-character set was retained

as an option;

=" be optimum, from a keypunching productivity point of view;

=" contain graphic characters and characters that have printable
graphic representation for controlling the various processes of
text processing—capitalization (both initial letters of words and
complete words), editing, altering, underscoring, etc.—so that
the input data could be listed completely.

Two decisions were made before the criteria could be applied: (1)
there would be 120 graphic characters and 6 control characters in the
output set; and (2) the characters beyond 48 would be represented by

either two- or three-character sequences.

26.4.3 System/360 and EBCDIC
The rest of the discussion will be in the context of Text/360, the

System/360, and EBCDIC.

26.4 Text/360 467

There were some considerations that went into the final design.

1. The frequency of use of small letters in text far exceeds the fre-

quency of use of capital letters. In normal text, capital letters are
used only as initial letters for sentences, names of people, towns,

cities, countries, streets, etc. In text, titles might appear, which might

be capitalized in their entirety, but titles are few, relative to lines of
text. In a 48-character set, only one of the small or capital alphabe-

tics can be represented as a single character; the other will have to be
represented by at least a 2-character sequence. So small letters
should be represented by single characters, the alphabetics found on
the keypunch.

2. Numerics will appear more frequently than special symbols in text.

So numerics should be represented by single characters, the numerics
found on the keypunch.

3. Specials such as period and comma, which appear more frequently
than other specials, should have single character representation.

4. From keypunching statistics, it was known that numerics and al-

phabetics are keypunched with a better production speed than spe-

cials. Therefore, the final character, or characters, of a two- or

three-character sequence should be a numeric or an alphabetic, not a

special.

5. From the preceding considerations, there was a conclusion that itself

became a consideration. If the numerics and alphabetics were used as
single characters (giving rise to 36 characters), and if each of two
different precedence characters were used with the alphabetics and
numerics (giving rise to an additional 236 characters), a maxi-
mum of 3X36=108 characters would be required. If more than

108 characters were required, either a third precedence character

would be needed, or a double precedence character in a three-

character sequence would be needed.

Now some further design decisions were made.

1. The output character set would consist of 120 graphics (to be

described later).

2. Graphic representation for the six control operations would be as
follows:

* for single capitalization;

@ for continued capitalization (beginning and end of capitalization
to be represented by the same graphic);

468 Code Extension and Examples

$ for underscoring (beginning and end of underscoring to be
represented by the same graphic);

— for editing;

+ for altering; and

/ for graphic set extension.

It is to be noted that the operation of single capitalization is also
really graphic set extension, since it will be used to generate the

upper-case alphabetics.

3. The graphic set would contain the following 94 graphics of

EBCDIC.*

10 numerics 0 to 9
26 lower-case alphabetics a to z
26 upper-case alphabetics A to Z

32 specials ey ee

() + - * [| = $
< > | * ~~ % & #

@¢ { \ } | °°
Since it had been decided to provide 120 graphics and since the EBCDIC

graphic set had been reduced to 90 characters, 30 additional graphics

could be provided. These were as follows:

6 mathematical symbols t= #
9 plotting/charting symbols { | f[

10 superscript numerics ot ?
1 superscript minus symbol
3 subscript numerics 12 3

“fn 99 1 subscript n

|

2

lV

—_
> *

[

Recall that + — / * @ $ were to be provided as input graphics

representing the six control characters. However, it was desired that they
also be in the output graphic set. Therefore, a 2- or 3-character input

representation for them as output graphics must be found, even though

they also appeared as single-character inputs for control characters.

Some 13 specials had been provided as 2-character input representa-

tions in Text 90. These 13 specials were available on the 64 character

* This design decision was later slightly aborted (for reasons not known to the
author). The later design decision was not to provide ¢ | ; and . Actually, ¢ was

replaced in its EBCDIC code position (but just for the Text/360 applications) by
<_.

26.4 Text/360 469

keypunches of the time frame of Text/360, and so are represented as
single character inputs in Text/360. However, the Text 90 2-character

representation for these 13 specials was permitted in Text/360 as an
option. Thus there is a single character and also a 2-character input
representation for these 13 specials:

? >
< > = — %

The 120-graphic set was provided as shown in Fig. 26.2.

& #

Output graphics Input representation Total

012::-9 0 1 2 -9 10
abc:::z ABC:::Z 26
ABC Z *A *B*C *Z, 26

4

Superscript ° * 7°" °° /0/1/2--+-+/9 10

+ * @$ / - JA [X /Q D /Z Is
(See Note 1 following) 11

+f — J]: /H /C WV |B IP

= # 2 it t 1 IV NZ IB HG I/O IIE 12
— + HA IM IY 1/0

ML [1A

Subscript , 2 3 Hl’ f{/2 7/3
Subscript , [IN 5

Superscript ~ iS

64 48

? 1 > 3 9? I IT /E /[W |N
ho KD cs " < >| RY [G/F 14
=—~ % & = — %® &|/O0 /J /K /M
to << # /U /L

| 7 ; 7 TK HC 2

Total = 120

Fig. 26.2 Text/360 120-graphic set

470 Code Extension and Examples

Note 1. When + * @ $/ — are required as input graphics to represent
controls, they are represented by themselves.

Note 2. The Text/360 chain provides the 120 graphics above. If the
Text/360 chain is replaced by another 120 character chain called in IBM

literature the IBM TN Chain, seven graphics are replaced as follows:

Text/360 Graphic TN Graphic

— ¢
\ 1
t s

Subscript , Superscript *
Subscript » Superscript ‘
Subscript 3 Superscript ”
Subscript , ° (degree)

The objectives of Text/360 were as follows:

1. Small input set.

2. Large output graphic set, sufficient for most text processing applica-
tions.

3. Control characters for text processing.

4. All input representations, graphic and control, printable for debug-
ging purposes.

5. Input set (single, double, and triple character representations) op-
timized for keypunching productivity.

6. Code compatibility with EBCDIC.

These objectives were achieved.

26.5 SUMMARY

Two general techniques of code extension, substitution and precedence
characters, have been discussed. A particular example of code extension,

Text/360, which uses both substitution and precedence characters, has

been described. It might be observed that the chief difference of this

method of code extension from those previously described is that all input

representations, control and graphic, are keypunchable with single key
depressions (that is, they do not require multipunching), and are printable

for debugging purposes.

2/
The

96-Column
Card Code

27.1 THE SMALL CARD

During 1966, a new medium was being developed for the storage of
data—a punched card, but a much smaller punched card than the tradi-

tional 34x 73 inch card in broad use in the data processing industry. The
basic design objective was the smallness of the card. If the card could be
made small, the associated card-handling equipment would be corres-
pondingly compact, and costs would be low. The objective was a card
approximately one third the size of the normal punched card.

27.2 CRITERIA

All the normal punched card operations were envisaged for the small

card; key punching, verifying, sorting, collating, and computer
input/output. Design criteria were set for the small card:

Criterion 1

The small card should be capable of receiving as many characters as the
regular punched card; that is, at least 80.

Criterion 2

All punching character positions of the card should be capable of being
interpreted on the card.

Criterion 3

The “primary” graphic set should be a 6-bit, 64-character set.

471

472 The 96-Column Card Code

Criterion 4

It should be possible to punch 256 different hole patterns on the card;

that is, the card should be capable of being an input/output medium for

the System/360.

Criterion 5

The numerics should be BCD coded with the capability for positive and
negative numerics. Negative numerics should be derivable by over-
punching absolute numerics, analagously to the technique for the Hol-

lerith Card Code.

Criterion 6

The Space character should be a no-holes hole pattern, as it was in the
Hollerith Card Code. This would provide the capability to leave card

columns or fields blank during the keypunching operation so that they
could be punched with processed data during subsequent card operation.

Criterion 7

The numerics should have no zone punches.

Criterion 8

The translation relationship, bit code to/from card code, should be as

simple as possible.
During the discussions on a code for the small card, it was decided

that the code should be an eight-row code, as contrasted with the
twelve-row Hollerith code for the regular punched card. If possible, it
should be a direct representation of EBCDIC—a hole on the card
corresponding to a one bit in EBCDIC and the absence of a hole
corresponding to a zero bit. There seemed to be a possibility that the
small card code would not be an exact direct representation of EBCDIC.
In order to avoid confusion in such an eventuality, the holes or bits of the
code were named DCBA8421, from high to low order:

Small card code DC BA 8 42 1

EBCDIC byte 0 12 3 4 5 6 7

27.3 THREE TIERS

The necessary size of the holes, and their necessary vertical and horizon-

tal separation, posed a problem with respect to interpretation on the card.

The geography of the card would allow for three tiers, each tier designed

to contain the eight rows of a character, as shown in Fig. 27.1.

27.4 Interpretation on the Card 473

Soo 4
Cc

B

a 4 rows Tier 1

4

2

1 A

D —

Cc

B

a rows Tier 2

4

2

1 J

D _~

C

B

a \ rows Tier 3

4

2

1 A
Fig. 27.1 Three-tier card, Version 1

27.4 INTERPRETATION ON THE CARD

Corresponding to the three tiers of punched characters, there would have
to be at least three rows of unpunched card space at the top of the card to
receive interpreting. The first step to solve this problem was to separate

the D and C rows of each tier, as shown in Fig. 27.2.

Criterion 3 called for a 64-character, 6-bit ‘“‘primary”’ graphic set. If,

for these 64 characters, the D and C bits were zero, no holes would be

punched, and the top of the card would be left unpunched to receive

interpreting. Out of this realization grew the decision to interpret only the

64-character “‘primary”’ subset, even though a full 256-character, 8-bit set
could be punched if necessary. Keypunched input data, which posed the
main requirement for interpreting, would consist of 64 graphics only,
although output data could consist of 256 characters.

The geography of the card had begun to dictate aspects of the coded

character set. As it turned out, four rows were available to receive

interpreting at the top of the card. Three tiers of 32 characters (96
characters total) could be punched, but four rows of 32 spaces (128

474 The 96-Column Card Code

Jf C 3 Tier 1, high-order rows

C I Tier 2, high-order rows

Tier 3, high-order rows

O
d

sd
Tier 1, low-order rows

=
N

A
O
D

J}

Tier 2, low-order rows

=~
N
A
O
D

a
e

J
e
o

Tier 3, low-order rows

=
N
A
O
D
U

Ww
l

Fig. 27.2 Three-tier card, Version 2

1:2 3-4-8 6 7 8H 10 ft 82 43 14 18 16 17 16 18 ZO 21 22 29 24 25 26 27 28 2030-1 3%

123456789 s¥8 *="O/STUVWXY ZA 24> 2
39 3438 36.97 30 39 40 41 42 43.44 45 45 47 48 49-80 51 52 53 Bs BB 55 57 Se SP 60 Ei 62 63 64

-JKLMNOPGRES* PFT ABCDEFGHICeK<(41
OS 86 87 68 Gd 70 71 72:73:74 75 78 77 76 79 80 #1 O82 63 04 GE 86 87 SB OS 90 91 92 93 94 05 98

J oir IN PRINT WHEEL SEQUENCE _)

@
ey

er

@
oy

es

@
@
s

e
e
e

2 103 04 gs 106 (oT Iga ps yo TH 3 ys ge gt gy” 18 10 go gy 122 Bo ye ge ge 127 N28

e

e

e
e

»
o
e

o
@

ae

ws

@
e
e
e
 e

y
e
e

ge

oe
3 8

e
s
e

e
e
e

e
s
e
e

shelabebekelel

shekohnk ah n% nt

XQ IBM 3700 /

A
N
O
O
P
A
E
-
N
A
S
O
P
A
B
-
N
d
A
a
O
r
P
D

e
e
e
e

e
e
°
e
e

-
N
S
A
O
P
M
D
A
N
D
A
O
P
O
D
“
N
A
O
P
A

e » e e

s
e
e
e
e
e
e
e
e
e
o
e

@ @ ee @ ¢@¢ ¢
80 81 82 63 84 OF 88 07 68 OF 90 91 92 63 04 O5

Fig. 27.3 Three-tier card, final version

27.5 The Character Set 475

spaces) were available for interpreting (see Fig. 27.3). Criteria 1, 2, and 4

had also been met by these decisions.

27.5 THE CHARACTER SET

Attention was now turned to the actual character set to be specified. As
EBCDIC had been originally specified, it contained 88 graphics and the

Space character. The lower-case alphabet comprised 26 of these graphics,
leaving a 62 graphic set. These 62 EBCDIC graphics and the Space
character would constitute 63 of the 64 small card character set. These
graphics, in their code positions, are shown in a partial EBCDIC code
chart (Fig. 27.4).

Column 0 | 4 | 2 | 3 4 | 5 | 6 7 8 | 9 | A | B c | D iz | F

Bit 00 01 10 11 _.

Pat. “|
00 o1 10 11 00 01 0 11 00 01 10 11 00 01 10 11

Row

0 |oo000 sP - & 0

1 0001 / A J 1

2 |o010 B K S 2

3 0011 Cc L T 3

——

4 10100 ; D M U 4

5 |0101 E N Vv 5
oe

6 0110 F oO W 6

7 10111 Gc P xX 7

8 1000 H Q Y 8

9 1001 I R Z 9

A |1010 c !

B |1011 . $ ’ #

c |1100 < x 4 @

D {1101 ¢) _ '

E |1110 + 3 > =

F }1111 | ™ ? "

Fig. 27.4 EBCDIC graphics

It was observed that if EBCDIC bits 0 and 1 were dropped, this set

collapsed neatly into a 6-bit code, as shown in Fig. 27.5, which was

virtually the required card code for the small card.

476 The 96-Column Card Code

Bt em 00 01 10 11

‘

0000 SP & _ 0

0001 A J / 1

oo10 B K s 2

oo11 c L T 3

0100 D M U 4

0101 E N V 5

9110 F oO W 6

0111 G P x 7

1000 H Q Y 8

1001 r R Zz 9

1010 é ; XMXG{_Q

1011 . $ > #

1100 < * % @

1101 () _ '

1110 + ; > =

1111 | a 2 "
Fig. 27.5 6-bit code, Version 1

27.6 APPLICATION OF CRITERION 7

Criterion 7 had specified no zone punches for the numerics. Analyses had

shown that numeric data constituted about 75 percent of the data

punched on regular cards. It was assumed that the same would hold true

for small card applications. In order to have as few holes as possible

punched on a small card, it was clear that numerics should have no zone

punches. This suggested that the two high-order bits (Fig. 27.5) should be

reversed. The result, using the BA8421 bit-naming notation, is

shown in Fig. 27.6.

27.7 Application of Criteria 5 and 6 477

OM em BA B A No Zone Bits

y

No Bits SP & - 0

1 A J / 1

2 B K s 2

21 C L T 3

4 D M U 4

41 E N V 5

42 F 0 W 6

421 G P x 7

8 H Q Y 8

8 1 I R Zz 9

8 21 $ > i#

84 < * a @

84 1 (} _ '

842 + ; > =

8421 [“ ? u

Fig. 27.6 6-bit code, Version 2

27.7. APPLICATION OF CRITERIA 5 AND 6

Attention now turned to Criteria 5 and 6. Space should be No Punches,
and negative numerics should be accommodated by overpunching positive
numerics.

An obvious possibility was to prescribe the code column containing
J, K, L,...,R as being equivalent to negative numerics —1, —2,
—3,...,—9, as they are in EBCDIC. Then the — in the top row of this

column could stand for —0. But, since negative numerics must be
derivable by overpunching absolute numerics, this would require 0 to be

478 The 96-Column Card Code

No Punches. Criterion 6 had specified the assignment of No Punches to
the Space character. Here was a problem.

The solution was seen when the graphics were rearranged back into
their EBCDIC code positions, with the DCBA8421 code superimposed,
as in Fig. 27.7 (The code positions with entries of the form and the
small numbered squares below the code table will be explained later.)

Cotumn 0 1 2 3 4

00

00 01 10 11 00

Hole

Pat.

Hole Patterns:

G)
2]
3]
[4]
(s]
[6]

Block | Hoje Patterns at:

Top and Left

[s}
 2

]
&)

Bottom and Left

Top and Right

B
E
B
E

E
Y

B
A
A
R
A
S

 Bottom and Right

Fig. 27.7. EBCDIC, Version 1

27.8 Hole Patterns for Minus, Zero, and Minus Zero 479

27.8 HOLE PATTERNS FOR MINUS, ZERO, AND MINUS ZERO

The four code positions of the top row of Fig. 27.6 will have the hole
patterns of BA, B, A, and No Punches. The problem is to distribute these

four hole patterns along the top row of Fig. 26.7 so that Criteria 5, 6, and
7 are met. Criterion 6 says that the Space character shall have the hole

pattern of No Punches. This then leaves hole patterns BA, B, and A to

accommodate the characters —, —0, and 0. Criterion 7 specified that all

numerics should have no zone punches. This is clearly not possible, if

Space is to be the No-Punches hole pattern; that is to say, although
numerics 1 to 9 can have no zone punches, 0 must have a zone punch,
since only hole patterns with zone punches remain, BA, B, and A. Since 0
cannot have a hole pattern with no zone punches, the next best situation
is to have a hole pattern with one zone punch only; that is, either B or A.

The objective behind Criterion 7 was to minimize the number of
holes in the hole patterns for numerics. A single hole as the hole pattern

for 0, either A or B, really meets the spirit of this objective. The fact that
the single hole of the hole pattern is a zone punch rather than a digit
punch is not as important as the fact that 0 has a minimum number of
holes (namely, one hole) in its hole pattern.

So the problem now was to choose between B and A as the hole
pattern for 0. Hole patterns for —0 and — also had to be determined.
There were two possibilities:

Possibility1. A for 0 Possibility2. B for 0
B for - A for —

BA for —0 BA for —0

As shown in Fig. 27.6, the column containing J, K, L,...,R had been

decided to have the zone-punch B. But as signed numerics, J, K, L,...,R

will correspond to —1, —2, —3,..., —-9. The character in Fig. 27.7
designated by must represent —0. The zone-punch B, then, must
clearly represent the overpunched sign for negative numerics; that is, BA
will represent —0. If B is to be the overpunch turning 0 into —0, then 0
must start out as A. So of the two, Possibility 1 was preferable. There-

fore, in Fig. 27.7, code positions [6], [14], and will have hole
patterns of B, BA, and A, respectively.

We now look again at the collapsed 6-bit set of Fig. 27.6. With the

assignments for —, —0, and 0 as in the paragraph above, the graphics in
the top row of the table will change, as shown in Fig. 27.8.

480 The 96-Column Card Code

We observe that & has not yet an assigned hole pattern, and that
there is a hole pattern, A82, in the table (shaded) that has no assigned

graphic. It has to be concluded that & will be assigned the hole pattern of

A82.

Pattern BA B A

-0 - 0 SP

1 A J / 1

2 B K S 2

21 (L T 3

A D M U 4

4 1 E N Vv 5

42 F 0 W 6

421 G P x 7

8 H Q Y 8

8 1 I R Zz 9

8 2 ¢ I
h

8 21 $ #

84 < * % @

84 1 () _ '

842 + > =

8421 | a 2 "

Fig. 27.8 6-bit code, Version 3

27.9 MINUS ZERO

Before returning to consideration of the 8-bit EBCDIC code table, there
is another small problem to solve. When data is entered into a computer,
and then listed, unaltered, for debugging purposes, those card fields which
had overpunched numerics will list as J, K, L,...,R for —1, —2,

—3,...,—9, respectively. The fact that alphabetics list for signed

numerics in a debug listing is quite satisfactory to users. The important

fact is that a graphic for —1 is distinguishable from a graphic for 1. In

27.10 Criterion 8, Translation Simplicity 481

final output listings, of course, it is customary to separate out the minus
sign, and list it adjacent to the numeric. But for debug purposes, alphabe-

tics are quite acceptable. The problem is, what is to be listed for —0?

What graphic should be assigned to EBCDIC code-position hex DO?
The engineers designing the small card system recommended a

graphic 0, since this was clearly representative as a graphic for —0. But
EBCDIC had a graphic already assigned to code-position Hex D0;
namely, the graphic } (closing brace). It was therefore insisted that the
graphic to represent —0 be }. This was not attractive to the engineers for

the small card system, for two reasons:

1. The graphic } is not representative of the concept —0.

2. To provide the graphic } without providing its companion graphic {
seemed bizarre.

Reason 1 was disposed of quickly. After all, J, K, L,...,R are not

representative of the concepts —1, —2, —3,..., —9.

Reason 2 was not disposed of so easily. To begin, the companion

graphic { is assigned to EBCDIC, in code-position hex C0. So why not

include it in the small card system’s graphic set? But all 64 graphic
positions in the collapsed 6-bit set were assigned. If { were to be assigned,

then one of the previously assigned graphics must be left out of the set.

Which one? As it turned out, serious consideration was not given to this
question, because a more subtle but more important aspect arose—the

translation—simplicity aspect of Criterion 8.

27.10 CRITERION 8, TRANSLATION SIMPLICITY

The simplest possible translation relationship would be where the bit code

would be on a one-to-one relationship with the card code—a bit in a bit
pattern would become a hole in a hole pattern. This relationship had
already been aborted by previous design decisions:

= To reverse bit-code zone-bits 2 and 3 for card-code zone-punches B

and A. Actually, an inversion of a bit, if applied uniformly to all bit
patterns, does not make the translation circuitry any more complex.

=" Assignments of hole-patterns No Punches, B, BA, and A to EBC-

DIC code-positions hex 40, 60, DO, and FO, respectively, certainly

are exceptions to, and therefore complicate, the bit-code—to—card-

code relationships.

482 The 96-Column Card Code

= Assignment of hole pattern A82 to EBCDIC code-position hex 50 is
an even more complicating exception than the exceptions stated just
above.

Assignment of Al to / in the 6-bit code table (Fig. 27.8) results in

Al being the assignment for hex 61 in the 8-bit code table (Fig.

27.7).

27.11 THE MUSICAL-CHAIRS EFFECT

It should be realized that exceptions to bit-code-to—card-code translation
relationships have a musical-chairs effect. For each exception, there au-

tomatically results another one.
‘ For example, hole-pattern A82 had been decided to correspond to

hex-position 50. But hole-pattern A82 would “naturally” correspond to
hex position A6. Therefore, some other hole patterns must be assigned to
hex-position A6, and that assignment will necessarily be an exception
also.

The suggestion that { be assigned in the graphic set of the small card
system meant that it would have to be included in the collapsed 6-bit set.
But, even as the & received the exception hole pattern of A82, the hole
pattern for { would have to be an exception also. If, for example, it had

been decided to leave out the ¢ so that the { could be included, then the
hole pattern for { would have to be the hole pattern previously assigned
to ¢; namely, BA82. This would mean that hole-pattern BA82 would be

assigned to the EBCDIC hex position for {; namely, hex CO. And this is

clearly a translation exception. And, by the musical-chairs effect, a transla-

tion exception would automatically be created somewhere else in the
EBCDIC code table.

Translation exceptions lead to an increase in translation complexity.
An increase in translation complexity leads to an increase in translation
circuitry and, hence, to an increase in cost.

So the trade-off situation was

provide } but not {

which might seem bizarre, or |

provide { as well as }

and increase the cost of the system. Since a major objective for the small
card system was low cost, the cost argument was decisive. Therefore, }

was provided (for —0) and { was not provided.

27.13 Completion of the Card Code 483

27.12 THE FINAL 6-BIT SET

All design decisions had now been reached for the collapsed 6-bit set for
the small card system. The result is shown in Fig. 27.9. This code table,
then, specifies the card hole patterns for the 63 graphics and the Space
character of the small card system. The partially completed 256-
character, 8-hole card code for the small card is shown in Fig. 27.10.
Exception hole patterns are indicated by the small numbers in squares.

Pattern BA B A

} - 0 SP

1 A J / 1

2 B K s 2

21 Cc L T 3

4 D M U 4

4 1 E N Vv 5

42 F 0 W 6

421 G P x j

8 H Q Y 8

8 1 L R Z 9

8 2 ¢ ! &

8 21 $ > #

B 4 < * x @

84 1 () - t

842 + 3 > =

8421 | = 2 "

Fig. 27.9 6-bit code, Version 4

27.13, COMPLETION OF THE CARD CODE

Attention was now focussed on completing the card code for the small

card system. In Fig. 27.10, the specials in hex-columns 4, 5, 6, and 7 had

been previously decided to have zone punches of BA, B, A, and No

484 The 96-Column Card Code

Hols

Pat.
Hole Patterns:

ca) [Js EY
[2] BA Block | Hole Patterns at:

[3] [15] (21) Top and Left

[2] A {z2] Bottom and Left

[5] No Pch ti] Top and Right

[s | A82 12] [18] Al Bottom and Right

Fig. 27.10 96-column card code, Version 1

27.14 Further Criteria 485

Zone, respectively (see Fig. 27.9). The same set of zone punches had

been assigned to the alphabetics and numerics in hex-columns C, D, E,
and F. It was clear, then, that the code positions for the top rows of
hex-columns 4, 5, 6, and 7 and the code positions for the bottom rows of

hex-columns C, D, E, and F could not have zone-punches BA, B, A, and

No-Zone. That is, for these eight code columns, zones for the block of
bottom rows would be different than zones for the block of top rows.

It is a fact of the theory of translation relationships that if a zone
difference (bottom and top blocks) applies for 8 of the 16 code columns,
translation simplicity will be enhanced if zone difference (bottom and top
blocks) is also applied to the other 8 code columns.

This then became a further criterion. It would also enhance transla-
tion simplicity if the sequence of zone-assignments BA, B, A, and No
Zone was applied both to hex-columns 0, 1, 2, and 3 and hex-columns 8,
9, A, and B, respectively.

27.14 FURTHER CRITERIA

The two new criteria are now enunciated:

Criterion 9

The zone difference between hex-rows 0 through 9 and between hex-rows A

through F, already decided for hex-columns 4, 5, 6, 7, and C, D, E, F,

should also be applied to hex-columns 0, 1, 2, 3 and 8, 9, A, B.

Criterion 10

The sequence of zone-patterns BA, B, A, and No Zone should be applied
to hex-columns 0, 1, 2, 3; to hex-columns 4, 5, 6, 7; to hex columns 8, 9,

A, B; and to hex-columns C, D, E, F.

Available zone patterns are DCBA, DCB, DCA, DC, CBA, CB,

CA, C. A further fact of the theory of translation relationships is that
translation simplicity would be enhanced if zone-punch D was applied to

hex-columns 0 through 7, and not to hex-columns 8 through F; and if

zone-punch C was applied both to hex-columns 0, 1, 2, 3 and hex-

columns 8, 9, A, B, and not to hex-columns 4, 5, 6, 7 and hex-columns C,

D, E, F. This application would be to hex-rows 0 through 9. By conse-

quence of Criterion 9, the opposite assignment of D and C zones should be
applied to hex-rows A through F. With the translation exceptions already
noted in Fig. 27.9, this leads to an assignment of zone patterns as shown
in Fig. 27.11.

486 The 96-Column Card Code

Column

Hole

Pat.
Hols Patterns:

ow

Block | Hole Patterns at:

1 1 Top and Left

2 Bottom and Left

(s
]

2]
 &

)
&]

A
A
E
E
E

A
E
E
A
A
E
E
 C4)

[2]
[3]
[4]
[s] No Pch

6 |

Fig. 27.11 96-column card code, Version 2

27.15 EXCEPTION TRANSLATIONS

As shown in Fig. 27.11, there were six exception translations. From the

musical-chairs effect previously cited, we would expect there to be more

translation exceptions than the number shown in Fig. 27.10. And this

turns out to be so.
The six hexadecimal positions to which exception hole patterns have

been assigned are listed below in Table 27.1. Also shown are the

27.15 Exception Translations 487

nexadecimal positions from which the exception hole patterns originated,
and the hole patterns which would have been expected in the exception

positions.

TABLE 27.1 Exception hole patterns

Exception Exception Origin of Expected
positions hole exception hole

(hexadecimal) patterns hole patterns patterns

40 No Punches FO DBA
50 A82 6A DB

60 B DO DA
DO BA CO B

FO A EO No Punches

61 Al El DAI

Examination of the columns ‘Exception positions” and ‘‘Origin of excep-
tion hole patterns” in Table 27.1 reveals that hex-positions DO and FO

are in both columns, but hex-positions 6A, C0, EO, and El are four

further hex-positions in which the musical-chairs effect will be man-

ifested. Also, examination of columns ‘Exception hole patterns’ and

‘““Expected hole patterns’’ reveals hole patterns No Punches and B to be

in both columns, but hole-patterns DBA, DB, DA, and DA1 are four

further hole patterns to be distributed to. the four hex positions noted in
the previous sentence, to complete the musical-chairs effect.

The musical-chairs effect, then, extends Table 27.1 into Table 27.2

shown below. The ten exception hole patterns, shown in Fig. 27.12, make

up the 96-column card code, Version 3.

TABLE 27.2. Musical-chairs effect

Exception Exception Origin of Expected

positions hole exception hole

(hexadecimal) patterns hole patterns patterns

6A DBA 40 A82
CO DA 60 BA

EO DB 50 A
El DAI 61 Al

488 The 96-Column Card Code

Column

Hole

Pat.
Hole Patterns:

G) B [13] Da
[2] BA DAL Block | Hole Patterns at:

[3] [2] [15] DB [21] 1 1 Top and Left

[4] A [22] DBA 2 Bottom and Left

[s] No Pch {] 2

[e] A82 [2] Al
Fig. 27.12 96-column card code, Version 3

Examination of Tables 27.1 and 27.2 combined shows that each hex

position in the “Exception positions” columns matches a hex position in

the ‘“‘Origin of exception hole patterns” column, and each hole pattern

in the ‘Exception hole pattern” column matches a hole pattern in the

‘Expected hole pattern” column.

27.16 Reduction of Translation Complexity 489

27.16 REDUCTION OF TRANSLATION COMPLEXITY

It is an interesting anomaly of translation relationships that if one
exception is introduced, the consequent. translation complexity will be

reduced if some additional compensating exceptions are forced in. This is

not the musical-chairs aspect previously noted. This anomalous fact is

best illustrated with examples. Consider Fig. 27.13, a code chart which
would exhibit the optimally simple translation relationship between the
eight holes of the 96-column card, D, C, B, A, 8, 4, 2, 1, and the eight

bits of an EBCDIC byte, 0, 1, 2, 3, 4, 5, 6, 7. Then the holes-to- bits

relationship is simply inverse for the high-order four and direct for the
low-order four.

96-column EBCDIC

card hole bit

D 0

C = 1 This notation means that if there are D, C, B,

B = 2 A holes, the 0, 1, 2, 3 bits respectively are 0.

A = 3

8 = 4°
4 = 5 If there are 8, 4, 2, 1 holes, the 4, 5, 6, 7 bits

2 = 6 respectively are 1.

1 7

Now suppose for some reason, it is required to swap the hole patterns for
code positions (') and (°).

Card hole pattern

EBCDIC

bit pattern Before swap After swap

Code position (7)} 0010 1101 DCA 841 DCBAt12
Code position (*)| 0000 0010 DCBA 2 DCA8 41

Consider the situation in going from card hole patterns to EBCDIC

bit patterns. As exceptions to the general translation equations above,

additional circuitry must be added to

1. detect hole-pattern DCBA2 and generate bit pattern 0010 1101,

2. detect hole-pattern DCA841 and generate EBCDIC bit-pattern

0000 0010.

490 The 96-Column Card Code

Column 0 1 2 3

00

00 01 10 11

D

C Cc GC C

B

QUADRANT 1 QUADRANT 2 QUADRANT 3 QUADRANT 4

Hole

Pat.
Hole Patterns:

Btock | Hole Patterns at:

Top and Left

[3]
 &

)
&)

Bottom and Left

BI
E

le
)

GE

A
A
A

A
E
E

G]
2]
GB]
[4]
(s]
[]

Fig. 27.13 Optimal 96-column card code

Figure 27.13 is shown divided into four quadrants. The quadrants are
distinguished one from another by two high-order zone bits 0 and 1, or,

equally, by the two high-order zone holes, D and C. The swap that was

proposed above took place wholly in quadrant 1.

What would be the result if analagous swaps were made in quadrants

2, 3, and 4? That is, swap (*) and (*), (°) and (°), (”) and (°).

27.16 Reduction of Translation Complexity

Column

Hole

Pat.

Hole Patterns:

[]c [7] 3 [13] p DCA1

(2] cas2 DA BA (20} pal
[3] cp [2] pc [is] pB f21] DcBA
[4] pca CBA A [22] DBA

[S] No Pch [1] pez [17] cat
[e] a82 [iz] ca Al

Fig. 27.14 96-column card code, final version

491

Hole Patterns at:

Top and Left

Bottom and Left

The interesting result is that the detection circuitry can now ignore
zone-holes D and C. That is to say, instead of having to detect and
analyze all eight card rows, D, C, B, A, 8, 4, 2, 1, only six, B, A, 8, 4, 2, 1

have to be detected and analyzed. Similarly, in going from bit patterns to

hole patterns, the two high-order zone bits need not be detected and
analyzed. In short, by forcing the exception translation of quadrant 1 into

492 The 96-Column Card Code

quadrants 2, 3, and 4, detection and analysis circuitry have been reduced;

the translation complexity has been reduced.
It is also a fact that if the exception translation of quadrant 1 had

been forced into only one other quadrant, the translation complexity
would have been reduced, but not reduced as much as it would have been
if the exception had been forced into all three other quadrants.

With respect to the 96-column card code, given that certain transla-
tion exceptions were required for reasons already given, the translation
relationships were consequently complicated. By exercising their art to
force further exception translations, the engineers did simplify the trans-
lation complexity considerably. In Fig. 27.12, six translation exceptions
are shown. Before the 96-column card code was finished, 22 exceptions

were forced, as shown in Fig. 27.14.

27.17 SIMPLIFICATION OF TRANSLATION COMPLEXITY

A glance at the translation equations shown in Fig. 27.15 for the
96-column card, Version 3 (Fig. 27.12) and in Fig. 27.16 for the 96-

column card, Final Version (Fig. 27.14) reveals that considerable simp-

lification took place in the equations for EO, E2, and E3, as shown below
in the total counts of connectors.

Version 3 | Final Version

Common expressions 27 26

Equations 51 34

Total 78 60

27.18 SUMMARY

Criteria 1, 2, 3, 4, 5, 6 were met. Criterion 7 was not met by the hole

pattern for numeric 0, but numeric 0 had only one hole in its hole
pattern. The objective of Criterion 7 was to minimize the number of holes
in the hole patterns for numerics; this objective was achieved.

Criteria 3, 5, 6, and 7 led to exception translations. Given these

exception translations, Criterion 8 was met as well as possible.

27.17 Simplification of Translation Complexity 493

Common expressions

X=8A4a2n1 F=[40(8¥ w_2)] v [8 A 4]

Y=8A4A2A1 G =8A(4A2)

Z=8A4A2A1 8 H=8a[4a(2a 1)]

K=DaCanaBaAd4al J=XADACABAA

Equations

BE0 ={X a[D a (Ca A)] ¥ [Da C) a (Bw AD}

_ wv {Ya[D=(CABa~ A)} v (Fa D) v (Gv D)}

E1=C

E2={Ban {x a{Cv[Ca(Dv AI v(Za(DaCaA)]v¥ [Lv Fv H}}
vy {((B AC) A (DA A) A X}

E3 = {An {Xv[Cv (DACAB)} v Xv (Aa Da Cla[Xv (Ba Z)}

E4=[8A(Ka Z)|v J

E5 = 4
EF6=[2aA (Ka 8)| v J
E7 = 1

Fig. 27.15 96-column card, Version 3

Common expressions

= 8al4a ad]

X=8a4a2anl H
Y=8a4a2al I=(D» A)
Z=8a4a2al J=DABaAA
F=[4a (8 v2)])v[8A4] K=XaJ
G = 8a (4a 2) M=DaBanaAn4anl

Equations

E0 = {Xa (Dv A)}v {Y A[D = (Ba A)}} v (FA D) ¥ (G “4 DI}
BE1=C

E2={Ba{{Xa A]lv[ZaIv Yv Fv AY}v BAX” TS
E3={Aa{Xa(DaB]¥[Za0 Da B]} v {A a X}

E4 = {8A (MA 2)}v K
E5 = 4

E6 = {2a (Ma 8)} v¥ K

E7=1

Fig. 27.16 96-column card, Final Version

Glossary

The following reference terminology is used in these definitions:

Contrast with

Refers to a term that has an opposed or substantively different meaning.

Synonym for

Indicates that the term has the same meaning as another term, which is

defined.

Synonymous with

Identifies terms that are synonyms for the term being defined.

Acronym for

An abbreviation generally consisting of the first letters of the words of a

term.

See

Refers to multiple-word terms that have the same last word and are

defined.

See also

Refers to related terms that have a similar, but not synonymous, meaning.

Deprecated term for

Indicates that the term should not be used. It refers to a preferred term,

which is defined.

496 Glossary

A-Bit A bit in the A position of a Byte whose bit positions are named
B, A, 8, 4, 2, 1 from high order to low order.

Absolute Numeric A numeric with neither a negative nor a positive
associated sign. Contrast with Positive Numeric, Negative Numeric,

Signed Numeric.

Accented Alphabetic An alphabetic, as in the French or Italian alphabets,
with an associated accent, such as a grave accent, an acute accent, a

circumflex accent. See also Diacritic Alphabetic.

Alphabet A set of all the Alphabetics used in a language, including
Diacritic Alphabetics and Accent Alphabetics. See also Cyrillic Alphabet,
Duocase Alphabet, Latin Alphabet, Monocase Alphabet, Non-Latin AI-
phabet. Contrast with Katakana Symbols.

Alphabetic A letter in the Alphabet of a country. Generally taken to

mean a letter of the Latin Alphabet, but sometimes must be par-

ticularized, as Latin alphabetic, Cyrillic alphabetic, Greek alphabetic,
Hebraic alphabetic, and so on. See also Small Alphabetic, Capital Al-
phabetic.

Alphabetic Character An Alphabetic together with its associated Bit
Patterns or Hole Pattern.

Alphabetic Extender Positions Positions reserved in EBCDIC for
Graphics particular to a country. See also National Use Positions.

American National Standard Code For Information Interchange A
Coded Character Set consisting of 128, 7-bit Characters. There are 32
Control Characters, 94 Graphic Characters, the Space Character, and the

Delete Character.

ANSI Acronym for the American National Standards Institute.

AND A logic operator with the property that if A and B are Binary
Variables, A AND B is 1 if both A and B are 1, and is 0 if A is 0 and B

is 1 or if A is 1 and B is 0 or if A is O and B is 0.

ASA Acronym for the American Standards Association, now the
American National Standards Institute.

ASCH Acronym for the American National Standard Code For Infor-
mation Interchange.

Baudot Code Synonym for CCITT #2.

B-Bit A bit in the B position of a Byte whose bit positions are named B,
A, 8, 4, 2, 1.

BCD Acronym for Binary Coded Decimal.

BCD Code A Code that has the characteristic that the low-order 4 bits
of the Bit Patterns of the numerics are Binary Coded Decimal.

Glossary 497

BCDIC Acronym for the BCD Interchange Code.

Binary Pertaining to a selection, a choice, or a condition that has two

possible values or states.

Binary Coded Decimal A coding representation in which the low-order
4 bits of the Bit Patterns of the numerics are the binary equivalents of the
decimal digits of the numerics.

Binary Digit In the binary system, one of the digits 0 or 1. Contrast with
Decimal Digits. Synonym for Bit.

Binary Variable A variable that can take two possible values, or repres-
ent two possible states.

Bit Synonymous with Binary Digit. See also A-Bit, B-Bit, C-Bit, D-Bit,
Parity Bit, Zone Bit, 0-Bit, 1-Bit, 2-Bit, 4-Bit, 8-Bit.

Bit Code A set of Bit Patterns and associated Graphic and Control
Meanings.

Bit Combination Synonym for Bit Pattern.

Bit Name The name of the position of a Bit within a Byte. Synonymous

with Bit Number.

Bit Number The number of the position of a Bit within a Byte.
Synonymous with Bit Name. See also 0-Bit, 1-Bit, 2-Bit, 4-Bit, 8-Bit.

Bit Pattern An ordered set of Bits, usually of fixed length. Synonymous
with Bit Combination, Bit Representation.

Bit Representation Synonym for Bit Pattern.

Bit Sequence The binary sequence of the Bit Patterns of a code, from
000---Oto 111---1.

Bit Stream A string of Bit Patterns without regard to grouping by Bit
Pattern.

Bit String A string consisting solely of Bits.

Block A string of characters for technical or logical reasons to be

treated as an entity.

Byte A Bit Pattern of fixed length.

Byte Size The number or count of Bits in a Byte.

Capital Alphabetic The alphabetics A, B, C,...,Z. Also includes the

capital Diacritic Alphabetics. Contrast with Small Alphabetic.

Card Code A set of Hole Patterns and associated Graphic and Control
Meanings.

Card Column On a punched card, a vertical Column.

Card Row On a punched card, a horizontal Row.

Cartridge See Chain Cartridge.

498 Glossary

C-Bit A Bit in the C position of a Byte whose bit positions are named

D, C, B, A, 8, 4, 2, 1.

C.C.LLT. Acronym for Comité Consultative International Telegraphi-
que et Telephonique.

CCITT 42 A 58-character, 6-bit Shifted Code, used nationally and

internationally on telegraph lines.

Chain Cartridge A cartridge holding a chain for a Chain Printer, allow-
ing easy and simple replacement.

Chain Printer An impact printer in which the type slugs are carried by
the links of a revolving chain. See also Train Printer.

Character A Bit Pattern and its associated Meaning. See also Alphabetic
Character, Control Character, Delete Character, Escape Character,

Graphic Character, Null Character, Numeric Character, Space Character,

Special Character.

Character Set Synonym for Coded Character Set.

Clocking Track A track on which a pattern of signals is recorded to
provide a timing reference.

COBOL (Common business-oriented language.) A programming lan-
guage designed for business data processing.

Code Synonym for Coded Character Set. See also Baudot Code, BCD

Code, Fieldata Code.

Code Form A general term, including, for example, Coded Character

Sets, Packed Numerics, Binary data, Bit String.

Code Meaning The meaning assigned to a Bit Pattern of a Coded

Character Set.

Code Name The name assigned to a particular coded character set, such

as ASCII, BCDIC, EBCDIC, PTTC.

Code Position Synonym for Code Table Position.

Code Table A compact matrix form of Rows and Columns for exhibiting
the Bit Patterns or Hole Patterns and assigned Meanings of a Coded

Character Set.

Code Table Position The position or location of a Character in the Code
Table for a Coded Character Set. There are two common conventions.

For ASCII, the position is given as x/y, where x is the Code Table

Column Number, and y is the Code Table Row Number. For EBCDIC,

the position is given as mn, where m is the Hexadecimal Code Table
Column Number, and n is the Hexadecimal Code Table Row Number.

Synonymous with Code Table Location.

Glossary 499

Code Table Location Synonym for Code Table Position.

Code Table Column A vertical Column in a Code Table. Synonymous
with Table Column.

Code Table Row A horizontal Row in a Code Table. Synonymous with
Table Row.

Coded Character Set A specific set of Bit Patterns or Hole Patterns to

which specific Graphic Meanings and Control Meanings have been
assigned. Synonymous with Code.

Collating Number A number assigned to the Characters of a Coded
Character Set, running from 0 to 63 (for BCDIC) and from 0 to 255 (for

EBCDIC). The collating numbers give the Collating Sequence of the
coded character set, from low to high.

Collating Sequence An ordering assigned to the Characters of a Coded
Character Set.

Column A vertical column of a Coded Character Set either in a Code

Table or on a punched card. See also Code Table Columns, Card
Column. Contrast with Row.

Column Number The number assigned to a Column of a Code Table.
Contrast with Row Number.

Comparator Hardware circuitry that compares the relative magnitudes
of two bit patterns and indicates the results of that comparison.

Compiler A program that transforms source-language statements of a

programming language into computer-oriented language.

Contiguous Alphabet A characteristic of a Code (such as ASCII) such
that the Bit Patterns assigned to the Alphabetics have no gaps in the
binary sequence of the Bit Patterns. Contrast with Noncontiguous Al-
phabet.

Control An action that initiates, modifies, or suppresses an operation.

Control Character A specific Bit Pattern with an assigned Control

Meaning. Contrast with Graphic Character.

Control Meaning A particular operation that controls either a hardware
or software function.

Cyrillic Alphabet The Alphabet of Slavic languages.

D-Bit A bit in the A position of a Byte whose bit positions are named

D, C, B, A, 8, 4, 2, 1.

Data Stream A variable-length string of Bit Patterns representing the

data of a data processing application.

500 Glossary

Decimal Digit In the decimal system, one of the digits 0 through 9.
Contrast with Binary Digit.

Delete Character A control character used primarily to obliterate an
erroneous or unwanted character, particularly in perforated tape.

Device Control Character A character to control a device (as “On” or

“Off’’) or to control functions within a device.

Diacritic A symbol (such as diaeresis, “) used with a letter to indicate

pronunciation.

Diacritic Alphabetic An Alphabetic with a Diacritic. See also Accented
Alphabetic. .

Digit A Graphic that represents an integer. See also Binary Digit,
Decimal Digit.

Digit Punch In punched cards, the 1-Punch, 2-Punch, 3-Punch,..., 9-

Punch.

Digit Row In punched cards, the Card Rows for Digit Punches.

Dual The mapping of more than one meaning to a single Bit Pattern or

Hole Pattern.

Duocase Pertaining to a keyboard machine (such as a typewriter) which
can shift from one case to another.

Duocase Alphabet An Alphabet with both Small Alphabetics and Capi-

tal Alphabetics.

EBCDIC Acronym for Extended BCD Interchange Code.

Eight-Punch Synonym for 8-Punch.

Eight-Row Synonym for 8-Row.

Eleven-Punch Synonym for 11-Punch.

Eleven-Row Synonym for 11-Row.

Escape Character A code-extension Character used with a sequence of
one or more succeeding Characters to indicate that the Characters which
follow the sequence are to be interpreted according to a different Coded

Character Set.

Exclusive OR A logic operator with the property that if A and B are
Binary Variables, then A Exclusive OR B is 1 if either but not both
variables are 1, and is 0 if both are 1 or both are 0.

Extended BCD Interchange Code A 256 character, 8-bit Coded
Character Set.

Extender, Alphabetic See Alphabetic Extender Positions.

FIELDATA Code A 7-bit Coded Character Set developed by the

United States Army for military communications system.

Glossary 501

Format Effector Character A Control Character to control the format-

ting of data on a printed or displayed page. ,

FORTRAN (Formula translation.) A programming language primarily
used to express computer programs by arithmetic formulas.

Five-Punch Synonym for 5-Punch,

Five-Row Synonym for 5-Row.

Four-Punch Synonym for 4-Punch.

Four-Row Synonym for 4-Row.

Graphic A printed, typed, or displayed symbol to represent an Alphabe-
tic, a Numeric, or a Special.

Graphic Character A specific Bit Pattern or Hole Pattern together with
an assigned Graphic Meaning.

Graphic Meaning The Graphic associated with a Graphic Character.

Graphic, Special See Special.

Hex Synonym for Hexadecimal.

Hexadecimal Pertaining to a selection, choice, or condition that has

sixteen possible different values or states. Synonymous with Hex.

Hole Pattern The pattern of holes within a single vertical Column of a
punched card.

Hollerith Card Code A 256-character, 12-row card code.

IDENTITY A logic operator with the property that if A and B are
Binary Variables, A IDENTITY B is 1 if both A and B are 1 or if both
A and B are 0, and is 0 if A is 1 and B is O or if A is O and B is 1.

INCLUSIVE OR A logic operator with the property that if A and B
are Binary Variables, A INCLUSIVE OR B is 1 if A is 1 and B is 0 or if
A is 0 and B is 1 or if both A and B are 1, and is 0 if both A and B are

0

ISO Acronym for International Organization for Standardization.

Katakana Symbols A set of phonetic symbols used in Japan to represent
the Japanese language

Latin Alphabet The Alphabetics of the languages of English, Spanish,
Portuguese, French, Italian, German, Swedish, Norwegian, Danish, and

Finnish speaking countries. Contrast with Non-Latin Alphabet.

Lower Case Alphabetic Deprecated term for Small Alphabetic.

Lower Case Letter Deprecated term for small letter.

Meaning The sense, significance, or understanding intended to be con-

veyed by a Graphic character or a Control Character. See also Code
Meaning, Control Meaning, Graphic Meaning.

502 Glossary

Mode Change Character A Control Character that sets or changes some
particular mode of operation.

Monocase Alphabet An Alphabet with Capital Alphabetics only or with
Small Alphabetics only.

National Use Positions Positions in the ISO 7-Bit Code reserved for
graphics particular to a country. See also Alphabetic Extender Positions.

Negative Numeric A Numeric with an associated negative sign. Contrast
with Absolute Numeric, Positive Numeric, Signed Numeric.

Nine-Punch Synonym for 9-Punch.

Nine-Row Synonym for 9-Row.

Noncontiguous Alphabet A characteristic of a Code (such as EBCDIC)
that the Bit Patterns assigned to the Alphabetics have gaps in the binary

sequence of Bit Patterns. Contrast with Contiguous Alphabet.

Non-Latin Alphabet The Alphabetics of languages such as Russian,
Greek, Hebraic, which are not Latin Alphabetics. Contrast with Latin
Alphabet.

Null Character The Character whose Bits are all zero bits.

Numeric One of the digits zero through 9. See also Absolute Numeric,

Negative Numeric, Positive Numeric, Signed Numeric.

Numeric Character A Numeric together with its assigned Bit Pattern or

Hole Pattern.

One-Bit Synonym for 1-Bit.

One-Punch Synonym for 1-Punch.

One-Row Synonym for 1-Row.

OR See EXCLUSIVE OR, INCLUSIVE OR.

Packed Decimal Representation of a decimal value by two contiguous
4-bit BCD Bit Patterns within an 8-bit Byte.

Packed Numeric Deprecated term for Packed Decimal.

Paper Tape And Transmission Code A 111-character, 6-bit Shifted
Code that is used on paper tape for data transmission.

Paper Tape And Transmission Code For BCD Environments A 111-
character, 6-bit Shifted Code for use with computers with BCDIC as the
internal code.

Paper Tape And Transmission Code For EBCD Environments A 111-
character, 6-bit Shifted Code for use with computers with EBCDIC as the

internal code.

Parity Bit A check Bit appended to a string of Bits to make the sum of
all the Bits, including the Parity Bit, always odd or always even.

Glossary 503

Pattern See Bit Pattern, Hole Pattern.

Position See Code Position, Code Table Position, National Use Posi-
tion.

Positive Numeric A Numeric with an associated positive sign. Contrast
with Absolute Numeric, Negative Numeric, Signed Numeric.

Printer See Chain Printer, Train Printer.

PTTC Acronym for Paper Tape And Transmission Code.

PTTC/BCD Acronym for Paper Tape And Transmission Code For BCD
Environments.

PTTC/EBCD Acronym for Paper Tape And Transmission Code For
EBCD Environments.

PTTC/6 Deprecated acronym for PTTC/BCD.

PTTC/8 Deprecated acronym for PPTC/EBCD.

Punch See Digit Punch, Zone Punch, 0-Punch, 1-Punch, 2-Punch, 3-
Punch, 4-Punch, 5-Punch, 6-Punch, 7-Punch, 8-Punch, 9-Punch, 11-
Punch, 12-Punch.

Representation The physical form or manner in which the Characters of
a Coded Character Set are recorded or transmitted on some medium,

such as magnetic tape, magnetic card, magnetic disks, magnetic core,

paper tape, punched card, data transmission line.

Row A horizontal row of a Coded Character Set either in a Code Table

or on a punched card. See also Code Table Row, Card Row, 0-Row,

1-Row, 2-Row, 3-Row, 4-Row, 5-Row, 6-Row, 7-Row, 8-Row, 9-Row,

11-Row, 12-Row. Contrast with Column.

Row Number The number assigned to a Row of a Code Table. Contrast
with Column Number.

Sequence See Bit Sequence, Collating Sequence.

Seven-Punch Synonym for 7-Punch.

Seven-Row Synonym for 7-Row.

Shifted Code A Code in which the meaning of a Bit Pattern depends not
only on the Bit Pattern itself but also on a particular preceding Bit

Pattern in the string of Bit Patterns, the preceding Bit Pattern being

called a ‘“‘precedence Character” or a “‘shift Character.”

Signed Numeric A Numeric with either a positive or negative associated
sign. Contrast with Absolute Numeric, Negative Numeric, Positive
Numeric.

Small Alphabetic The alphabetics a, b, c,...,z. Also includes small

Diacritic Alphabetics. Contrast with Capital Alphabetic.

504 Glossary

Space Character A Graphic Character that causes the print or display
positions to move one position forward (that is, to the right) without
producing the printing or display of any visible graphic.

Special A Graphic other than an Alphabetic or a Numeric. Synonymous

with Special Graphic.

Special Character A Special together with its associated Bit pattern or
Hole Pattern.

Special Graphic Synonym for Special.

Stream See Bit Stream, Data Stream.

String See Bit String.

Subset A Coded Character Set, each Character of which is a Character

of a larger Coded Character Set.

Table Column Synonym for Code Table Column.

Table Row Synonym for Code Table Row.

Three-Punch Synonym for 3-Punch.

Three-Row Synonym for 3-Row.

Track The portion of a moving data medium such as drum, disk, or tape,
that is accessible to a given reading or recording head position.

Train Printer An impact printer in which the type slugs are carried by a
revolving train. Contrast with Chain Printer.

Transmission Control Character A Control Character to control inter-
communications on data transmission lines.

Twelve-Punch Synonym for 12-Punch.

Twelve-Row Synonym for 12-Row.

Twelve-Row Card A punched card with twelve punchable Card Rows.

Two-Punch Synonym for 2-Punch.

Two-Row Synonym for 2-Row.

Upper-Case Alphabet Deprecated term for Capital Alphabetic.

Upper-Case Letter Deprecated term for capital letter.

USASCII Deprecated term for ASCII.

USASI Acronym for the United States of American Standards Institute,

now called the American National Standards Institute.

Zero-Bit Synonym for 0-Bit.

Zero-Punch Synonym for 0-Punch.

Zero-Row Synonym for 0-Row.

Zone Bit For BCDIC, one of the two high-order Bits; for EBCDIC, one

of the four high-order Bits.

Glossary 505

Zone Punch On a punched card, a 12-Punch, an 11-Punch, or a

0-Punch for some Hole Patterns.

0-Bit A Bit whose value is zero.

1-Bit (a) A Bit whose value is one. (b) In the BA8421 or the

DCBA8421 nomenclature for bit positions, a Bit in the 1 position.

2-Bit In the BA8421 or DCBA8421 nomenclature for bit positions, a

Bit in the 2 position.

4-Bit In the BA8421 or DCBA8421 nomenclature for bit positions, a

Bit in the 4 position.

8-Bit In the BA8421 or DCBA8421 nomenclature for bit positions, a
Bit in the 8 position.

0-Punch A punch in the 0-Row of a punched card. Synonymous with

Zero-Punch.

1-Punch A punch in the 1-Row of a punched card. Synonymous with
One-Punch.

2-Punch A Punch in the 2-Row of a punched card. Synonymous with

Two-Punch.

3-Punch A punch in the 3-Row of a punched card. Synonymous with

Three-Punch.

4-Punch A punch in the 4-Row of a punched card. Synonymous with
Four-Punch.

5-Punch A punch in the 5-Row of a punched card. Synonymous with
Five-Punch.

6-Punch A punch in the 6-Row of a punched card. Synonymous with
Six-Punch.

7-Punch A punch in the 7-Row of a punched card. Synonymous with

Seven-Punch.

8-Punch A punch in the 8-Row of a punched card. Synonymous with
Eight-Punch.

9-Punch A punch in the 9-Row of a punched card. Synonymous with

Nine-Punch.

11-Punch A punch in the 11-Row of a punched card. Synonymous with

Eleven-Punch.

12-Punch A punch in the 12-Row of a punched card. Synonymous with
Twelve-Punch.

0-Row The horizontal Row in a punched card that receives 0-Punches.

1-Row The horizontal Row in a punched card that receives 1-Punches.

2-Row The horizontal Row in a punched card that receives 2-Punches.

3-Row The horizontal Row in a punched card that receives 3-Punches.

506

4-Row

5-Row

6-Row

7-Row

8-Row

9-Row

Glossary

The horizontal Row in a punched card that receives 4-Punches.

The horizontal Row in a punched card that recieves 5-Punches.

The horizontal Row in a punched card that receives 6-Punches.

The horizontal Row in a punched card that receives 7-Punches.

The horizontal Row in a punched card that receives 8-Punches.

The horizontal Row in a punched card that receives 9-Punches.

11-Row The horizontal Row in a punched card that receives 11-Punches.

12-Row The horizontal Row in a punched card that receives 12-Punches.

ABOUT THE AUTHOR

Mr. Mackenzie graduated from the University of Manitoba, B. Comm.

(Honors) in 1942, and B. Sc. (Honors) 1949. He took postgraduate

courses at Columbia University in 1950, 1951.

He joined the IBM Corporation in 1952, leaving in 1954. He rejoined

the IBM Corporation in 1959. He worked as a Product Planner on the

IBM 1650, 7040, 7090, System/360, and System/370. He is currently a

Senior Planner.

He has served as

Consultant to ANSI/X3L2 July 1962 to May 1963;

Member of ANSI/X3L2 May 1963 to July 1967;

Chairman of ANSI/X3.2.3 June 1963 to December 1967;

Consultant to ANSI/X3L2 July 1967 to current date.

He was a member of the USA Delegations to ISO/TC97/SC2,

ISO/TC97/SC2/WG2, ISO/T979/SC4/WGI1 from October 1963 to Octo-

ber 1971. Currently, Mr. Mackenzie is a member of ISO/TC97/SC2/WG4.

Index

A- and H-duals, 143

A and H subsets, 419

Alphabetic, 16

Alphabetic extender problem, 411

Alphabetic extenders, 241, 339

lower case, 153

Alphabetic sequence, 33

American National Standard Code for

Information Interchange, 7

American National Standards

Institute. See ANSI

American Standard Code for

Information Interchange. See

ASCII

American Standards Association. See

ASA

ANSI (American National Standards

Institute), 6

ASA (American Standards

Association), 6

ASCII (American Standard Code for

Information Interchange), 6,

27, 211, 373, 381, 389, 392, 397,

447

control characters, 243

control function requirements, 213

criteria, 234

graphic requirements, 212

sequence, 225

subsets, 252

supersets, 252

ASCII and EBCDIC, 444

ASCII-1963, 423, 435

ASCI-1965, 423, 435

ASCII-1967, 246, 428

BCD (Binary Coded Decimal), 30

for alphabetics, 32

for numerics, 30

BCDIC (BCD Interchange Code), 8,

27, 61, 66, 373, 380, 387, 389,

393

code card relationship, 136

collating sequence, 129

control characters, 152

the duals of, 87

Version 1, 87

Version 2, 88

Version 3, 92

Version 4, 99

final version, 102

BCDIC and ASCII, 395

Bemer, R. W., 61, 68, 81, 86

Bendix Prime, 273

509

510 Index

Binary Coded Decimal. See BCD

Binary Representation, 257, 300

Binary variable, 12

Bit, 12

Bit code, 18

Bit naming, 14

Bit numbering, 14

Bit numbers, 123

Bit pattern, 12

Bit sequence, 40

Bit string, 15

Bohn, W. F., 284

Boolean equations, 55

anomaly of, 295

Boolean operators, 59

Bracket test, 448

Bright, H. S., 61, 80, 86

Brown, R. M., 318

Buchholz, W., 68, 86, 128

Byte, 12

Card code, 18

96-column, 471

technical criteria, 300

Card hole pattern, 15

CCITT (Commité Consultatif

International Telegraphique

and Telephonique), 6

CCITT #2, 6, 27, 29, 61, 62, 373

CCITT #2 and ASCII, 394

CCITT #5, 7

Central Processing Unit. See CPU

Chain/train printer sets, 168
Character, 17

control, 17

graphic, 17

location in code table, 27

position in code table, 27

Clamons, E. H., 311

Code, 18

extension, 459

4-out-of-8, 61, 85

names, 27

shifted, 28, 62

Code table, 21

Coded character set, 18

Collapse logic, 52

Collating sequence, 40, 231, 387, 450

Column number, 27

Commité Consultatif International

Telegraphique and

Telephonique, 6

Compatibility, 50, 393
Continguous sequence, 33, 35

Control meaning, 17

CPU (Central Processing Unit), 369

code, 371

functional requirements, 396

Customer use, 374

Cyrillic in EBCDIC, 362

Data stream, 18

Data transmission device code, 370

Decimal arithmetic, System/360, 429

Decimal ASCII, 255, 301, 334, 433

sic transit gloria, 297

Versions 1 and 2, 281

Versions 3 and 4, 286

Decimal ASCII Prime, 288

Device Control, 377

Digit punch, 16

Digit row, 16

Duals, 38

EBCDIC (Extended BCD Interchange

Code), 8, 27, 373, 381, 389, 447

ASCII considerations, 152

and ASCII, 393

and BCDIC, 393

card code, 175

criteria, 126

the duals of, 143

and the Hollerith Card Code, 413

PL/I considerations, 150

sequence of, 129

structure of, 121

subsets, graphic, 159

48-graphic, 170

62-graphic, 160

88-graphic, 160

94-graphic, 166
Katakana, 171

PL/I, 170

technical decisions, 123, 138

EBCDIC Prime, 276

ECMA (European Computer

Manufacturers Association), 6

Editing control, 378

Embedment constraints, 401

Embedment criteria, 407

Embedment schemes, 403

Environment, 8-bit, 399

Error control, 377

Escape sequences, 461

European card codes, 284

European Computer Manufacturers

Association. See ECMA

Fieldata, 6, 27, 61, 64, 395
FIPS PUB 15, 420

Folding, 354

versus collating, 365

Formatting control, 378

FORTRAN, 90

‘*French Proposal,’ 364

German 7-Bit Code, 414

Graphic, 16

Graphic subsets, 419

Graphics, for controls, 51

‘‘preferred,’’ 169

Griffin, L. L., 318

Grouping control, 375

High-order bit test, 44€

Hole pattern, 15

Hollerith, 7, 27, 299

Hollerith Card Code, 7, 300, 337, 341,

373, 449

assumptions, 347

criteria, 349

final version, 365

objectives, 347

Hollerith, Dr. Herman, 7, 66

Information Processing Code. See

IPC

Interleaved alphabets, 227, 443, 451

Index 511

International Organization for

Standards. See ISO

IPC (Unformation Processing Code),

61, 75

ISO (nternational Organization for

Standards), 6

7-bit code, 7, 347, 412

8-bit code, 347

12-row card code, 7

ISO recommendations, 6

ISO standards, 6

Japanese Industrial Standard Code for

Information Interchange. See
JISCII

JISCII (Japanese Industrial Standard

Code for Information

Interchange), 7, 345

Katakana, 340, 341

in EBCDIC, 343

in EBCDIC, revised, 366

Katakana collating sequence, 359

Lacing, 261

Law, E.G., 68

Left and right parentheses, 240

Logical NOT, 413, 436

Logical OR, 413, 436

Magnetic tape code, 369

McLean, John B., 75, 86

Minus zero, 480

Minus, zero, and minus zero, 479
Mode control, 379

Modified Binary Representations, 263

Morenoff, Edward, 75, 86

‘*Musical-chairs’’ phenomenon, 201,

482

National use positions, 63, 238

No punches, 38

Noncontiguous sequence, 35

Null/Space/Blank problem, 265, 283
Numeric, 16

Numeric Sequence, 32

512 Index

Odell, Lawrence, 75, 86

Overpunched numerics, 269

Packed decimals, 431

Perforated Tape and Transmission

Code for Use in BCD

Environments. See PTTC/BCD

Perforated Tape and Transmission

Code for Use in EBCD

Environments. See

PTTC/EBCD

Perforated Tape and Transmission

Code for Use in 6-Bit BCD

Environments. See PTTC/6
Perforated Tape and Transmission

Code for Use in 8-Bit BCD

Environments. See PTTC/8

Period and comma, 240

Phillips, Charles H., 262

PL/I, 435

considerations, 150

subsets, 170

Plomondon, E. E., 278

Plomondon proposal, 278

Plus and minus zero problem, 268,
285

Precedence codes, 460

‘*Preferred’’ graphics, 169

PTTC (Perforated Tape and

Transmission Code), 27, 105

alphabetic extenders, 199

basic set, 193

extended set, 193

monocase and duocase sets, 191

new, 187

Version 1, 107

Version 2, 110

Version 3, 112

Version 4, 115

Version 5, 117

final version, 119

PTTC and EBCDIC, 208

PTTC/BCD (Perforated Tape and

Transmission Code for Use in

BCD Environments), 8, 210

PTTC/EBCD (Perforated Tape and
Transmission Code for Use in

EBCD Environments), 8, 210

PTTC/EBCD arithmetic, 191

PTTC/6 (Perforated Tape and
Transmission Code for Use in

6-Bit BCD Environments), 8

PTTC/8 (Perforated Tape and
Transmission Code for Use in

8-Bit BCD Environments), 8

Punched card code, 370

Representation, 20

Row number, 27

Separability requirement, 443

Separate alphabets, 226

Shifted codes, 214

Signed numerics, 35, 381, 451

Small card, criteria, 471
Smith, H. J., Jr., 68

Space character, 38, 222

Special, 16

Standards, 1

anticipatory, 3

company, 1

economic considerations, 5

names of, 6

public, 1

Standards committee, 1

Stretch code, 61, 67

Substitution, 459

Synchronization control, 379

Telephone directory problem, 451

Text/360, 463
Three tiers, 472

Tobin, J. L., 310, 318

Transformation algorithm, 404

Translate and test, 448

Translation simplicity, 271, 389, 481

Typewriter arithmetic, 191

‘*U.S.A. Proposal,’’ 364

USASCII (United States of America

Standard Code for Information

Interchange), 7

USASCI-8, 431

USASI (United States of America

Standards Institute), 6

United States of America Standard

Code for Information

Interchange. See USASCII

United States of America Standards

Institute. See USASI —

Index 513

Williams, F. A., 68

Zone punch, 16

Zone row, 16

4-out-of-8 Code, 61, 85

8-Bit Environment, 399

96-Column Card Code, 471

	Foreword
	Preface
	Contents
	1. The Standards Process
	2. Terms and Concepts
	3. Early Codes
	4. The Duals of BCDIC
	5. The Size of BCDIC
	6. The Size and Structure of PTTC
	7. The Structure of EBCDIC
	8. The Sequence of EBCDIC
	9. The Duals of EBCDIC
	10. The Graphics Subsets of EBCDIC
	11. The Card Code of EBCDIC
	12. The New PTTC
	13. The Size and Structure of ASCII
	14. The Sequence of ASCII
	15. Which Bit First?
	16. Decimal ASCII
	17. Which Hollerith?
	18. Katakana and the Hollerith Code
	19. What Is a CPU Code?
	20. ASCII in an 8-Bit Interchange Environment
	21. The Alphabetic Extender Problem
	22. Graphic Subsets for the Government
	23. Which ASCII?
	24. Logical OR, Logical NOT
	25. A Comparison of Contiguous, Noncontiguous, and Interleaved Alphabets
	26. Code Extension and Examples
	27. The 96-Column Card Code
	Glossary
	About the Author
	Index

