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Foreword

The field of systems programmmg pnmarlly grew out of the efforts of
many programmers and managers whose creative energy went into pro-
ducing practical, utilitarian systems programs needed by the rapidly grow-
ing computer industry. Programming was practiced as an art where each
programmer invented his own solutions to problems with little guidance
beyond that provided by his immediate associates. In 1968 the late
Ascher Opler, then at IBM, recognized that it was ‘necessary to bring
programming knowledge together in a form that would be accessible to all
systems programmers. Surveying the state of the art, he decided that
enough useful material existed to justify a significant publication effort.
On his recommendation, IBM decided to sponsor The Systems Pro-
gramming Series as a long term project to collect, organize, and publish
principles and techniques that would have lasting value throughout the
industry.

The Series consists of an open-ended collection of text-reference
books. The contents of each book represent the individual author’s view
of the subject area and do not necessarily reflect the views of the IBM
Corporation. Each is organized for course use but is detailed enough for
reference. Further, the Series is organized in three levels: broad introduc-
tory material in the foundation volumes, more specialized material in the
software volumes, and very specialized theory in the computer science
volumes. As such, the Series meets the needs of the novice,.the experi-
enced programmer, and the computer scientist.

The Editorial Board






Preface

The word ‘‘code’ is a word of broad meaning and application. Legal
codes, fire safety codes, building construction codes, a code of ethics,
and so on, exemplify the use of the word in some of its dictionary
meanings, ‘‘a system of rules or regulations on any subject.’’ A dictionary
meaning that comes closer to the context of this book is ‘‘a system of
signals.”’

From early beginnings, humans have used many methods to convey
information over a distance. Indians (of North America) used a set of
smoke signals for sending messages. A semaphore, a vertical post with
one or more arms moving in a vertical plane, was and is used to send
messages over line-of-sight distances.

The method that comes close to the meaning used in this book is the
Morse Code, an alphabet in which the letters are expressed as dots and
dashes. This method can be used visibly with short and long flashes of
light, audibly with short and long bursts of sound, electrically with short
and long pulses of current, and so on. The interesting aspect of the Morse
Code is that it is based on two possible states—dot or dash, short or
long, and so on—that is to say, it is binary in nature. Standing aside from
the spaces between dots and dashes, and between letters, the Morse
Code may be regarded as a binary code.

Analogously to the Morse Code, the set of alphabetic, numeric and
special (such as period, comma, plus sign, minus sign) symbols processed
by a computer are associated with a set of particular binary representa-
tions. Such a set of graphic symbols and binary representations is called
a coded character set, or, more familiarly, a code.
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The binary aspect of a coded character set stems naturally from the
binary, or two-state, nature of many mechanisms, components, or proc-
esses of a computer. A switch is on or off, a relay is normal or transferred,
a vacuum tube is or is not passing current, a condenser is or is not
charged, a magnetic pole is north or south, a voltage is positive or
negative or is equal to or less than a reference voltage, and so on. Relays,
vacuum tubes, transistors, magnetic cores, diodes, as used in computer
circuits, are binary in nature.

In the decimal number system, there are ten digits—0, 1, 2, 3, 4, 5,
6, 7, 8, 9. In the binary number system, there are two digits—0 and 1.
Very early in the history of computing, the words *‘binary digit”’ were
contracted to the word “‘bit’’; “‘a bit may be 0, or 1,”” means ‘‘a binary
digit may be 0 or 1.”” A discrete grouping of contiguous bits, 1001011 for
example, is called a bit pattern.

A coded character set, or code, is a set of meanings associated with
a set of bit patterns. For a particular code, the number of bits is generally
a fixed number; all bit patterns in a particular code have five bits, or all
bit patterns in a particular code have six bits, and so on. This aspect of
a fixed number of bits in the bit patterns of a particular code is frequently
used to characterize a code as a 5-bit code, or as a 6-bit code, and so. on.
In this respect, the Morse Code, which has different numbers of bits for
different letters, although it continues to be used for sending messages,
was deemed not to be satisfactory for computing purposes.

The number of different possible bit patterns in a particular code
depends on the fixed number of bits of that code. In consequence, the
number of different possible meanings that may be associated on a one-
to-one basis with the different bit patterns of a code depends on the
number of bits of a code. Reasoning in the opposite direction suggests
that the number of different meanings required in the code of a computer
may be a determining factor in the number of bits in a code.

Perhaps the most famous code in the history of computing was that
invented by Dr. Herman Hollerith of the United States Census Bureau
in the late nineteenth century. His code was a decimal code based on the
position of a punched hole across a paper card—ten digits; ten punching
positions. His code was actually a twelve-position code—ten positions
for digits, two positions for other purposes (positive or negative, for
example). Today, more than seven decades later, Dr. Hollerith’s twelve-
position code is fundamental in the punched card code used by
many/most computers.

A number of different codes have evolved in the computing and data
communication fields: different codes evolved because different require-
ments emerged as computing and data communication evolved. Many
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factors shaped the different codes. This book describes those factors and
how they either led to or mandated decisions in the development of some
codes. This book is not a definitive book on all computer or data com-
munication codes. Discussion is limited to those codes which have
evolved, have been developed, or have been used in the author’s personal
experience.

Mainly, the factors discussed are of a technical nature, but some of
the factors are of an economic or cost nature. For example, in computers,
bit patterns are stored in registers. In early computers, registers were
implemented in vacuum-tube technology. The number of bits to be stored
in a register bore a relation to the number of tubes needed in the register-—
8-bit registers required more tubes than 6-bit registers. The manufacturing
cost of a register was related to the number of tubes in the register. In
this sense, a 6-bit code was considered to be more ‘‘economical’’ than
an 8-bit code.

Two processes have shaped the evolution and development of codes.
One process is the process of developing computing and communication
products and systems, a process of individual manufacturers. The other
process is the developing of standards for the data processing industry,
a process of both manufacturers and users, in concert.

With respect to the first process, during the 1960s, two great tech-
nological evolutions were occurring in the data processing field. On one
hand, computing systems were evolving from an architecture of six bits
to an architecture of eight bits. (Many people consider this to have been
more of a revolution than an evolution.) On the other hand, communi-
cations systems were evolving from five-bit codes to six-, seven-, and
eight-bit codes.

With respect to the second process, during the 1960s, there was a
quite remarkable development of standards in the field of data processing.
One particular area of standardization was the area of coded character
sets and their representation on physical media—magnetic tape, paper
tape, punched cards, data transmission, tape cassettes, and so on. This
standardization effort was exerted on both the national and international
level. In the United States alone during the 1960s, some twenty standards
in this area were started, and most were completed.

As might be supposed, the interaction between these two processes
was considerable. One characteristic of codes is very interesting. In the
data processing industry over the last twenty years, older computing and
communications products and systems have not infrequently been re-
placed with newer, more economically efficient products and systems.
But old codes do not die, nor do they fade away. A 5-bit telegraph
communications code standardized in 1931 is still in wide use although
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a 7-bit communications code was standardized in 1963, and many prod-
ucts implementing the 7-bit code are available. A 6-bit computer code
developed in 1962 continues in wide use, although 8-bit computers with
an 8-bit computing code have largely replaced the 6-bit computers. Codes
have the characteristic of continuity and long-life expectancy due to
user’s application demands.

A problem that has to be faced in a technical book such as this is
the existence of the specialized jargon used by professionals in the sub-
ject. Words or terms that make up the jargon came from two sources.
The first source is words with a general meaning or meanings in the
English language that are given a very specialized meaning in the jargon.
Such specialized meanings are not in common use and will not be found
in common dictionaries. An example is the word ‘‘track.’’ In railroading,
““track’’ means one thing; in fur trapping, it means something else; and
in horse racing, it means yet something else. These meanings will likely
be found in common dictionaries. But in the field of magnetic tape en-
gineering, ‘‘track’’ has a meaning most unlikely to be found in common
dictionaries, although it is likely to be found in technical dictionaries for
the field of data processing. The second source of jargon is new words
or terms invented by the professionals. An example here is ‘‘bit.”’ The
meaning ‘‘binary digit,”’ from which ‘‘bit’”’ was contracted, is not likely
to be found in common dictionaries, although its meaning is well known
in the data processing field.

Technical jargon must be used in a book on a technical subject.
Early in this book some terms and concepts very necessary to an under-
standing of the field of coded character sets are defined and explained;
the glossary of this book is devoted to a comprehensive set of definitions
of terms.

Just as letters, digits, and special symbols make up a language in
which humans intercommunicate, the letters, digits, and special symbols
with associated bit patterns of a coded character set make up the language
in which information is passed, interchanged, and processed by com-
puters. A complete knowledge of the art of computing, which includes
both the manufacture and use of computers, requires a knowledge of the
art of coded character sets. This book describes some of that art.

The author would like to express his appreciation to Mrs. Helena
Russo, Mrs. Janet Palome, and Mrs. Betty Birdsall, who did the lengthy
and frequently very difficult typing of the manuscript of this book.

Poughkeepsie, New York C.E.M.
January 1980
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The
Standards
Process

Most of the codes discussed in this book have been developed in the
context of developing data processing standards of one kind or another.
These standards may be categorized as being either public or company
standards. Public standards are those developed by governmental,
national, or international organizations. Company standards are those de-
veloped by a company. Many company standards are well known outside
the developing company, and in many instances are used by companies or
organizations other than the developing company. Although the discus-
sion of company standards is intended to be of a general nature, it does
draw primarily on the author’s experience in the IBM Corporation.*
Also, most of the national standards discussed in this book are those
developed in the United States of America, again by reason of the
author’s familiarity. Equivalent national standards have been developed
in many other countries.

1.1 THE PUBLIC COMMITTEE PROCESS

The suggestion to standardize in a particular subject area may originate
anywhere; an individual, a company, a government agency/department, a
society/association, a standards committee, and so on.

Public standards are developed by committees—committees estab-
lished specifically for the process of developing the standard, or stan-
dards, and staffed with professionals from the field of the subject.

* The views expressed in this book are those of the author and not necessarily
those of the IBM Corporation.
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Generally speaking, the organization is as follows. At the top will be an
administrative body, whose functions are to establish the procedural rules
for developing standards, to monitor adherence to these rules, to deter-
mine that any particular standard is not in technical conflict with other
standards, and to publish and distribute the standards. In the case of
national standards, the administrative body will generally be the national
standards institute or association of the country.

Reporting to the administrative body will be one or more managerial
committees, each dedicated to a particular subject area of standardiza-
tion. The area of standardization assigned to the managerial committee 1s
generally divided into subareas. Technical subcommittees are established
to develop standards for the subareas. One main function of such mana-
gerial committees is to direct and coordinate the activities of technical
subcommittees who do the actual work of developing and drafting the
standards. The other main function is to assess the economic (and
sometimes social) implications of draft standards.

Usually some organization will serve as secretariat for the committee
and subcommittees. The secretariat distributes to the members, and keeps
on file, the minutes, papers, and other correspondence of the committee
and subcommittees.

The committees and subcommittees function very similarly. There
will be a chairman, usually a vice-chairman (sometimes called chairperson
and vice-chairperson today), and a secretary. Minutes of the meetings are
kept. Members submit papers of a technical, economic, or social nature.
The papers, and the subject matter of the standard(s), are discussed at
meetings. Decisions on points of issue and points of agreement are taken
by votes or ballots, under various rules of majority, consensus, or unanim-
ity. The meetings are conducted under parliamentary rules of procedure.
Draft standards are (generally) subjected to some form of public review
before final approval. '

In the case of national managerial committees, members are com-
panies, governmental units, and professional societies or associations, In
the case of national technical subcommittees, members are professionals
knowledgeable in the subject area of the standard(s). In the case of
international committees and subcommittees, members are countries,
with actual attendees at meetings being delegations selected by the
countries. Not unexpectedly, the individuals on country delegations are
usually selected from the members of national committees and subcom-
mittees.

1.2 THE COMPANY PROCESS

Company standards are generally developed by the same procedures and
methods the company uses to manage itself and to develop its products.
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1.3 DECISION PROCESSES

Usually, national and international standards are derived from and based
on well-established industrial practices or techniques. The task of a
standards committee developing a standard in such instances is to de-
scribe completely, consistently, and unambiguously what already exists,
removing or smoothing any incompletenesses, inconsistencies, and am-
biguities.

In some cases, standards committees foresee the need to develop a
standard where practices or techniques are not well established, or do not
exist at all. Such standards are called anticipatory standards. The main
problem for standards committees in such instances is to try to guess or
anticipate what the needs of users will be. These guesses are always
speculative and judgmental, and frequently controversial. Sometimes, the
most controversial aspect of such guesses is whether a standard is actually
needed before users build up experience, practices, and techniques over a
period of time and a range of applications.

The development processes for public and company standards are in
some respects the same. A group of professionals knowledgeable in the
subject area is called together, a chairman or coordinator is appointed,
and the group is charged with the responsibility to develop a standard for
the subject area. The group reviews the subject area, reviews relevant
technical facts, and drafts the standard.

Inevitably, on one or more aspects of the standard, technical alterna-
tives will emerge, and decisions for one of the alternatives must be made.
If, after review of the alternatives, the group is unanimous in selection of
a particular one, the matter is resolved. But if the group is not unanimous
in opinion, a decision must be made. It is in respect of such technical
decisions that the process in a company is quite different from the process
of a standards committee.

In the company, if the group is not unanimous, a management
decision must be made. It may be made by the group coordinator. Or it
may be referred to a higher level of management or to a series of
management levels. But in all cases, the decision will be made by a single
person. It is made after that person reviews the alternatives, and the pros
and cons, and makes a decision based on personal judgment.

In a public standards committee, the decision is not made by a single
person. It is made by taking a vote or ballot, the outcome of the voting
process being determined by pre-established rules of majority or consen-
sus for the particular committee. That is to say, the decision is a reflection
of the combined personal judgments of all committee members, each
committee member’s judgment being given an equal weight. In theory, it
should be possible to follow the company approach of letting the most
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knowledgeable person on the committee make the decision. In practice, it
is not possible to determine who of the committee members is the most
knowledgeable. The equal-weight voting approach is the only practical
and workable one for a committee.

In a particular situation when the pros and cons of alternatives are
based purely on technical aspects, the committee is not likely to have
difficulty in arriving at a decision. The decision can be made purely on
technical merit, and it is simply a question of determining the relative
technical merits of the alternatives. The professionals on the committee
are very well qualified to make such determinations. '

An interesting situation that sometimes arises, (more likely in the
development of an anticipatory standard than in the standardization of an
established industry practice) is that two technical alternatives face the
committee, and each alternative would be equally satisfactory. In such
situations, the act of making the decision is more important than the
technical matter of the decision. For example, standardization in the area
of data communications eventually faced the question of order of trans-
mission of the bits of a byte—should transmission be low-order bit first or
high-order bit first? A priori, there were arguments in favor of each of the
alternatives, and the arguments were clearly of equal technical weight. It
did not matter, a priori, which choice was made, but it was necessary to
make the choice.

A posteriori, once the choice was made, and implementations
emerged, it did matter, because then the fact of implementation for the
particular choice was a weighty argument.

Intuitively, it would seem that, for a particular subject area, one
standard, which is to say one technique or one practice, best serves the
interests of the data processing industry. Thus, if a card code is to be
standardized, only one card code (whatever it may be) should be standard-
ized. Two card codes would result in conflicts and confusions. Many
standards associations, as a cardinal principle, forbid the approval of
conflicting standards in any area.

But there are situations where more than one standard, a family of
standards, is a viable solution, each member of the family serving a
particular purpose in the general subject area. For example, in the area of
data transmission, standards specifying different speeds or rates of trans-
mission have been developed. In the area of magnetic tape, standards
specifying different densities of recording have been developed. Such
families of standards reflect the practical economics that exist. Thus, in
general, the lower the density of recording, the lower the cost of the
magnetic tape drive. A low density of recording may be quite satisfactory
in some data processing applications, and then the user will appreciate the
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lower cost of tape drives. Other data processing applications may require
a higher density of recording, and for such situations, the user accepts the
higher cost of tape drives.

1.4 ECONOMIC CONSIDERATIONS

Frequently, factors other than technical, such as economic and sometimes
social, are involved, and then the committee’s decision process becomes
much more difficult. A standard committee, when developing standards in
a particular subject area, may face a number of possible situations.

Situation 1. There is a single, uniform practice in the subject area.

Situation 2. There is essentially a single practice in the subject area, but
with slight individual variations.

Situation 3. There are a number of different practices in the area, with
much in common but with appreciable differences.

Situation 4. There are a number of different practices in the subject area,
with little if anything in common.

Situation 1 is the simplest for the committee. All that is needed is to
draft a standard which accurately describes the established practice. Of
course, there may be some question on the accuracy of the description,
but the committee members are well qualified to resolve just such
questions.

Situations 2, 3, and 4 become increasingly more difficult for the
committee members to resolve. The difficulty is the same kind for these
three situations, but different in degree. The difficulty is that the practices
under review are in use in the industry, and the final decision of the
standard will make some current practices standard, while making other
current practices nonstandard. Then, if those who are using the just-
defined nonstandard practice want to use the just-defined standard prac-
tice, they will have to change what they are doing, or the way they are
doing it. Such changes will generally involve cost to the user.

In such situations, then, economic as well as technical factors affect
the decision process. Indeed, there are situations where the economic
factors are more, sometimes much more, significant than the technical
factors. And, while the technical factors can be determined with some
degree of precision, it will generally be difficult or impossible to deter-
mine the economic factors with any degree of precision.
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1.5 NAMES OF STANDARDS

National and international standards take their titles (which lead to their
names) from the organizations under which they were developed, and to
some extent, from the purpose for which the standard was developed.
Company standards often take their titles from the purpose for which the
code was developed (the Paper Tape and Transmission Code, for
example).

The international organization responsible for standards in the data
processing field (as well as in many other fields) is the International
Organization for Standardization (ISO). Until recently, ‘“‘standards” de-
veloped under ISO were not called “‘standards,” but were called “Recom-
mendations.” The intent of such documents was vested in the name,
“Recommendation.” It was recommended when national standards
bodies developed their own national standards that such standards be
based on the ISO Recommendations. Recently, ISO decided to call their
documents ISO Standards in name as well as in fact. Another interna-
tional organization, responsible for all matters pertaining to worldwide
telegraph and telephone communications, is the International Telegraph
and Telephone Consultative Committee. Its acronym, CCITT, comes
from the equivalent French name for the organization (Commité Consul-
tatif International Telegraphique et Telephonique). A European organi-
zation that develops data processing standards is the European Computer
Manufacturers Association (ECMA).

In the United States, the national standards organization has gone
through a number of changes of name. Organized in 1918 as the
American Engineering Standards Committee, it became the American
Standards Association (ASA) in 1928. In 1966, it was re-named the
United States of America Standards Institute (USASI) and in 1969 it
took its present name, the American National Standards Institute (ANSI).

A 5-bit code was standardized in 1931 by CCITT for telegraph
communications purposes. It is designated CCITT #2, and is still in
worldwide use.

The U.S. Army developed a 7-bit code for data communications that
became a U.S. Military Standard in 1960. Its developers coined for it the
name FIELDATA.

A 7-bit code described in this book has been standardized by a
number of national and international standards organizations:

a) In 1963, under ASA, it became the American Standard Code for
Information Interchange, acronym ASCII (pronounced 'ass-key).
When ASA became USASI in 1966, the code was called the United
States of America Standard Code for Information Interchange, with
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b)

d)

e)
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acronym USASCII (pronounced you-'sass-key). However, the previ-
ous acronym ASCII, prominent in the literature, was officially desig-
nated as an acceptable alternative acronym. When USASI became
ANSI in 1969, the code was called the American National Standard
for Information Interchange. Needless to say ANSCII was proposed
as a new acronym, but the standards committee rejected further
name changes, and ANSCII as an acronym was rejected. ASCII was
then designated as the preferable acronym. (USASCII is an accepta-
ble alternative acronym, but has fallen into disuse.)

In 1967, it was incorporated into the ECMA Standard for a 7-Bit
Input/Output Character Code, ECMA-6.

In 1967, it was incorporated into an ISO Recommendation, the 6
and 7-Bit Coded Character Set for Information Processing Inter-
change. In that context, it is referred to as the ISO 7-bit code.

In 1969, it was incorporated into the Japanese Industrial Standard
Code for Information Interchange (JISCII).

In 1968, it was incorporated into a CCITT standard designated
CCITT #5.

These 7-bit codes are essentially the same. They differ in graphic symbols
which reflect different national requirements. This similarity is not coinci-
dental; it is intentional—the result of professionals in different countries
working together to achieve that result.

The original twelve character (ten numerics and two special symbols)

code invented by Dr. Herman Hollerith in the late nineteenth century
grew to include alphabetics and special symbols. It also was incorporated
into national and international standards, specifying either 128 or 256
characters:

a)

b)

d)

In 1969, 128 characters were incorporated into the American Na-
tional Standard Hollerith Punched Card Code. This standard took its
name from the original inventor of the card code. It is now referred
to as the Hollerith Card Code.

In 1970, 128 characters were incorporated into an ISO Recommen-
dation, Representation of ISO 7-Bit Coded Character Set on 12-Row
Punched Cards. It is referred to as the ISO 12-Row Card Code.

In 1970, the American Standard was extended to incorporate 256
characters, retaining the same name.

In 1971, another ISO Recommendation incorporated 256 characters,
Representation of 8-Bit Patterns on 12-Row Punched Card. It also is
referred to as the ISO 12-Row Card code.
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Items (a) and (b) are identical; items (c) and (d) are identical. The 128
characters of (a) and (b) are a subset of the 256 characters of (c) and (d).
As with the 7-bit code standards, this is intentional, not coincidental.

Four codes developed in IBM are discussed in this book. Two of
these codes (described in more detail in Chapter 2) were named in
consequence of a particular aspect of codes; namely, that the decimal
numbers 0 through 9, when represented in a binary code, have particular
binary bit-patterns which are called binary coded decimal in the litera-
ture. The acronym, BCD, is well understood in the data processing
industry to characterize a code whose decimal numbers are in the binary
coded decimal representation.

The first code developed in IBM, formalized in 1962, is a 6-bit code
called the BCD Interchange Code, with acronym BCDIC (pronounced
bee-see-dick). An 8-bit code adopted within IBM in 1964 is called the
Extended BCD Interchange Code with acronym EBCDIC (pronounced
ebb-see-dick).

Two other IBM standard codes were developed for use in perforated
tape and transmission products. These 6-bit codes were originally named
Perforated Tape and Transmission Code for use in 6-Bit BCD Environ-
ments, with acronym PTTC/6, and Perforated Tape and Transmission
Code for use in 8-Bit BCD Environments, with acronym PTTC/8. These
names turned out to be confusing. People thought that PTTC/6 meant
that it was a 6-bit code, and PTTC/8 meant it was an 8-bit code. The
former was correct, the latter was incorrect. Therefore, PTTC/6 was
renamed the Perforated Tape and Transmission Code for use in BCDIC
Environments, with acronym PTTC/BCD, and PTTC/8 was renamed the
Perforated Tape and Transmission Code for use in EBCD Environments,
with acronym PTTC/EBCD. Whether the confusion was reduced is moot,
but the second set of names has remained.

Reference is made in this book to various American National Standards
and ISO Recommendations:

1. The American National Standard Code for Information Interchange,
X3.4-1968, referred to in this book as ASCII.

2. ISO Recommendation, 6 and 7-Bit Coded Character Sets for Infor-
mation Processing Interchange, ISO/R646-1967, referred to in this
book as the ISO 7-Bit code.

3. The American National Standard Bit Sequencing of the American
National Standard Code for Information Interchange in Serial-by-Bit
Data Transmission, X3.15-1966.

4. The American National Standard Hollerith Punched Card Code
X3.26-1970, referred to in this book as the Hollerith Card Code.
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5. ISO Recommendation, ISO 7-Bit Coded Character Set on 12-Row
Punched Cards, ISO/R1679-1970, referred to in this book as the
ISO 12-Row Card code.

6. ISO Recommendation, Representation of 8-Bit Patterns on 12-Row
Punched cards, ISO/R2021-1971, referred to in this book as the ISO
12-Row Card Code.

Copies of these American National Standards and ISO Recommendations
are available from the American National Standards Institute, 1430
Broadway, New York, New York 10018.

The 7-bit bit codes of items (1) and (2) above are similar. When
there is no need to distinguish between them, they are referred to
generically as the 7-Bit Code in this book. When distinction is necessary,
one is referred to as ASCII, the other as the ISO 7-Bit Code.

The 256-character card codes of items (2) and (5) above are equival-
ent. When it is necessary to distinguish between them, one is referred to
as the Hollerith Card Code, the other as the ISO 12-Row Card Code.






Terms
and
Concepts

There are some basic terms which should be understood at the onset of
reading this book. These are grouped in this chapter for convenience. (A
lengthy set of terms and definitions is found in the Glossary.)

A fundamental concept involved in data processing products is the

binary, or two-state, nature of many mechanisms, devices, and processes:

A relay is transferred or normal.

A switch is on or off.

A condenser is charged or discharged.

A light is on or off.

A diode is, or is not, conducting current.

A vacuum tube is, or is not, conducting current.
A magnetic pole is North or South.

A punching position on a paper card or on paper tape is punched or
unpunched; which is to say, in a punching position, a hole is present
or absent.

At a point in an electrical circuit, the voltage is positive or negative,
or is zero or negative, or is zero or positive, or is high or low, and so
on.

The decimal number system has the familiar ten digits 0, 1, 2, 3, 4, 5,

6, 7, 8, 9. The binary number system has two digits, 0 and 1. The
representation of physical, electrical, or magnetic two-state situations
such as those above by binary digits is the analytic process of representing

1"
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a physical situation by a mathematical model. In the literature, the term
“binary digit”” soon came to be contracted to “bit.”

21 BIT
A bit is a binary digit, either 0 or 1.

2.2 BIT PATTERN
A bit pattern is an ordered set of bits, usually of a fixed length.

Example 1 101011, a bit pattern of 6 bits
Example 2 1100011, a bit pattern of 7 bits
Example 3 10011100, a bit pattern of 8 bits

A bit pattern of n bits is called an n-bit bit pattern. Thus we speak of
6-bit bit patterns, 7-bit bit patterns, 8-bit bit patterns, and so on.

23 BYTE

A byte is a bit pattern of fixed length. Thus we speak of 8-bit bytes, 6-bit
bytes, and so on.

2.4 BINARY VARIABLE

A binary variable is a variable which can take two possible values or
represent two possible states.

Three major conventions for representing bit patterns of binary
variables have developed.

=  The first convention is the obvious one, a string of Os and 1s; thus
10100, 1001111, 10010101, and so on.

"  The second convention is based on the realization that, for a binary
variable, call it A, we have either A or the inverse of A; we have
either A or “not A.” The convention is to represent “not A’ (or the
inverse of A) as A (A overlined). Thus for a set of three binary
variables, A, B, C, we may have eight possible states:

Example 4
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ABC
ABC
ABC
ABC
ABC
ABC

Binary Variable 13

®m  The third convention is based on a presence/absence concept and the
naming of the specific bit positions within a bit pattern.

Example 5

The four bit positions of a 4-bit bit pattern are named 8, 4, 2, 1; these are
the decimal equivalents of 23, 2%, 2", 2°, respectively. Then the sixteen
4-bit bit patterns are represented as in Fig. 2.1, sometimes in a columnar
form as at the left and sometimes in a compact form as at the right.

W= O

NN b

8
9
10
11

12
13
14
15

Fig. 2.1 8421 notation

814 |21
No bits
1 1
2 2
211 21
4 4
4 1 41
4 |2 42
4 121 421
8 8
8 1 81
8 2 82
8 211 821
81 4 84
8 | 4 1 841
8|4 |2 842
814 121 8421

Under the second convention, A and A are equated to 1 and 0,
respectively. Under the third convention, presence and absence are
equated to 1 and 0, respectively.
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Example 6

Figure 2.2 shows the sixteen possible states of a 4-bit bit pattern rep-
resented under the three conventions, using A, B, C, D as variables for
the second convention.

Convention 1 Convention 2 Convention 3
0000 ABCD No bits
0001 ABCD 1
0010 ABCD 2
0011 ABCD 21
0100 ABCD 4
0101 ABCD 41
0110 ABCD 42
0111 ABCD 421
1000 ABCD 8
1001 ABCD 81
1010 ABCD 82
1011 ABCD 821
1100 ABCD 84
1101 ABCD 841
1110 ABCD 842
1111 ABCD 8421

Fig. 22 Conventions for binary notation

The first and second conventions lead to a uniform, fixed-length represen-
tation. The third convention leads to a compact, variable-length represen-
tation.

25 BIT NUMBERING AND BIT NAMING

For purposes of reference, the bit positions of the bit patterns of a code
are numbered, or named:

=  For a 7-bit code (Fig. 2.26) the seven bits are numbered b7, b6, b3,
b4, b3, b2, bl, from high- to low-order significance.

® For an 8-bit representation based on that 7-bit code (Fig. 2.27) the
eight bits are numbered a8, a7, a6, a5, a4, a3, a2, al, from high- to
low-order significance.

= For the code table of Fig. 2.28, which is an 8-bit code (structured
differently from the 8-bit representation in Fig. 2.27), the eight bits
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are numbered 0, 1, 2, 3, 4, 5, 6, 7, from high- to low-order
significance.

v  For 6-bit codes (Fig. 2.29), the six bits are named B, A, 8, 4, 2, 1,
from high- to low-order significance. This bit-naming convention for
the four low-order bits is based on the 8421 convention previously
described.

2.6 BIT STRING

A bit string is a contiguous sequence of bits, usually not a fixed length. In
data processing applications, bit patterns of variable length are generally
called bit strings.

2.7 CARD HOLE PATTERNS

The twelve vertical punching rows of a punched card are called the
12-row, the 11-row, the O-row, the 1-row,...,the 9-row (see Fig. 2.3).
The vertical punching rows of a card give their names to hole punches in
those rows. Thus a hole punch in the 12-row is called a 12-punch, a hole
punch in the 11-row is called an 11-punch, a hole punch in the 0-row is
called a O-punch, and so on. (The numeric designators may also be
spelled out, twelve-row, eleven-row, twelve-punch, eleven-punch, etc.)

/ e semss Card rows (horizontal) meee—

12-row R
11-row
O-row f
1-row
2-row
3-row 3 Card columns {vertical)
4-row
B-row
6-row
7-row v
8-row
9-row _

[ e o v o e s o s e Y e Y

Fig. 23 Punched card

2.7.1 Hole Pattern

A hole pattern is a set of punched holes within a single vertical punching
column of a card.

In documents, a hole pattern is given as the punches separated by
hyphens. Thus 12-8-2, 12-11-3, 12-11-0-8-7 and so on.
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2.8 ZONE ROW, ZONE PUNCH

The 12-row and 11-row are called zone rows. The 12-punch and 11-
punch are called zone punches. The 9-row and O-row are sometimes
called zone rows, sometimes digit rows (Section 2.9 below). The 9-punch
and O-punch are sometimes called zone punches, sometimes digit punches
(Section 2.9 below).

29 DIGIT ROW, DIGIT PUNCH

The 1-row, 2-row, 3-row, 4-row, 5-row, 6-row, 7-row, 8-row are called
digit rows. The 1-punch, 2-punch, 3-punch, 4-punch, 5-punch, 6-punch,
7-punch, 8-punch are called digit punches. The 9-row and 0O-row are
sometimes called digit rows, sometimes zone rows (Section 2.8 above).
The 9-punch and O-punch are sometimes called digit punches, sometimes
row punches (Section 2.8 above).

2.10 GRAPHIC

A graphic is a particular shape, printed, typed, or displayed, that repre-
sents an alphabetic, numeric, or special symbol.

In documents, books, magazines, newspapers, for example, we find
three kinds of symbols; letters, numbers, and special symbols used for
punctuation, mathematical operations, editorial inserts, and the like.
These symbols are called graphic symbols; more commonly, simply
graphics.

2.10.1 Alphabetic

An alphabetic is a letter in the alphabet of a country. Generally taken to
mean a letter of the Latin alphabet but sometimes particularized as, for
example, Latin alphabetic, Cyrillic alphabetic, Greek alphabetic, Hebraic
alphabetic.

2.10.2 Numeric
A numeric is one of the ten decimal digits 0, 1, 2, 3,4, 5,6, 7, 8, 9.

2.10.3 Special

A special is a graphic symbol indicating a specific purpose.

Special symbols are frequently multi-purpose. Thus “.”” may be a
period or a decimal point; “-” may be a hyphen or a minus sign, or a
dash.
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Example 7
some specials commonly found on data processing products are
21 < >+
=|"—@# % &$¢{}[]

2.11 CONTROL MEANING

Control meaning refers to a particular function or operation that controls
hardware or software products of systems. Control functions come in
many categories. Some of the categories are as follows:

Format effectors. Functions to control the formatting of data on a printed
page, or on a display.

Information separators. Functions to separate and block data.

Device controls. Functions to control a device (as “On” or “Off”’) or to
control actions within a device.

Transmission controls. Functions to control intercommunications on data
transmission lines.

Mode change. Functions to set or change some particular mode of
operation.

Miscellaneous. Functions which do not fall into the above categories.

2.12 CHARACTER

A character is a specific bit pattern and an assigned meaning.

2.12.1 Graphic Character

A graphic character is a specific bit pattern and an assigned graphic
meaning.

In order that data processing equipment may process graphic infor-
mation, specific bit patterns must be assigned to specific graphic mean-
ings. Thus if 100 0001 is assigned to graphic meaning of the alphabetic A,
for example, the electrical circuits of a printer will analyze bit patterns, and
when it detects 100 0001, the letter A will be printed.

2.12.2 Control Character

A control character is a specific bit pattern and an assigned control
meaning.
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Data processing products perform certain control functions. For
example, a typewriter performs the operations of spacing, backspacing,
up shifting, down shifting, tabulation, carriage return. If the typewriter is
to operate as a printer, certain bit patterns must be assigned the meaning
of control functions.

2.13 DATA STREAM

A data stream is a variable-length string of bit patterns, representing the
data of a data processing application.

2.14 CODED CHARACTER SET—CODE

A coded character set is a specific set of bit patterns or hole patterns to
which both specific graphic and control meanings have been assigned.

2.14.1 Bit Code

A bit code is a set of bit patterns to which either graphic or control
meanings have been assigned.

A code byte in general can be of variable length. The Morse code,
for example, has variable-length code bytes. However, codes used in data
processing systems invariably have fixed-length bytes.

The code byte prescribes the number of different possible bit pat-
terns in a code—the code byte is generally used to characterize a code.
Thus we speak of a 5-bit code, or a 6-bit code, or a 7-bit code, and so on.
A n-bit code has 2" possible different bit patterns. A 4-bit code has
2*=16 possible different bit patterns. A 5-bit code has 2° =32 possible
different bit patterns. A 6-bit code has 2°=64 possible different bit
patterns. And so on.

Generally, the number of different possible bit patterns of a code
prescribes also the number of possible characters in a code. Thus, a 6-bit
code has 64 characters, and an 8-bit code has 256 characters. A 6-bit
code used in the early days of data processing is shown in Fig. 2.4. It is to
be noted that graphic meanings only are assigned and that not all bit
patterns have an assigned meaning. This early 6-bit code consisted of 48
characters (64 would be possible)—the Space character, 10 numerics, 26
alphabetics, and 11 specials.

Three concepts (to be explained)—duals, character sequences, and
shifted codes—allow the assignment of more meanings to a code than the
total possible number of different bit patterns.

2.14.2 Card Code

A card code is a set of hole patterns to which graphic or control meanings
have been assigned.
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Bit pattern Graphic Bit pattern Graphic
No bits Space B - Hyphen, minus
1 1 B1 J
2 2 B2 K
21 3 B21 L
4 4 B4 M
41 5 B41 N
42 6 B42 0]

421 7 B421 P

8 8 B8 Q

81 9 B81 R

82 0 B&2

821 # Number sign B821 $ Dollar sign
84 @ At sign B84 * Asterisk
841 B841

842 B842

8421 B8421

A BA & Ampersand
Al / Slash BALl A

A2 S BA2 B
A21 T BA21 C
A4 U BA4 D
A41 A% BA41 E
A42 W BA42 F
A421 X BA421 F
A8 Y BAS H
AS81 z BAS81 I
A82 BAS82
A821 , Comma BA821 . Period
AB4 % Percent sign BA84 H Lozenge
A841 BAS841
A842 BA842
AB421 BA8421

Fig. 24 Early code
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2.15 REPRESENTATION

Representation refers to the form or manner in which the characters of a
coded character set are recorded or transmitted on some medium, such as
magnetic tape, magnetic disk, magnetic card, magnetic tape
cassette/cartridge, magnetic core, paper tape, punched cards, data trans-
mission lines, etc.

For such media representations, it is necessary to specify a precise
relationship between the format characteristics of the medium (rows,
columns, tracks, etc.) and the bits of the bit pattern of a character.

Characters may also be represented by graphic shapes either printed
on paper or displayed on cathode ray tubes. Such graphic shapes may
have a conventional font for human reading or a stylized font for machine
reading (optical character recognition, OCR, or magnetic ink character
recognition, MICR).

?’i;ttern—_.————-’ A B BA
8P - &

1 1 / J A
2 2 S K B
21 3 T L C

a4 4 u M D

4 1 5 v N E

42 6 W 0 F

421 7 X p G

8 8 Y Q H

8 1 9 z R I

8 2 0

8 21 p , $

8 4 @ 9 * prd

84 1

842

8421

Fig. 2.6 6-bit code table, 8421 convention
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A more subtle form of representation is where a sequence of
characters is used, as an entity, to represent some single graphic or
control meaning (see, for example, Chapter 26, Code Extension).

2.16 CODE TABLE

A code table is a compact matrix form of rows and columns for exhibiting
the bit patterns and assigned meanings of a code. The 6-bit code,
previously listed in Fig. 2.4, is exhibited in a code table using the 8421
convention (Fig. 2.5). It is also exhibited using the binary convention for
representing bit patterns (Fig. 2.6).

The rule for reading these code tables is that the two high-order bits
of the 6-bit bit pattern are shown as column headings, and the four
low-order bits are shown as row sidings.

E;tem—> 65 00 01 10 11
4321

0000 SP - &
0001 1 / 3 A
0010 2 g K B
0011 3 T L c
0100 4 U M D
0101 5 v N E
0110 6 W ) F
0111 7 X p G
1000 8 Y Q H
1001 9 z R 1
1010 0

1011 # R $

1100 @ 9 * I
17101

1110

1111

Fig. 2.6 6-bit code table, binary convention
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Example 8
From the code tables of Figs. 2.5 and 2.6 we derive the following:
Graphic Bit pattern Bit pattern
meaning Fig. 2.5 Fig. 2.6
7 421 000111
R B81 101001
E BA41 110101
Space No bits 00 0000

It is common practice to represent codes in code tables of 16 rows. Thus,
a 6-bit code has a code table of 4 columns and 16 rows, a 7-bit code has a
code table of 8 columns and 16 rows, an 8-bit code has a code table of 16
columns and 16 rows, and so on.

It is common practice to exhibit control meanings in code tables by
either abbreviations or acronyms of the name of the control meaning.

Example 9
Control meaning Abbreviation or acronym
Space SP
Segment mark SM
Record mark RM
End of Transmission EOT
Acknowledge ACK
Negative Acknowledge NAK
Null NUL
Bell BEL

A card code may be exhibited in a code table in the same way that a
bit code is exhibited in a code table. The conventions for bit-code code
tables are also used for card-code code tables. Zone punch hole patterns
are shown as column headings. Digit punch hole patterns are shown as
row sidings. The hole pattern for a particular character is made up of the
column heading and row siding. A 64-character card code is shown in Fig.
2.7. The Hollerith Card Code is shown in Fig. 2.8.

Example 10

From Fig. 2.7 we derive the following:

Graphic Hole pattern

Space No holes
Z 0-9
< 12-8-6
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Note. In card-code code tables, there may be exceptions to the general
rule of column headings and row siding. These will be designated with
small footnote numbers, with the actual hole patterns for such code
positions (shown below) appearing in the table.

Hole
Pattern—" 0 1 12
1
SP SB L] - &
1 1 / J A
2 2 s K B
3 3 T L C
4 4 U M D
5 5 v N E
6 6 W 0 F
7 7 X P G
8 8 Y qQ H
9 9 z R I
0 0 RM z ! 2
8-3 # y $
8-4 @ % % u
8-5 : s ] C
8-6 > \ : <
87 ™ sM MC GM
Hole Patterns: Control Characters
m 8-2 SP - Space
[Z] 0-8-2 M — Tape Mark
SB - Substitute Blank
RM - Record Mark
WS - Word Separator
SM - Segment Mark
MC - Mode Change
GM - Group Mark

Fig. 2.7 Card-code code table

It is possible to exhibit, in one code table, both bit patterns and hole
patterns, with zone bits and zone punches as column headings and digit
bits and digit punches as row sidings. See, for example, Fig. 2.9. In more
complex code tables, such as Figs. 2.8 and 2.10, zone punches for
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[ 1 | I I | [
Hote | 12 12 112 12 [12 12 112 12 | Hols
Pat. 11 11 [11 |11 11 11 [ 11 |11 ] Pa
0 0 0 0 0 0 0 0
Y
& - 0 |sp { ! } 8-1
1 A J / 1 a i ~ soH { nc1 9-1
2 B K s 2 b k s STX | DC2 SYN 9-2
3 c L T 3 c 1 t ETX | DC3 9-3
a D M U 4 d m u 94
5 E N v 5 e n v HT LF 9~5
6 F 0 W 6 f 0 W BS | ETB 9-6
7 G P X 7 g P x DEL ESC | EOT 9-7
8 H Q Y 8 h q y CAN 9
9 I R yA 9 i r z EM NUL | DLE 9-1
8-2 L ] \ 9-2
8-3 $ , # vT 9-3
8-4 < * % @ FF | Fs DC4 9-4
8-5 ( ) 1 CR | GS | ENQ| NAK 9-5
8-6 + H > = so | RS | ACK 9-6
8-7 ! ~ ? " SI | US | BEL| SUB 9-7
12 12 |12 12 [ 12 12 [ 12 12
N 11 11 11 t1r 11 11 {1t 1
Hote 0 0 0 0 0 0 0 0
Pat. 8 8 8 3 8 8 8 8 8 8 8 3 8 ) 8 8
Block | Hole Patterns at:
1 3 1 Top and.Left
2 Bottom and Left
2 4 3 Top and Right
4 Bottom and Right

Fig. 2.8 Hollerith Card Code
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%iatttel’l’\ A B BA
Hole
Pattern— 0 1" 12
SP SB : - &
1 1 1 / J A
2 2 2 S K B
21 3 3 T L C
4 4 4 U M D
4 1 5 5 ' N E
42 6 6 W 0 F
4 21 7 7 X P G
8 8 8 Y Q H
8 1 9 9 Z R 1
8 2 0 0 M l_z_ i 5
8 21 8-3 # s $
8 4 8-4 @ 7 * X
84 1 8-5 WS b [
842 8-6 > \ ; <
8421 8-7 ™ SM MC GM
Hole Patterns:
[1] 8-2
2] o-8-2

Fig. 29 Code table, bit patterns and hole patterns

characters in the top rows of the table are different than they are for
characters in the bottom rows of the table, and digit punches for charac-
ters in the left columns of the table are different than they are for
characters in the right columns of the table. In such a case, zone punches
are shown as column headings and column footings and digit punches are
shown as left and right row sidings.

A rule for reading hole patterns for such a table must be stated. The
table of Fig. 2.10, is blocked into four blocks, as shown below, with the
rule for reading as follows:
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Cowmn] o0 | 1 [ 21 3 4 [ s [ 6] 7 8 [ 9] A B c [ o T E] F
Bit R 00 01 10 11
Pat oo J ot 10 [ 11 [oo] 01 10 [ 11 [o00] o1 ] 10 ] %1 | 060 ] 01 ] 10 | 11
Hote | 9 9 9 9 9 9 9 9 Hole
Pat, | 12 12 12 12 12 12 12 12 Pat.
o 11 11 11 11 11 11 11 11
Row 0 0 0 0 0 0 0 0
11] 2 3y & (s] (e 7] L8] el [sof T[uf [2
0 (oco0 NULT| DLE | DS SP & - { } \ 0 8-1
13 . 14
1 10001 1 SOH | DC1 | 808 /L— a i A J e 1 1
2 jooio 2 18TX]DC2 | FS SYN b k s B K S 2 2
3 Joo11 3 JETX | T™ c 1 t C L T 3 3
4 0100 4 | PF RES | BYP | PN d m u D M U 4 4
§ |0101 5 |HT [NL |[LF |RS e n v E N v 5 5
6 |o110 6 |Lc |BS |ETB |UC f o w F 0 W 6 6
7 {0111 7 | DEL | IL ESC | EOT g P X G P X 7 7
8 [1000] 8 CAN h q y H Q Y 8 8
9 [1001] 81 EM b i r z I R Z 9 9
15
A [1010]| 82 |smM |cC |sM ¢ ! ll_ 8-2
B |1011| 8-3 VT |[CUL |CU2 |CU3 $ , { 8-3
c |1100| 8-4 |FF IFS DC4 < * % @ 8-4
D [1101] 85 |CR IGS |ENQ |NAK ( ) _ ' 8-5
E [1110] 8-8 |50 IRS |ACK + H > = 8-6
F {1111| 87 |SI IUS {BEL {SUB | - 7 " EO 8-7
9 9 9 9 9 9 9 9
12 12 12 12 12 12 12 12 12
Hole | 11 11 11 11 11 11 0 11
Pat. 0 0 0 0 0 0 0
Hole Patterns:
(] 9-12~0-8-1 11 [ o-1
E 9-12-~11-8-1 12-11-0 9-11-0~-1 Block | Hole Patterns at:
(3] 9-11~0-8-1  [3] 12-0 12-11 1 3 1 | Topand Left
E 9-12-11-0-8-1 11-0 2 | Bottom and Left
E] No Pch E 0-8-2 2 4 3 | Topand Right
[E 12 @ 0 4 Bottom and Right

Fig. 2.10 256-character code table

Block 1: Zone punches at top of table, digit punches at left.
Block 2: Zone punches at bottom of table, digit punches at left.
Block 3: Zone punches at top of table, digit punches at right.
Block 4: Zone punches at bottom of table, digit punches at right.
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2.16.1 Column Number, Row Number

For purposes of easy reference, the columns and rows of a code table are
numbered and named. For the code table of Fig. 2.26, the 8 columns are
numbered 0, 1, 2, 3, 4, 5, 6, 7, and the 16 rows are numbered 0, 1, 2,
3,...,14, 15.

For the code table of Fig. 2.10, both the 16 columns and 16 rows are
numbered (or named) 0, 1, 2, 3, 4,5,6,7, 8,9, A, B, C, D, E, F. This
notation is called the hexadecimal notation.

2.16.2 Code Table Character Position,
Code Table Characters Location

The position or location of a character in a code table is stated according
to its column and row number. For the tables of Figs. 2.26 and 2.27, the
convention is to give the position as x/y, where x is the code table column
number and y is the code table row number. For the code table of Fig.
2.10, the hexadecimal convention mn is used, where m is the hexadeci-
mal column number and n is the hexadecimal row number.

Example 11
In the code table of Fig. 2.26, the letter R is in position 5/2.

Example 12
In the code table of Fig. 2.10, the letter R is in position D9.

2.17 CODE NAMES

The following codes, to be discussed in detail later in this book, are used
in this chapter to illustrate certain basic characteristics of codes. Their
names, the derivation of which will be described later in this book, are
used in this chapter. (The term shifted, used below, is explained later in
this chapter.)

a) CCITT #2 A 58-character, shifted 5-bit code.

b) FIELDATA A 128-character, 7-bit code.

¢) ASCII A 128-character, 7-bit code.

d) PTTC A 111-character, shifted 6-bit code.

e) BCDIC A 64-character, 6-bit code and 12-row card code.

f) EBCDIC A 256-character, 8-bit code and 12-row card code.

g) Hollerith A 256-character, 12-row card code.
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BASIC CHARACTERISTICS

There are some basic characteristics of coded character sets. Not all of
these characteristics will be exhibited by any particular code.

2.18 SHIFTED CODE

Recall that the total number of possible different bit patterns of a code is
prescribed by the number of bits in the code byte: a code byte of 5 bits
gives rise to 2° =32 different bit patterns; a code byte of 6 bits gives rise
to 2°= 64 different bit patterns; a code byte of 7 bits gives rise to 27 = 128
different bit patterns; etc.

Ordinarily, the number of possible different characters (a character is
a bit pattern with an assigned meaning) in a code equals the number of
possible different bit patterns. But, by the use of a technique called
shifting, the number of characters in a code may be increased beyond the
number of bit patterns. Under this technique, the meaning of a bit pattern
depends not only on the bit pattern itself, but also on the fact that it has
been preceded in the data stream by some other particular bit pattern,
which is called a precedence character or a shift character.

In CCITT #2 (Fig. 2.11), for example, there are two characters,
Figure Shift (11011) and Letter Shift (11111). The meaning of a bit
pattern in a data stream is determined not only by the bit pattern itself
but also by which of the two precedence bit patterns has preceded it. By
preceded, we do not necessarily mean “immediately’” preceded. For exam-
ple, if the bit pattern 01010 has been preceded by the bit pattern 11011
(Figure Shift), it would mean ““4”, but if it had been preceded by the bit
pattern 11111 (Letter Shift), it would mean “R”. A precedence character,
when detected in the data stream, establishes a mode which remains in
cffect until another precedence character is detected, which then disestab-
lishes the previous mode and establishes its own mode, which in its turn
remains in effect until the subsequent detection of another precedence
character.

The precedence characters are generally called shift characters be-
cause they arc associated with the mechanism in a serial printer such as a
typewriter which shifts from one case to the other.

In the scrial printers that implement CCITT #2, the shift keys “‘lock
in” the shift mode of the printing mechanism. Thus when the key or keys
arc depressed to generate the Figure Shift character, the Figure Shift
Case is set for the printing mechanism and it remains set until the key or
keys are depressed to generate the Letter Shift character. At that time,
the Letter Shift case of the printing mechanism is set and it remains set
until the key or keys are depressed to generate the Figure Shift character.
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Bit Letter Figure Bit Letter Figure
pattern case case pattern case case
00000 Not used Not used 10000 E 3
00001 T 5 10001 Z +or”
00010 CR CR 10010 D (2)
00011 0 9 10011 B ?
00100 SP SP 10100 S ’
00101 H (1) 10101 Y 6
00110 N , 10110 F (1)
00111 M 10111 X /
01000 LF LF 11000 A -
01001 L ) 11001 w 2
01010 R 4 11010 J Bell
01011 G (L) 11011 FS FS
01100 1 8 11100 U 7
01101 P 0 11101 Q 1
01111 C 11110 K (
01111 \% =or; 11111 (3)LS LS

(1) For National Use
(2) Used for Answer Back
(3) Also used for Delete

Fig. 2.11

CCITT #2

CR Carriage Return
SP Space
LF Line Feed

FS Figure Shift
LS Letter Shift

In precedence codes, certain bit patterns, usually those associated
with control meanings, are independent of shift. That is to say, the bit
pattern of a shift-independent character has the same meaning, regardless
of which precedence bit pattern has preceded it in the data stream. In
CCITT #2, the control characters Carriage Return, Space, Line Feed,
Figure Shift, and Letter Shift are shift-independent. There is a human-
factors reason for this. Assume the following:

a) The Space bit pattern operates only in Letter Shift, not in Figure

Shift.

b) An operator is transmitting data using a keyboard.
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c) The data consists of blocks of numerics, the blocks separated by a
Space.

Each time the operator comes to the end of a numeric block and wishes
to key the Space, he would first have to depress the Letter Shift key, then
the Space key, then the Figure Shift key (to reestablish the Figure Shift
mode for the next block of numerics). In short, to generate the Space
character he would have to have depressed three keys. Similarly, if we had
assumed that the Space bit pattern operated only in Figure Shift (not in
Letter Shift) and if the operator was transmitting text (alphabet blocks,
separated by a Space), he would have to depress three keys in order to
generate the Space character.

In both instances, if the Space key operated in both Letter Shift and
Figure Shift, he would have had to depress only one key, the Space key.
In short, making the Space character shift-independent increases operator
productivity by decreasing the number of key strokes needed. Analysis
shows that the other control characters—Carriage Return, Form Feed,
Letter Shift, and Figure Shift—should be shift-independent for similar
reasons.

If the number of bits in a code byte is x and if the number of
shift-independent characters in a code is Y, then

®  number of shift-dependent characters=2*"'1-2Y;

w  total number of different characters shift-dependent and
shift-independent =2*"1- Y.

CCITT #2 is a 5-bit shifted code, with 6 shift-independent charac-
ters. The number of shift-dependent characters is 52, and the total
number of different characters is 58. PTTC (Fig. 2.30) is a 6-bit shifted
code and has 17 shift-independent characters. The number of shift-
dependent characters is 84; the total number of different charactersis 111.

2.19 BINARY CODED DECIMAL (BCD)

The binary bit patterns for the ten decimal digits, shown in Fig. 2.12
under both the 8421 convention and the binary convention, are called
Binary Coded Decimal bit patterns, with acronym BCD.

2.19.1 BCD for Numerics

For a code to have the characteristic of BCD bit patterns for numerics,
the low-order four bits of the bit patterns for the numerics must be as
shown in Fig. 2.12, and the high-order bits must be the same for all
numerics. Figure 2.13 shows excerpts from two codes, ASCII and EBC-
DIC, with BCD for the numerics.
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Binary Coded Decimal bit patterns
Decimal
digits 8421 convention Binary convention
0 0000
1 1 0001
2 2 0010
3 21 0011
4 4 0100
5 4 1 0101
6 4 2 0110
7 421 0111
8 8 1000
9 8 1 1001

Fig. 2.12 BCD bit patterns

] 0 [ 1 ]2 s a5 el 7] | 1 | [elo]c=]c-

Bit " |
Row Pot ooo[o0o0ifo10|[011] 100 101110117 00 | 01 10 | 11
o |oooo 0 P 0
1 |oo0o01 1 A qQ A J 1
2 [o010 2 B R B K S 2
3 |o011 3 c S C L T 37«
4 |o100 4 D T D M U 4
5 10101 5 E [ E N v 5
6 (0110 6 F v F 0 %) 6
7 (0111 7 G W G P X 7
8 11000 8 H X H Q Y 8
9 l1001 9 I Y I R zZ 9
10 |1010 J Z
1M (1011 K
12 |1100 L
13 {1101 M N
14 {1110 N ]
1B |1111 o 7

ASCII . EBCDIC

Fig. 213 BCD for numerics and alphabetics
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2.19.2 BCD for Alphabetics

For some codes, the alphabetics have bit patterns where the low-order
four bits for A to I, for J to R, and for S to Z have BCD bit patterns. In
Fig. 2.13 EBCDIC exhibits this characteristic while ASCII does not.

220 SEQUENCES OF BIT PATTERNS

2.20.1 Numerics in Numeric Sequence

The natural sequence of numerics is 0, 1, 2, 3, 4, 5, 6, 7, 8, 9. The binary
bit patterns of the numerics may be in numeric sequence for a code. In
Fig. 2.14, ASCII and EBCDIC exhibit this characteristic, CCITT #2 and
BCDIC do not. (BCDIC almost does, since its numerics are in the
sequence 1, 2,3,4,5,6,7,8,9,0.)

o] o [+ [ 2] s [ T | T T [T~

Bit | 11

Par.” "
Row 000 | 001|010 |011] 00 | 01 10 | 11 00 | 01 10 { 11 | 0o | o1 10 | 11
0 |oooo0 0 3 0
1 |oo0o1 1 5 1 !
2 |0010 2 2 2
3 |oo11 3 9 3 3
4 |o1o00 4 4 4
s (0101 5 6 5 5
6 |o0110 6 6 6
7 |o111 7 7 7
8 [1000 8 8 8
9 {1001 9 2 9 9
10 |1010 0
1 1011
12 |1100 8 7
13 (1101 0 1
4 {1110
15 (1111

ASCII CCITT#2 BCDIC EBCDIC

Fig. 2.14 Numerics, numeric sequence, contiguous sequence
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2.20.2 Numerics in Contiguous Sequence

For some codes, the binary bit patterns of the numerics are in contiguous
sequence, that is, the sequence of bit patterns is continuous and uninter-
rupted. In Fig. 2.14, ASCII, BCDIC, and EBCDIC exhibit this charac-
teristic, CCITT #2 does not.

2.20.3 Alphabetics in Alphabetic Sequence

The natural sequence of alphabetics is A, B, C,...,X, Y, Z. For some
codes, the binary bit patterns of the alphabetics are in the same relative
sequence as the alphabetics. Figure 2.15 shows the alphabetics of ASCII,
FIELDATA, BCDIC, and EBCDIC. Figure 2.16 shows that the alphabe-
tics of EBCDIC, although not contiguous in the sequence of bit patterns,
are nevertheless in relative sequence. By contrast, Fig. 2.17 shows that
the alphabetics of BCDIC are not in relative sequence. Figure 2.18 shows
that the alphabetics of ASCII are in relative sequence and in contiguous
sequence. The alphabetics of FIELDATA can be seen from Fig. 2.15 to
be in relative sequence and in contiguous sequence.

o] « [ 5] o |7 [e]s ] o] [z]s]clo]c]r
Bit | "
Row Pat 100 (101 | 110}111 J100 | 101|110 |111] o0 | 01 10 | 11 ] 00| 01 10 | 11
o |oooo P K
1 |o001] A Q L J A A J
2 o010} B R M s K B B K S
3 o011y ¢ S N T L c o L T
4 (0100 D T 0 U M D D M U
5 (0101 E U P \ N E E N v
6 |0t10] T v A Q W 0 F F 0 W
7 (o111 G W B R X P G G P X
8 (1000 H X c S Y Q H H Q Y
8 j1001 I Y D T Z R 1 1 R Z
10 (1010 J A E U
—
1 1011 K F v
12 [1100] 1, e} W
13 |1101] M H X
14 1110 N I Y
16 j1111] o J Z
ASCII FIELDATA BCDIC EBCDIC

Fig. 2.15 Contiguous and noncontiguous alphabetics



1100 0000 01 0000 100 0000
0001 A 0001 0001 A
0010 B 0010 S 0010 B
0011 C 0011 T 0011 C
0100 D 0100 U 0100 D
0101 E 0101 V 0101 E
0110 F 0110 w 0110 F
0111 G 0111 X 0111 G
1100 1000 H 011000 Y 100 1000 H
1001 I 1001 Z 1001 I
1010 1010 1010 J
1011 1011 1011 K
1100 1100 1100 L
1101 1101 1101 M
1110 1110 1110 N
1111 1111 1111 O
1101 0000 10 0000 101 0000 P
0001 J 0001 ) 0001 Q
0010 K 0010 K 0010 R
0011 L 0011 L 0011 S
0100 M 0100 M 0100 T
0101 N 0101 N 0101 U
0110 O 0110 O 0110 V
0111 P 0111 P 0111 W
1101 1000 Q 101000 Q 101 1000 X
1001 R 1001 R 1001 Y
1010 1010 1010 Z
1011 1011 1011
1100 1100 1100
1101 1101 1101
1110 1110 1110
1111 1111 1111
1110 0000 11 0000 110 0000
0001 0001 A 0001
0010 S 0010 B 0010
0011 T 0011 C 0011
0100 U 0100 D 0100
0101 V 0101 E 0101
0110 W 0110 F 0110
0111 X 0111 G 0111
1110 1000 Y 111000 H 110 1000
1001 Z 1001 1 1001
1010 1010 1010
1011 1011 1011
1100 1100 1100
1101 1101 1101
1110 1110 1110
1111 1111 1111
Fig. 216 EBCDIC Fig. 2.17 BCDIC Fig. 218 ASCII
alphabetics in relative  alphabetics not in alphabetics in relative
sequence and in non- relative sequence and sequence and in
contiguous sequence in noncontiguous contiguous sequence

sequence
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2.20.4 Alphabetics in Contiguous Sequence

For some codes, the bit patterns of the alphabetics are in contiguous
sequence. In Fig. 2.15, ASCII and FIELDATA exhibit this characteristic
(ASCII is also shown in Fig. 2.18). BCDIC and EBCDIC do not, as can
be seen in Figs. 2.17 and 2.16.

2.20.5 Alphabetics in Noncontiguous Sequence

For some codes, the bit patterns of the alphabetics are not in contiguous
sequence. In Figs. 2.17 and 2.16, BCDIC and EBCDIC exhibit this
characteristic. ASCII (Fig. 2.18) and FIELDATA (Fig. 2.15) do not.

Note 1. Characteristics described in Sections 2.20.4 and 2.20.5 are, of
course, opposite. A full discussion of the significance of contiguity and
noncontiguity of the alphabetics is given later in this book.

Note 2. Some codes (for example, that of the IBM 7030 (Stretch)
computer) exhibit the characteristic of “interleaved alphabets;” that is,
the upper- and lower-case alphabetics are interleaved. This is discussed
more fully in Chapter 3.

2.21 SIGNED NUMERICS

It is a common practice in punched card applications to punch the
11-punch in the same card column as a numeric to indicate a negative
numeric. Thus 11-0, 11-1,...,11-9 represent —0, —1,..., —9, respec-
tively. It is a recognized though little-used practice to punch the 12-punch
in the same card column as a numeric to indicate a positive numeric. Thus
12-0, 12-1,....,12-9 represent +0, +1,..., +9, respectively. And, of
course, 0, 1,...,9 punches are used to represent absolute numerics 0,
1,...,9, respectively. This is shown in Sections 1 and 2 of Fig. 2.19.

In the Hollerith card code, the hole patterns 12-0, 12-1, 12-
2,...,12-9 are assigned to {, A, B, ..., I; the hole patterns 11-0, 11-1,
11-2,...,11-9 are assigned to }, J, K, ..., R; the hole patterns 0-2, 0-
3,...,0-9 are assigned to S, T,...,Z; and the hole patterns 0, 1,
2,...,9 are assigned to 0, 1, 2,...,9 as shown in Section 1 of Fig. 2.20.
For ASCII and EBCDIC, the graphics { and }, the alphabetics A through
Z., and numerics 0 through 9 have bit patterns as shown in Sections 2 and 3
of Fig. 2.20.

It is to be noted, therefore, that such over-punched numerics in the
card code have a duality of meaning. For example, the hole pattern 12-1
might mean A, or it might mean + 1. There is nothing intrinsic to the hole
pattern itself that determines which meaning is to be applied. The actual
meaning would be determined within the context of a data processing
application.
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o] 1T T T T 1 1 [=l+lcfe]r]c]ol=]c

Bt | 11
fom Pat. © 011|100 | 101|110} 111 ] oo | 01 | 10| 11
0 [oo000]12~0}11-0; O +0 | -0 0 -7 +0 | -0 0
1 70001)12~1]11-1) 1 +1 | -1 1 1) +1 | -8 +1| -1 1
2 joorofl2~2|11-2| 2 +2 | -2 2| 42| -9 2] -2 2
3 |oo11(12-3|11-3] 3 +3 ] -3 3 +3 +3 1 -3 3
4 |o100]12-4|11-4| 4 +4 | =4 4 4 | +4 +4 ) -4 4
§ (0101012-5/11~-5 5 +5 | =5 5 51 45 +5 1! =5 5
6 [0110012-6/11-6| 6 +6 | -6 6 | +6 +6 | -6 6
7 |o111}12-7111-7 7 +7 1 =7 7| +7 +7 1 -7 7
8 |1000)12-8/11-8| 8 +8 | -8 8 8| +8 +8 | -8 8
9 |1004]|12-9{11-9] 9 +9 | -9 9 9 | +9 +9 | -9 9
10 |1010 ~1
11 (1011 ~2 +Q
12 ]1100 ~3
13 {1101 ~4 -0
14 {1110 ~5
15 (1111 -6

Hole Equivalent ASCIT EBCDIC
Patterns Signed Signed Signed
Numerics Numerics Numerics
Section 1 Section 2 Section 3 Section 4

Fig. 2.19 Signed numerics

In consequence of the relationship between positive, negative, and
absolute numerics and hole patterns (Sections 1 and 2, Fig. 2.19) and in
consequence of the relationship between hole patterns and ASCII and
EBCDIC bit patterns (Sections 1, 2, and 3, Fig. 2.20), the positive,
negative, and absolute numerics take bit patterns for ASCII and EBC-
DIC as shown in Sections 3 and 4 of Fig. 2.19.

The signed and absolute numerics for EBCDIC (Section 4, Fig. 2.19)

exhibit the following characteristics:

a) For all numerics, signed or absolute, the numerics 0 to 9 have the
low-order four bits as BCD bit patterns.

b) For all positive numerics 0 through 9, the four high-order bits are
the same.
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Column | I 1 o [ [ 2T 3 4 [ 5] 6T 7 c [ o] e ] F
Bit N 01 10 11
Pat, v 00 | 01 10 | 11 00 [ 01 ] 10 | 11 00 [ 01 10 11
Hote
Pat. | 12
" 11
ow 0
o |ooo0| o { 1 0 0| A Q { } 0
I
1 100601 1 A J 1 1 B R A J 1
2 (0010 2 B K S 2 2 C S B K S 2
3 |0011 3 C L T 3 3 D T C L T 3
4 {0100 4 D M U 4 4 E U D M U 4
5 {0101 ] E N \ 5 5 F v E N v 5
6 0110 6 F ] W 6 6 G W F 0 Y 6
7 (0111 7 G P X 7 7 H X G P X 7
8 |1000 8 H Q Y 8 8 I Y H Q Y 8
9 |1001 ] I R Z 9 9 J Z I R Z 9
0 |1010 K {
1 (1011 L
2 |1100 M }
311101 N
4 1110 0
5 [1111 P
HOLLERITH ASCII EBCDIC
HOLE PATTERNS BIT PATTERNS BIT PATTERNS
SECTION 1 SECTION 2 SECTION 3

Fig. 2.20 Alphabetics and numerics

¢) For all negative numerics O through 9, the four high-order bits are
the same.

d) For all absolute numerics 0 through 9, the four high-order bits are
the same.

Note. In characteristics (b), (c), and (d) above, the actual four high-order
bits are not important. What is important is that for each category—(b),
(c), (d)—the four high-order bits are the same.

It is clear that when the arithmetic circuits of a CPU are built around
the EBCDIC signed and absolute numerics advantage can be taken of
characteristics (a), (b), (c), and (d). It is equally clear, that for ASCII,
arithmetic circuits would have to be more complex, since characteristics
(a), (b), and (c) are not present. A full discussion of this is given later.
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2.22 SPACE CHARACTER HAS “NO PUNCHES"” CARD CODE

It is an established card practice for the Space character to generate a
“no punches,” or “blank column,” card code. This characteristic is essen-
tial in data processing card applications where fields are left blank on
punched cards in the initial keypunching operation—blank fields to be
filled with punched data in subsequent card operations.

The Hollerith Card Code, also called the Twelve-Row Card Code,
and the EBCDIC Card Code (see Chapters 11, 16, and 17) have this
characteristic. The 96-Column Card (see Chapter 27) has this characteris-
tic. During the technical debates in standards committees on binary card
codes and on the Decimal ASCII Card Code (Chapter 16, Decimal
ASCII), there was a technical controversy as to whether the “no punches”
card hole pattern should be assigned to the Space character or to the Null
character. This controversy was finally resolved with respect to Decimal
ASCII by assigning the “no punches” to the Space character, in accord
with de facto practice. It was not resolved for binary card codes, because
the standards committee ceased to study binary card codes.

223 DUALS

The practice of mapping more than one graphic meaning to a single bit
pattern or hole pattern is quite common. The different graphics with the
same bit pattern or hole pattern are called duals. Sometimes, more than
two graphics are mapped to a single bit pattern or hole pattern.

The duals of BCDIC are shown in Fig. 2.21.

Graphics | Hole pattern | Bit pattern
@ or’ 8-4 84

#or = 8-3 8 21

& or + 12 BA

% or ( 0-8-4 A84
Hor) 12-8-4 BAS84
Fig. 2.21 BCDIC duals

Some European languages require 29 letters, three more than the 26
letters of the English language. The additional three letters, which occur
in both lower- and upper-case alphabetics, are called diacritics. Some
codes, EBCDIC and the ISO 7-Bit Code, for example, accommodate this
aspect by assigning six code positions for alphabetic extenders (or Na-
tional Use graphics, as they are sometimes called). The EBCDIC scheme
is shown in Fig. 2.22, followed by the ISO scheme in Fig. 2.23.
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GRAPHICS

Hex Bit Norway/ Sweden/

position pattern U.S.A. Germany Denmark Finland
7B 0111 1011 # A E A
7C 0111 1100 @ O a 0)
5B 0101 1011 $ U A A
7F 0111 1111 " a & a
4A 0100 1010 ¢ 0 o 0
SA 0101 1010 ! u a a

Fig. 2.22 EBCDIC alphabetic extender graphics

GRAPHICS

Column Bit Norway/ Sweden/
row pattern US.A. Germany Denmark Finland
5/11 101 1011 [ A B A
5/12 101 1100 / O %] 0]
5/13 101 1101 ] U A A
7/11 111 1011 { a 2 a
7/12 111 1100 | 0 @ 0
7/13 111 1101 } i a a

Fig. 2.23 1SO National Use graphics

It is to be noted that the five BCDIC duals (Fig. 2.21) create duals
within a country (U.S.A.), while the alphabetic extender duals create
duals between countries. The former situation can be very troublesome (if
all ten graphics are needed in the same data processing application, for
example), while the latter situation does not cause trouble (for example,
systems problems) as far as is known today. Duals are not good or bad,
per se. Each situation must be examined individually.

There are, theoretically, two kinds of duals.

2.23.1 Many-to-one

Many-to-one refers to different meanings mapped into the same code
position. This is the type described above.
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2.23.2 One-to-many

One-to-many refers to a single meaning mapped into different code
positions. Generally, this is a situation that will arise not within a code but
rather between two different codes. For example, the 7-Bit Code has two
different control characters, Line Feed and Carriage Return. These two
functions are conbined into one EBCDIC Control Character, New Line.
There is an obvious problem in trying to determine the translation
relationship between these codes with respect to these three characters.

2.24 COLLATING SEQUENCE MATCHES BIT SEQUENCE

The bit sequence of a code is from low (all zero-bits) to high (all one-
bits). Thus for EBCDIC, the bit sequence is 00000000, 00000001,
00000010,...,11111101, 11111110, 11111111. In a code, graphic
meanings are assigned to some of the bit patterns. For reasons outside the
code, there may be an established sequence, from low to high, for these
graphics. Such a sequence is called a collating sequence. The collating
sequence of the graphics may, or may not, match the bit sequence of the
graphics.

In the 64-character, 6-bit BCDIC, for example, the collating se-
quence does not match the bit sequence. Figure 2.9 shows the 64 characters
in bit sequence. Each of the 64 BCDIC characters was assigned a
collating number, from 0, low, to 63, high. The 64-characters of Fig. 2.9
are shown reordered into correct collating sequence in Fig. 2.24, with the
collating numbers shown in each code table position. Figure 2.25 shows
some of the BCDIC characters in column (1). Column (2) shows the
collating number, and column (3) shows the bit patterns from Fig. 2.9.

The sorting or collating operation in a computer involves putting
items in an ordered sequence, the collating sequence. Visualize a sort on
a one-character field. Then, for two items, X1 or X2, the following
question is asked:

Is X1 greater than, equal to, or less than X2?

When this question is answered, the two items X1 and X2 can then be
arranged in correct sequence. Actually, the comparison instruction, which
asks the question above, performs a binary subtraction, X1—-X2, and
examines the sign and magnitude of the result.

First a binary subtraction is performed:

X1-X2=Y.
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P ) B T3 R T3 EE——rTY

[ N Y R Y E—
n L2 w22 1 B wjﬂ
T 1 O
T T R
R U R P R 1 R P
e T3 [ Yy E— Y
1 e P o P 7
PO I S PTY S vy R—— Y
1 L2 7|i5_ ()L"'_z_l 3[.5_7_
g LBS o lze] p 2] PN
PR Y SO Y7 B 1V R Y
T . B, B,
B, B, &, W
T s W, &
z 18 r r 7] QEL

Fig. 2.24 BCDIC collating numbers

Then, If Y is minus, X1<X2;
or If Y is zero, X1=X2;
or

If Y is positive, X1 >X2.

Performing this binary comparison on the bit patterns of column (3) will
not yield the desired result. But if the binary comparison were performed
on the pseudo bit patterns of column (4), the desired result would be
yielded. In short, if the bit patterns of column (3) are converted into the
pseudo bit patterns of column (4) before comparison, the graphics of
BCDIC can be sorted according to the prescribed collating sequence.

In some BCDIC computers, this conversion before comparison was
achieved with a software routine; in other BCDIC computers it was
achieved with a hardware comparator. In one instance there was a
performance penalty, and in the other instance there was additional
hardware cost.
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1 2 3 4
Collating Bit Pseudo
Graphic | number | pattern bit pattern
Space 0 00 0000 00 0000
$ 7 10 1011 000111
* 8 10 1100 00 1000
? 25 11 1010 011001
A 26 11 0001 011010
B 27 11 0010 01 1011
H 33 11 1000 10 0001
I 34 11 1001 10 0010
J 36 10 0001 10 0100
K 37 10 0010 10 0101
Q 43 10 1000 101011
R 44 10 1001 10 1100
S 46 01 0010 101110
T 47 01 0011 101111
Y 52 01 1000 11 0100
Z 53 01 1001 110101
0 54 00 1010 110110
1 55 00 0001 110111
2 56 00 0010 11 1000
8 62 00 1000 111110
9 63 00 1001 11111t

Fig. 225 BCDIC collating sequence
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In developing EBCDIC, a primary design factor was collating se-
quence (see Chapter 8, the Sequence of EBCDIC). The 88 graphics of
EBCDIC were assigned 8-bit bit patterns such that the collating sequence
matched the bit sequence, thus saving software or hardware costs for
customers.

2.25 SUMMARY OF CODE CHARACTERISTICS

Seven codes or representations are given as follows:

Code Figure
ASCII 2.26
An 8-bit representation  2.27
EBCDIC 2.28
BCDIC 2.29
PTTC 2.30
CCITT #2 2.31
FIELDATA 2.32

These are analyzed below as they do, or do not, exhibit the previous
characteristics.

Figure | 2.26 | 2.27 2.28 2.29 2.30 2.31 2.32

Characteristics 8-Bit CCITT | FIEL
! Code | ASCII | Rep. | EBCDIC|BCDIC | PTTC #2 |DATA

Shifted code - No No No No Yes Yes No
BCD for numerics Yes Yes Yes No No Yes Yes
BCD for alphabetics - No No Yes | Yes Yes No No
Numerics in numeric : :

sequence Yes Yes Yes No No No Yes
Numerics in contiguous

sequence Yes Yes Yes Yes Yes No Yes
Alphabetics in : :

alphabetic sequence Yes Yes Yes No No No Yes
Alphabetics in

contiguous sequence Yes Yes No No No No Yes
Alphabetics in

noncontiguous sequence| No No Yes Yes Yes Yes No
Signed numerics No No Yes Yes Yes No No

Collating sequence
matches bit sequence Yes Yes Yes No No No Yes
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b7{ 0 0 1
b6 o 0 1 1 1
b5
Col |

0 1 2 3 7
b4 b3 b2b1 | Row

NUL DLE SP 0 p
0000 0

SOH DC1 ! 1 q
0001 1

STX DC2 " 2 r
6010 2

ETX DC3 # 3 s
0011 3

EOT DC4 $ 4 &
0100 4

ENQ NAK % 5 u
0101 5

ACK SYN & 6 v
0110 6

BEL ETB ' 7 w
0111 7

BS CAN ( 8 x
1000 8

HT EM ) 9 v
1001 9

LF SUB * : z
170101 10

VT ESC + H {
1011] 1N

FF FS s < ‘
11001 12

CR GS - = }
1101/ 13

11

80 RS . > ~
11101 14

ST us / ? DEL
1111]| 186

0-1

Fig. 2.26 ASCI
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 Column o|1[z[3 4]5]s|7 s|9|1ol11 12[13[14|15_
git | 00 01 10 11
Row B 00 | o1 | 10 ] 11| 00| 01| 10} 11§ 00fo1]|10] 11 ] 00| 01 ] 10] 11
o |oooo| NUL DLE(SP | O | @ [ P | " | p
1 |oco1| gson| pc1| ! 1y A Q| a| q
2 |oo10) sTx| DC2| " 2 B R b r
3 [oo11] ETX | DC3| # 3 c ] c s ]
4 |o100] EOT | DC4 $ 4 D T d t
5 |0101] ENQ| NAK %. 5 E [} e u
6 |[0110] ACK| SYN| & 6 F v £ v
7 |o111] BEL | ETB ' 7 G W g w
8 |1000) BS CAN ( 8 H X h X
9 |[1001] HT | EM ) 9 I Y i y
10 [1010] LF | suB| * : J Z 3 z
11 [1o14]vr [ ESC| + ; K [ k {
12 |1100] FF | FS . < L \ 1 ' N
13 |1101] CR | GS - = M ] m } -
14 |1110| so | RS > N G n “ ] EC
15 {1111] ST Us / ? 0 _ o DEL | BC EO
Q@ May be "I"
® May be "

Fig. 2.27

An 8-bit representation
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Coumn] o [ 1 ] 2 ] 3 a | s 6 ] 7 8 [ o [ Al B c [ o] e F
Bit o 00 01 10 11
Pat. "I o0 ] o1 10 [ 11 oo | o1 [ 10 ] 11 00 [ 01 ] 10 ] 11 00 | 01 10 11
Hote 9 9 9 9 9 9 9 9 Hole
Pat. | 12 12 12 12 12 12 12 12 Pat.
11 11 11l 11 11 11 11 11
Row . 0 0 0 0[_ 4] Q Q [___ [__ 0[—
1 2 3 4 5 6 7 8 9 10 11 12
o loooo DLlE" DSL‘ = spl‘“ & 4 { } N 0| 8-t
13 - i3
1 [oo01] 1 | sou|pct | sos /L“ a | 3 A | J el 1
2 |0010 2 STX | DC2 | 7S SYN b k s B K s 2 2
3 {0011 3 | ETX| ™™ c 1 t vC L T 3 3
4 |o100 4 | PF RES | BYP | PN d m u D M U 4 4
6 [0101 5 HT NL LF RS e n v E N \4 5 5
6 |o110 6 | LC BS ETB | UC £ o w F 0 W 6 6
7 0111 7 | DEL | IL ESC | EOT g P X G P X 7 7
8 |1000| 8 CAN h. q y H Q Y 8 8
9 |1001] 8 EM N i r z I R Z 9 9
A [1010]| 8-2 | SMM| CC SM ¢ ! :IE 8-2
8 [1011] 83 | VT |CUl|cCU2|cu3| . § , # 8-3
¢ |1100| 8-4 | FF | IFS DC4 < * % @ 8-4
D |1101| 85 | CR | IGS | ENQ | NAR [ ( ) _ ! 8-5
E |1110] 8-8 | SO IRS | ACK + H > = 8-6
F |1111} 87 | ST | IUS | BEL | SUB| | - ? " EO 8-7
9 9 9 9 9 9 9 9
] 12 12 12 12 12 12 12 12 12
Hote ™ 11 11 11 |11 [11 11 0 | 11
Pat. 0 0 0 0 0 0 0
Hole Patterns:
(1] 9-12-0-8-1 11 [13] 0-1
[2] 9-12-11-8-1 12-11-0 9-11-0-1 Block | Hole Patterns at:
2] 9-11-0-8-1 12-0 12-11 1 3 1 | Topand Left
[4] 9-12-11-0-8-1 11-0 2 | Bottom and Lett
E No Pch E 0-8-2 2 4 3 | Top and Right
E 12 @ 0 4 Bottom and Right

Fig. 2.28 EBCDIC
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?’i;r'ern A B BA
Hole
Pattern—"] 0 " 12
SP B L - & or +
! ! 1 / J A
2 2 2 s K B
21 3 3 T L c
4 4 4 U M D
4 1 5 5 \ N E
42 6 6 W o F
421 7 7 X P G
8 8 8 Y Q H
8 1 9 9 Z R I
8 2 0 0 i L2 ! ?
8 21 8-3 # or = . $
84 8-4 @ or ! %ort _ * T or )
84 1 8-5 : Y ] L
842 8-6 > \ ; <
8421 87 v " A ¥

Hole Patterns:

[] 8-2
[z] 0-8-2

Fig. 229 BCDIC
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Lower Case Upper Case
Bit A B BA A B BA
Pattern
Hole
Pattern—» 0 11 12 11-0 12-11 12-0
y
1 1y 18 21}
sP e - & SP o B ey
] s |
1 1 1 / 3 a = ? J A
2 2 2 s K b pl g K B
21 3 3 t 1 c ; I L c
4 4 4 u m d : Le] U M D
7
4 1 5 5 v n e % v N E
8
42 6 6 W o f ' W 0 F
9
421 7 7 x P g " X P G
10
8 8 8 y q h % o v Q H
11
8 1 9 9 2 r i ( Ly Z R I
2, 12 16 13 22
8 2 0 0 [ EE I R N [CEX y e Tz
13 17 20 23
8 21 8-3 # s $ * b , L] ! (20 . =
84 4 PN BYP RES PF PN BYP RES PF
84 1 5 RS LF NL HT RS LF NL HT
842 6 uc EOB BS LC uc EOB BS LC
8421 9 EOT PRE IL DEL EOT PRE IL DEL
Hole —y, 9 9-0 9-11 9-12 9 9-0 9-11 9-12
Pattern
Hale Patterns:
8-4 8-5 [i8] 12-8-2 [22] 8-7
E 0-8-2 E 8-1 12-8-7 @ 12-8-1 Block | Hole Patterns at:

[3] 8-6 11-8-4 0-8-1
(4] 12-8-4 [17] 12-8-5 0-8-6
[5] 11-8-6 [12] 11-8-5 0-8-5
[e] 8-2 [13] 0-8-7 11-8-2
0-8-4 11-8-7 [21] 12-8-6

Fig. 230 PTTC

3 1 Top And Left
Bottom and Left
4 Top and Left

~lw

Bottom and Left
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Bit Letter Figure Bit Letter Figure
pattern case case pattern case case
00000 Not used Not used 10000 E 3
00001 T 5 10001 Z + or"”
00010 CR CR 10010 D (2)
00011 0 9 10011 B ?
00100 SP . SP 10100 S !
00101 H (1) 10101 Y 6
00110 N : 10110 F (1)
00111 M . 10111 X /
01000 LF LF 11000 A -
01001 L ) 11001 w 2
01010 R 4 11010 J Bell
01011 G (1) 11011 FS FS
01100 I 8 11100 U 7
01101 P 0 11101 Q 1
01110 C : 11110 - K (
01111 \Y = Oor ; 11111 (3) LS LS

(1) For National Use CR Carriage Return
(1) Used for Answer Back SP Space
(3) Also used for Delete LF Line Feed

FS Figure Shift
LS Letter Shift

Fig. 2.31 CCITT #2
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Column 0 1 2 3 4 5 6 7
Bit YA 0 0 0 1 1 1 1
Pattern b6 0 0 1 1 ()} 0 1 1
b5 0 1 0 1 0 1 0 1
Row b4 b3 b2 b1
0 0000 K ) 0
1 0001 L - 1
2 0010 M + 2
3 0011 N < 3
4 0100 0 = 4
5 0101 P > 5
6 0110 qQ 6
7 0111 l B R $ 7
o CONTROL -
.~ (NOT DEFINED)
8 1000 e .r c S * 8
9 1001 D T ( 9
10 1010 s E U " '
1 1011 F v H
12 1100 G W ? /
13 110 1 H X |
14 1110 I Y . SPEC
15 1111 J Z STOP | IDLE

Fig. 232 FIELDATA

2.26 COMPATABILITY

Compatability between two different codes is not a single, simple aspect.
It is a number of aspects:

®  Structural Similarity. The code table is a compact way to exhibit the
relationship between the graphic and control meanings and the
associated bit patterns or hole patterns of a coded character set. As
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can be seen in Figs. 2.28 and 2.29, the 26 alphabetics of EBCDIC and
BCDIC are positioned similarly in three contiguous columns of the
code tables (although not in the same order of columns). From this
columnar positioning is revealed the fact that the low-order four bits
of alphabetics are the same in both codes. Equally significant, the
noncontiguous alphabetics are noncontiguous in precisely the same
way in both codes. Further, the specials in both codes are positioned
(mostly) in a 5 by 4 block of the code table. These two codes are said
to be structurally similar. By contrast, the alphabetics of ASCII (Fig.
2.26) are positioned in 26 contiguous bit-pattern positions in two
columns. EBCDIC and the 7-Bit Code are said to be structurally
dissimilar.

®  Collating Sequence. The collating sequence of the two codes should
match. If the codes are of different size, the collating sequence of the
smaller code should be embedded in the collating sequence of the
larger code (see Chapter 8, The Sequence of EBCDIC, for a full
discussion of this embedment). ‘

®  Functional Equivalence. The codes should be functionally equiva-
lent; that is, they should have the same set of control and graphic
meanings, although not necessarily with the same set of bit patterns.
A smaller code is said to be functionally equivalent upward to a
larger code if the smaller code’s set of graphics and control meanings
is contained in the set of the larger code. EBCDIC and the Hollerith
Card Code are functionally equivalent. ASCII is functionally equiva-
lent upward to EBCDIC.

®  Translation Relationship. Translation relationships between two
codes should be as simple as possible. The translation simplicity is
directly related to the structural similarity.

In debates on code compatibility, it often happens that one debater
views two codes as incompatible because not all of the four aspects above
are present, while the other debater views the two codes as compatible
because at least one of the aspects above is present. Certainly, two codes
are compatible if all four aspects are present, incompatible if none of the
four are present. For codes where some aspects are present and others are
not, to determine and agree on which are present and which are not is prefer-
able to arguing about the then indeterminate question of ‘“‘compatibility.”

2.27 GRAPHICS FOR CONTROLS

In some codes, graphic representations are assigned to the control charac-
ters. The virtue of this is that when data are listed, particularly in debug-
ging operations, control as well as graphic characters are visible.
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In BCDIC for example, graphic representations are assigned to seven
control characters:
Substitute Blank

Mode Change
Word Separator
Record Mark
Group Mark
Segment Mark
Tape Mark
Graphic representations have been developed for the 32 control charac-
ters, for the Space character, and the Delete character of ASCII.
In Text/360, an IBM programming product for the application of
text processing, graphic representations have been assigned to the six

control operations (see Chapter 26, Code Extension):
%

F HH R BT

Single capitilization

@ Continued capitalization

$  Underscoring
— Editing
+ Altering
/ Graphic set extension

2.28 COLLAPSE LOGIC

Consider a 256-character, 8-bit code feeding into a 64-character printer.
The 64 printing positions of the printing element may be considered to be
associated with 64 different 6-bit bit patterns. The hardware logic of the
printer will strip off the two high-order bits of 8-bit bit patterns, leaving
6-bit bit patterns. For each different 6-bit bit pattern, there will have
been four different 8-bit bit patterns.

Consider Fig. 2.33. The four bit patterns X1, X2, X3, X4 have bit
patterns 0010 1010, 0110 1010, 1010 1010, 1110 1010. If the two high-
order bits of these 8-bit bit patterns are stripped off, for each of them the
same 6-bit bit pattern 101010 will result. Each of these four 8-bit bit
patterns then would collapse to the same 6-bit bit pattern; that is, each
would go to the same printing position of the printing element. Advan-
tage is taken of the collapse aspect of coded character sets in the design of
printing sets.*®

*Collapse logic varies among printer control units. The examples given here are
illustrative only, and do not necessarily reflect any actual printer control unit.
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Bits 0,1 00 01 10 11
2,3
000110411 |0001|10 11| 0001 |10]| 11| 0001} 10| 11
4567 | 0 1| 2| 3| 4 5| 6| 7/ 8 9! A} Bl CD F
0 | 0000
1
2
3
4
5
6
7
8
9
A | 1010 X1 X2 X3 X4
B
C
D
E
F 1111

Fig. 2.33 Collapse logic

In EBCDIC, the bit patterns of the small letters a, b, c, ...,z differ
from the bit patterns of the corresponding capital letters only in the two
high-order bits. On a 64-character printer, therefore, regardless of
whether the bit patterns of the small letters or the bit patterns of the
capital letters are fed into the hardware logic of the printer control unit,
the .same alphabetic printing positions on the printing element are

reached without any change in logic.

Collapse logic is used in the printing of alphabets other than Latin
alphabets. Consider, for example, Fig. 2.34 that shows the assignment in
the EBCDIC code table of 31 Cyrillic alphabetics, 10 numerics, and the

following 7 specials:

Y



] o [ 1] 2] 3] e] 5] ] s]e]als]c]o]c]-
Bit oo 01 10 11
Pat.
Row 00 | o1 | 10 | 11 oo | 01 10 | 11 00 | o1 10 [ 11| o0 | 01 10 | 11
0 |ocoo SP - H 0
1 |[o001 / A n 1
2 |oo010 b M ® 2
3 (0011 B H X 3
4 |o100 r 0 u 4
s (0101 b1 n 4 5
6 |o110 P W 6
7 fo111 H C it} 7
8 (1000 3 T bl 8
9 li001 H y b 9
A [1010
B (1011 ). R HJ
c {1100 * " 3 A
D |1101
E (1110 +
F 1111
Fig. 2.34 Collapse logic, Cyrillic-48
wm] o [+ [ 2] s+ s s 7] o] a]e]c]o]c]cr
Bit 00 01 10 11
Row Fay 0o | o1 | 10 | 11 oo [ o1 10 | 11 00 | 01 10 | 11 | oo | o1 10 | 11
0o |oooo0 Sp & - 0
1 0001 / A J 1
2 |oo010 B K S 2
3 |0011 C L T 3
4 |o100 D M U 4
s |0101 E N A 5
6 |o110 F 0 %) 6
7 (o111 G P X 7
8 |1000 H Q Y 8
9 [1001 I R Z 9
A [1010
B [1011 o , #
c |1v00 < *® % @
D [1101
E [1110 +
F {1111

Fig. 2.35 Collapse logic, Latin-48
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Consider also Fig. 2.35 which exhibits a 48-character printing set consist-
ing of 26 Latin alphabetics, 10 numerics, and the following 12 specials:*

+ & — / .
< * % @ s #

An examination of Figs. 2.34 and 2.35 will show the collapse logic for the
48 printing positions of a 48-character printer as shown in Fig. 2.36.
With the same printer control unit, the collapse logic will automati-
cally provide for a 48-graphic Cyrillic set, or a 48-graphic Latin set,
depending on which printing element is mounted by the user.

Cyrillic, 48 graphics Latin, 48 graphics
Fig. 2.34 Fig. 2.35
Hex Hex
position Graphic position Graphic
FO to F9 |10 numerics | FO to F9 |10 numerics
81 to 89 26 Cyrillic | C1 to C9 | 26 Latin
91 to 99 | alphabetics | D1 to D9 |alphabetics
A2 to A9 E2 to E9
5 Cyrillic 5 specials
8C alphabetics | 4C <
90 50 &
AC 6C %
BB 7B #
CB 7C @
7 specials 7 specials

4B : 4B :
4E + 4E +
5B hog 5B b
5C * 5C *
60 - 60 —
61 / 61 /
6B , 6B ,
TOTAL 48 graphics | 48 graphics

Fig. 2.36 Cyrillic/Latin collapse

*The special symbol }f, shown both above and in hex position 5B of Figs. 2.34
and 2.35, is the international “Currency Symbol.”
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2.29 BOOLEAN EQUATIONS

In some of the cases that are given in this book, the question of the
simplicity or complexity of translation relationships from one code to
another, or from one representation to another, comes up. Generally, the
question is not of absolute simplicity or complexity but of comparative
simplicity or complexity. Hardware translation is accomplished by logic
circuits. The complete analysis of such circuits and the calculation of
hardware costs, estimated or actual, is beyond the scope of this book.
However, by making three simplifying assumptions, a reasonably simple
procedure can be used that is sufficiently accurate to answer the following
question:

Given two sets of translation relationships, which set would be more
complex to implement in circuitry?

Assumption 1. The circuit complexity is equal to implement each of four
Boolean operators (to be explained below), AND, Inclusive OR, Exclu-
sive OR, and IDENTITY.

Assumption 2. The circuitry that generates a bit also generates the
inverse of the bit with no additional complexity.

Assumption 3. Given two sets of Boolean equations representing two
sets of translation relationships, the relative circuit complexity of imple-
menting the relationships is proportional to the number of Boolean
operators in the equations.

Example 13
Setl: YI=A&Y one operator, & (to be explained below).

Set2:Y2=(A&Y)|Z  two operators, &, | (to be explained below).

Set 2 is more complex than Set 1.

Absolute costs are not determined but relative complexities are; this
information is sufficient for making a decision between two sets. The
procedure, then, is to derive the Boolean equations, and then count the
operators.

There are different notations and conventions used in Boolean
Algebra. Some examples are shown below:

S=AB+CD
S=A-B+C-D
S=(A&B)|("C&D)
S=(A AB)v(CD)
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The binary, or two-state, nature of many mechanisms found in computing
systems was noted at the beginning of this chapter. For such two-state
situations, we might say we have A or we do not have A. Alternatively,
we might say we have A or the inverse of A. In Boolean logic, we would
say we have “A,” or we have “not A.” A convention for representing
these two possible states is A and A; that is, A represents “not A,” or
“‘the inverse of A” or ‘‘the negation of A,” etc. If we consider A as a
binary variable, it can have two values, 0 or 1. By convention, when the
variable A has the value of 1, we will represent it by A, and when it has
the value of 0, we will represent it by A.

Example 14

We may represent the three bit positions of a 3-bit register by the
Boolean variables A, B, and C. Then the 8 possible states of the 3-bit
register can be represented as follows:

State Representation
000 A B C
001 A B C
010 A B C
011 A B C
100 A B C
101 A B C
110 A B C
111 A B C

Example 15

Another convention is to represent a variable when its value is 1 by the
presence of the variable and when its value is 0 by the absence of the
variable. This convention is used in a notation based on the decimal
equivalents of the powers of 2:

2°=1
2'=2
2°=4
2°=8

The bit positions of a 4-bit register are represented, from high-order bit
position to low-order bit position, by the variables 8, 4, 2, 1. Under the
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convention of Example 14, 1001 would have been represented as 8 4 21,
but under the presence/absence convention, 1001 is represented simply as
8 1. Under this convention, the 16 states of a 4-bit register are rep-
resented as shown below:

State Representation

0000 No bits
0001 1

0010 2

0011 21
0100 4

0101 41
0110 4 2
0111 421
1000 8

1001 81
1010 8 2
1011 821
1100 8 4
1101 841
1110 8 4 2
1111 8421

Example 16

The 8 states of a 3-bit register, Example 14 under the presence/absence
convention, would be represented as shown below:

State Representation
000 No bits
001 C
101 B
011 BC
100 A
101 AC
110 AB

111 ABC
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Comment. The convention of Example 14 yields a uniform notation,
while the convention of Examples 15 and 16 yields a compact notation.

In this book, Boolean equations are used to represent translation
relationships. Five Boolean operators (frequently called logical operators)
and their representative symbols are shown below:

Operator Symbol

AND
Inclusive OR
Exclusive OR
IDENTITY
NOT

NP
<< >

In order to define these operators, we consider two binary input variables,
A and B, and one binary output variable, Y, as illustrated below. There
are two kinds of operators: (1) dyadic operators; that is, operating on two
terms or expressions (parts (1-4) above), and (2) monadic operators; that
is, operating on one term or expression (part (5) above).

A -ﬁ D d.

oy:ralt%r >y
; P P

Monédic B
A ’ operator > Y

There are two possible states for one variable and four possible states
for two variables taken together:

Variable State

A
A 0
AB . 00
AB 01
AB 10

AB 11
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The operators are defined in the following table:

NOT | AND | Inclusive OR | Exclusive OR | IDENTITY
A|B|A|B|AAB AVB A~B A=B
0l0] 1|1 0 0 0 1
0ol1[1]0 0 1 1 0
1]0]0]1 0 1 1 0
1111010 1 1 0 1

Conceptually, we say

a)
b)

c)

d)

AND means both A and B are 1.
Inclusive OR means either A or B is 1, including the case when both

are 1.

Exclusive OR means either A or B is 1, excluding the case when

both are 1.

IDENTITY means A and B are identical; that is, both are 0, or both

are 1.
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Early Codes

During the early days of data processing and telecommunications, a
number of codes were in use or proposed for use:

a) CCITT #2, a 58-character, shifted 6-bit code, used nationally and
internationally on telegraph lines.

b) FIELDATA [3.1, 3.2, 3.3]: a 7-bit code developed by the United
States Army for military communications systems.

c) BCDIC [3.4]: a 48-character, 12-row code (initially unnamed) used

on computing systems. This code was eventually expanded to be a
64-character, 6-bit code and 12-row card code.

d) The Stretch code: a 120-character, 8-bit code used on the Stretch
computer (the IBM 7030) [3.5, 3.6].

e) IPC, Information Processing Code [3.7]: a 128-character, 8-bit code
developed by the United States Air Force proposed to be used for
information processing and information interchange.

f) A 64-character, 6-bit code proposed by H. S. Bright in 1959 [3.8].

g) A 256-character card code proposed by R. W. Bemer in 1959 [3.9].

h) 4-out-of-8 code: a 70-character, 8-bit data transmission code.
These early codes manifested some of the characteristics of coded charac-
ter sets described in Chapter 2. Some of these characteristics would be
carried forward and incorporated into modern codes. It should not be

supposed that these early codes have disappeared from the data proces-
sing scene. Products and systems implementing these codes (with the
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exception of IPC) are still in common use. Figure 3.1 shows the codes and
their characteristics. '

CCITT
#2

Fiel-
data

BCDIC

Stretch

IPC

Bright
Proposal

Bemer -

Proposal

4-out-
of-8

Shifted code

yes

BCD for
numerics

yes

yes

yes

yes

yes

yes

Numerics in
numeric
sequence

yes

yes

yes

yes

Numerics in
contiguous
sequence

yes

yes

yes

yes

Signed
numerics

yes

yes

BCD for
alphabetics

yes

yes

yes

yes

Alphabetics in

alphabetic
sequence

yes

yes

yes

yes

yes

Alphabetics in

contiguous
sequence

yes

yes

yes

Alphabetics in
noncontiguous

sequence

yes

yes

yes

yes

yes

Alphabetics in

interleaved
sequence

yes

yes

Space equals
no punches

yes

yes

yes

Collapse logic

yes

yes

yes

Fig. 3.1 Characteristics of early codes

3.1 CCITT #2

CCITT #2 was, and is, a 58-character, shifted 6-bit code, standardized as
an international telegraph code in 1931 by the Comité Consultatif Inter-
national Telegraphique et Telephonique (see Fig. 3.2).
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Bit Letter Figure Bit Letter Figure
pattern case case pattern - case case
00000 Not used Not used 10000 E 3
00001 T 5 10001 Z +or”
00010 Cr Cr 10010 D (2)
00011 @) 9 10011 - B ?
00100 SP. SP 10100 S !
00101 H (1) 10101 Y 6
00110 N , 10110 F (1)
00111 M . 10111 X /
01000 LF LF 11000 A -
01001 L ) 11001 w 2
01010 R 4 11010 J Bell
01011 G (1) 11011 FS FS
01100 I 8 11100 U 7
01101 P 0) 11101 Q 1
01110 C 11110 K (
01111 \Y% =or; 11111 (3)LS LS

(1) For National Use
(2) Used for Answer Back
(3) Also used for Delete

Fig. 3.2 CCITT #2

CR Carriage Return

SP Space

LF Line Feed
FS Figure Shift
LS Letter Shift

Figure 3.1 reveals that CCITT #2 manifests few of the characteris-
tics of the other codes, characteristics deemed desirable for data proces-
sing codes. The numerics are not BCD, nor contiguous, nor in numeric
sequence; the alphabetics are not in alphabetic sequence, and so on. But
it should be realized that CCITT #2 was developed as a telegraph code,
and characteristics desirable for a data processing code have little impor-
tance for a telegraph code.

CCITT #2 did manifest a characteristic that is quite necessary for
data processing codes and for telecommunication codes. Three code
positions were reserved for “national use.” This recognizes a characteris-
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tic of certain European languages (German, Danish, Swedish, Finnish,
Norwegian, for example) which is that such languages have three letters
in addition to the 26 alphabetics of English-speaking languages (see Table
3.1). Such letters are called diacritical letters, or diacritics.

TABLE 3.1 Diacritical Letters

German AOU
Danish/Norwegian E 0 A
Swedish/Finnish AOU

Clearly, telegraph devices operating within national boundaries of
countries whose languages require 29 alphabetics would have to have the
capability of sending and receiving all 29 letters. The telegraph code,
then, must have code positions available for 29 letters and CCITT #2
does.

In English-speaking countries, such code positions could be used to
represent other symbols. In the U.S.A., on Western Union telegraph
devices, for example, the symbols # $ and & were provided in these three
code positions.

3.2 FIELDATA

FIELDATA was a 7-bit plus parity code developed by the United States
Army for use on military data communications lines. It became a U.S.
Military Standard in 1960 (see Fig. 3.3).

It is to be noted that although there are 128 code positions in the
7-bit code, only 64 were defined, consisting of 9 control functions and 55
graphic characters. The controls are of the kind required by rather simple,
typewriter-like devices—Space, Upper Case, Lower Case, Line Feed, Car-
riage Return, and so on. The 64 undefined code positions were intended to
be assigned to the more complex kinds of functions necessary for inter-
connection and control of data transmission networks.

As it turned out, three different communications systems were de-
veloped implementing FIELDATA, and each of these three systems used
different control functions in the “not defined” portion of the code
table—different in the sense of technical definition and different in the
sense of the number of control functions. It was found that because of
these different control functions interconnection of these three communi-
cation systems, and intercommunication between them, was difficult or
impossible.



3.2 FIELDATA
Column 3 4 5 6 7
Bit b7 0 1 1 1 1
Pattern b6 1 0 0 1 1
b5 0 1 0 0 1
Row b4 b3 b2 b1
0 0000 K ) 0
1 0001 1, _ 1
2 0010 M + 2
3 0011 N < 3
4 0100 0 = 4
5 0101 P > 5
6 0110 Q 6
7 0111 R s 7
8 1000 s * 8
9 1001 T ( 9
10 1010 U " t
" 1011 v . ;
12 1100 W ? /
13 1101 X | .
14 1110 Y , SPEC
15 11 Z STOP | IDLE
MS - Master Space SP - Space
UC - Upper Case STOP - Stop
LC - Lower Case SPEC - Specilal
LF = Line Feed IDLE - 1dle
CR ~ Carriage Return

Fig. 3.3 FIELDATA

65

A valuable lesson was learned here. For various reasons, it may be
desirable not to complete the assignment of meanings to all code posi-
tions of a code table initially. For example, the American National
Standard Code for Information Interchange (ASCII), when first standar-
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dized in 1963, left some 28 code positions without assigned meanings.
And when the extended BCD Interchange Code (EBCDIC) was adopted
as an internal standard by IBM in 1964, of the 256 available code
positions, only 108 code positions had assigned meanings. Indeed, at this
time (almost a decade later) there are still many code positions in
EBCDIC with unassigned meanings. However, in the administration of
these standards, ASCII and EBCDIC, implementors were advised to
provide implementations which did not assign meanings to those code
positions without already assigned meaning. These code positions were
reserved for future standardization. For FIELDATA, implementors pro-
vided implementations with their own local meanings for those code
positions not initially assigned. The result was inter-implementation con-
fusion. The disciplined administration of ASCII and EBCDIC prevented
such confusion. This point of administrative discipline will be discussed
below with IPC, Information Processing Code.

3.3 BCDIC

With modern codes, such as ASCII and EBCDIC, it is common practice
to provide implementations which use not the full repertoires of the codes
but subsets, subsetted by graphics, or by controls, or by both. By contrast,
the code that came to be called the BCD Interchange Code (BCDIC)
evolved from a smaller repertoire to a code with a complete repertoire.
(The evolution of BCDIC is described in detail in the next two chapters.)

The punched card code devised by Dr. Herman Hollerith at the end
of the nineteenth century was a 12-character code consisting of the 10
numerics, 0 through 9, and two control characters in what are now the
12-row and the 11-row of the card. In the statistical applications of the
United States Census—for which Dr. Hollerith devised the punched
card—these control punches served many purposes. When punched cards
came to be used in accounting applications, the 11-punch came to be used
to represent a credit balance (mathematicians would call it a negative
number).

Somewhere around 1932, the punched card code was expanded to
include 26 alphabetics and three special symbols—minus sign, asterisk,
and ampersand. The minus sign had replaced the credit symbol, asterisk
was used for check protection, and ampersand was used in name-and-
address applications (Mr. & Mrs. J. L. Smith, for example). The punched
card code for these 39 graphics and space is shown in Fig. 3.4.

During the 1950s, the advent of computers such as the IBM 702,
705, and 1401 saw the expansion of BCDIC into 47 graphics, and also
the development of a 6-bit code to represent these graphics. With one
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BPiatt"e'n —_
Hole .
Pattern—» 0 "o ) 12
3
SP ' - &
1 1 J A
2 2 s K B
3 3 T L o
4 4 U M D
5 5 v N E
6 6 W 0 T
7 7 X P G
8 8 Y Q H
9 9 z R 1
0 0
8-4 *

Fig. 3.4 BCDIC, 40-character card code

exception, the 11 special symbols served an obvious purpose in one or
another commercial application:

S L H % - &F ) m

The exception was the special symbol, X (lozenge). Because the lozenge
appeared on printer chains, it was put to various uses; for example, to
indicate, in the margin of a tabulation, final totals as contrasted to

subtotals.
The 48-character BCDIC is shown in Fig. 3.5.

3.4 THE STRETCH CODE

In 1961, the IBM 7030 was delivered to the Los Alamos Scientific
Laboratory. This computer was developed under “Project Stretch,” and
this name was popularly used to describe this computer.
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Bit
Pattern A 8 BA
Hole
Paﬂern1 [ 1 12
v
SP - _ &
1 1 1 / J A
2 2 2 s K B
21 3 3 T L c
4 4 4 U M D
4 1 5 5 v N E
42 6 6 W 0 F
421 7 7 X P o
8 8 8 Y Q H
8 1 9 9 2 R I
8 2 0 0
8 21 8-3 # , 8
8 4 8-4 @ % * bl

Fig. 3.5 BCDIC, 48-character code

There were many technological innovations in Stretch. Architectur-
ally, its main innovation was that it had an 8-bit architecture, as con-
trasted with the 6-bit, or 6-bit oriented, architectures of other computers
of the time. With an 8-bit architecture, a 256-character code is possible.
In fact, the designers of Stretch chose to provide a 120-character set that,
apart from its size (most computer character sets of that day were
48-character sets), had some interesting innovations.

The codes for contemporary computers of that time had evolved
from earlier beginnings and compatibility was the primary design criter-
ion. The designers of the Stretch code, E. G. Law, H. J. Smith, Jr., F. A.
Williams, W. Buchholz, and R. W. Bemer, did not perceive compatibility
with contemporary codes to be a primary criterion. Instead, they them-
selves set some criteria that they felt were reasonable for a code. The
criteria were in regard to the size and structure of the set. The criteria are
first stated, and then some of them are discussed.
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3.4.1 Size

Criterion 1. The set should contain the contemporary 48-graphic set
ound on IBM computers:

B Space

P 26 alphabetics (upper case)

" 10 numerics

" 11 specials L &% (-, # X

Criterion 2. The set should contain the following graphics:

I 26 lower case alphabetics

" The more important punctuation symbols found on office
typewriters S Y 2 A

" Enough mathematical and logical symbols to satisfy the needs of such
programming languages as ALGOL. (The total ALGOL set was well
over 100 symbols.)

3.4.2 Structure

Criterion 3. Certain subsets, such as the contemporary 48-character set
for high-speed chain printer printing and an 88-graphic set for a typewri-
ter, should be simply derivable.

Criterion 4. The graphics should be blocked contiguously by function;
viz., the specials should be in a contiguous block, the alphabetics should
be in a contiguous block, the numerics should be in a contiguous block,
and so on. '

Criterion 5. The binary sequence of the bit patterns representing the
eraphics should match whatever collating sequence was prescribed for the
graphics.

Criterion 6. The 48 graphics of contemporary IBM computer codes
should have, in the Stretch code, the same collating sequence, or should
be embedded in the same relative collating sequence, as the contempor-
ary collating sequence, namely, Space, then the specials . X & § * ~ /,
% # @ then the alphabetics, then the numerics.

Criterion 7, The upper and lower case alphabetics should be inter-
leaved.

Criterion 8. There should be unique bit patterns for each unique
graphic; that is, duals would not be permitted.
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As well as these criteria, there was a constraint on the size of the set. The
theoretical constraint was a maximum of 256 characters, since the byte
size of Stretch was to be 8 bits. But there was a more pragmatic constraint
due to the printer to be used with Stretch, the chain printer. The chain
printer, due to its design geometry, had 240 printing positions; so this was
clearly the maximum possible set size. However, as a practical considera-
tion, the larger the set size, the lower is the printing speed of the chain
printer. The actual choice was 120 charaeters. This was a matter of
judgment; it was decided that this increment over existing sets would be
sufficiently large to justify a departure from contemporary codes and
would not include many characters of only marginal value. Also, the set
size of 120, in terms of the 240 printing positions of the chain printer,
meant that each symbol could appear twice on the chain, yielding a not
unreasonable printing speed.

The actual character set and the coded representation is shown in
Fig. 3.6. It is evident from inspection of the code that not all criteria were
met. In fact, the criteria were somewhat mutually conflicting, and some
trade-offs were necessary.

Column 0 [ 1 l 2 ] 3 4 I 5 l 6.[ 7 8 ] -] l A I B c I D T E ] F

00 01 10 11 [ X] 01 10 11 00 01 10 11 00 01 10 11
Row

o |oooo| sp L & c k 8 0 8

1 0001

+

> + [ K s 0 8

2 jooro| - ] 8 d 1 t 1 9

3 [o011 = ° - D L T 1 9
4 |0100] A + * e m u 2
5 |oi01} | E ( E M U 2
6 jo110] ¢ - / £ n v 3 -
7 [o111] } v ) F N v 3 ?
8 |1000) % . g o W 4
o |1001] \ ; G 0 W 4
A {1010 Vv | O ' h p x 5

8 |1011] |l | " H P X 5

c |1100] # a i q y 6

D {1101 > ! A I Q Y 3
E J1110] o @ b 3 r 2 7
A RARRY P2 R B| 1 R| z| 7

Fig. 3.6 Stretch, 120-character set
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Comment on Criterion 6

The contemporary collating sequence for the 47 graphics provided on
contemporary computers was not achieved. In order to provide an
89-graphic subset and a 49-graphic subset derivable by simple logic
(Criterion 3), the specials had to be positioned somewhat arbitrarily
(see Figs. 3.7 and 3.8), and this was deemed more advisable than the
collating-sequence criterion. Nine of the contemporary specials did col-
late low to alphabetics and numerics, although even these were not,
within themselves, in the contemporary collating sequence. It was felt that
the new sequence would be quite usable and that it would be necessary
only rarely to resort a file in the transition to the Stretch code. And it is
always possible to translate codes to obtain any desired sequence.

Comment on Criterion 3.

As can be seen in Figs. 3.7 and 3.8, both the 49-graphic subset and
89-graphic subset were simply derivable from the 120-graphic code.

Column 0T112[3 4r5|e|7 8r9[A[B CLDrElF
Bit 00 01 10 11
Pat. |
00 01 10 11 00 | 01 10 11 00 | 01 10 11 0o 01 10 11
Row
o |oooo] sP & 0 8
1 (o001 C K S
2 (o010 $ 1 9
L 3 |0011 D L T
—
4 |o100 * 2
6 (0101 E M i
6 (0110 / 3 -
7 o114 F N v
8 |1000 % . 4
9 {1001 G (e} W
A J1010 ¢ ' 5
B [1011 H P X
c {1100 it 6
o |1101 A I Q Y
E [1110 @ 7
F |1111 B J R VA

ig. 3.7 Stretch, 49-character set
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Column 0 I 1 l ZJ 3 4 rs [6 l 7 8 l 9 I Ai 8 [ l D l E ' F
Bit | ao 01 10 11
Pat, |

Row 00 | 01 10 11 00 | 01 10 | 11 00 | 01 10 | 11 00 | 01 10 1
0 joooo} gp & c k 5 0 8
1 0001 + c K S 0 8
2 |o0o010 $ d 1 t 1 9
3 (0011 = D L T 1 9
4 |o100 * e m u 2

5 {0101 ( E M U 2

6 (0110 / f n v 3 -
7 {0111 ) F N v 3 ?
8 1000 . g o w 4

9 (1001 H G o] W y

A |1010 ' h p X 5

B 1011 " H P X 5

c {1100 a i q y 6

D |1101 A I Q Y 3

E |1110 b 3 r z 7

F 1111 B J R Z 7

Fig. 3.8 Stretch, 89-character set

Note that the 49-graphic set included the contemporary 48-graphic
set (see Criterion 1) and additionally had the graphic apostrophe or
single quote. The provision of a 48-graphic-plus-Space set fitted neatly
into the geometry of the 240-printing-position chain printer: 5 X 48 = 240.
Each graphic was provided in 5 printing positions, yielding very respecta-
ble printing speeds.

Note that the 49-graphic set is not entirely a subset of the 89-graphic
set. Note also that it was found not practical to retain the upper- and
lower-case relationships of punctuation and other special symbols com-
monly found on typewriter keyboards. (There was no single convention
anyway, and typists were accustomed to finding differences in this area.)

Comment of Criterion 7

The benefit of interleaving upper- and lower-case alphabetics is dubious.
(For a fuller discussion of this point, see Chapter 25, Contiguous, Non-
contiguous, and Interleaved Alphabets.) However, once it is decided to
interleave the alphabets, as was done in the Stretch code, a further
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decision is necessary: Which alphabetic should precede within the pair,
the upper-case or the lower-case? The designers of this code had ob-
served that no real precedent existed for the relative position within the
code. But the choice had to be made. They chose that lower case should
precede upper case within the pair, for reasons not known to the author.

It is interesting to note that had they made the other choice, so that
“A’” had bit pattern 0010 1100 and “a” had bit pattern 0010 1101, for
example, the derivation of the 49-character subset (Fig. 3.7) from the
120-character set (Fig. 3.6) would have been logically simpler. Observe
that in Fig. 3.7 the specials chosen alternate in code position with those
not chosen and the same is true for the alphabetics and the numerics.
However, two code positions intervene between the last special and the
first alphabetic, and no code position intervenes between the last alphabe-
tic and the first numeric. The logical equations to describe the choice of
code positions are somewhat complex because of the double gap and the
null gap. Had the opposite choice been made in assigning upper- and
lower-case alphabetics, both anomalies would disapppear, and the logical
equations would have been quite simple. It should also be noted that this
latter choice would not have affected the derivability of the 89-character
subset, since the 52 alphabetics would still occupy the same contiguous 52
code positions.

It is interesting that in the design of IPC, Information Processing
Code, described below, where the designers also chose to interleave the
upper- and lower-case alphabetics, the decision was that upper-case
should precede lower-case alphabetics within the pair.

In conjunction with the Stretch bit code, there was a punched card
code. The bits of the code were named B0, B1, B2,...,B7, from
high-order to low-order significance within the byte. A parity bit, odd
parity, named Bp was also punched. The card code (see Fig. 3.9) was a
binary card code, specified by the following algorithm:

Card Row Code Bit

12 —
11 —
0 —
1 Bp
2 BO
3 B1
4 B2
5 B3
6 B4
7 BS
8 B6
9 B7
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Fig. 3.9 Cards punched with extended character code

M 5081

L]
1
2
I
K

! l,lll! I L
s|T|ulviw|x| Y|z

[
M{N ]
mn o stuvwxyz01

!Illlll
ofrlQ|r
par

In order to distinguish cards with this binary punching from cards
punched with the conventional Hollerith card code, binary punched cards
had 12-holes and 11-holes punched in column 1. Within an application,
conventional Hollerith card code punching could be used in the right end
of such cards, as shown in Fig. 3.9. The Space character, having no bits in
the code, would nevertheless have a parity bit punched in row 1.
However, skipped fields would have no punches, as can be seen in the
lower card in Fig. 3.9.
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As in discussed in Chapter 16, “Decimal ASCIIL,” the structural
strength of a card punched in binary came under serious question
particularly if most of the data was numeric (which would lead to one or
more rows being laced because of the zone bits in the representation of
the numerics). It should be noted that the question of binary card coding
in the Decimal ASCII debate was considered in the environment of an
individual card, mailed to a human, carried by the human in a pocket in
varying conditions of humidity, temperature, and abuse, and subsequently
required to be further processed in card equipment. By contrast, the
normal environment for a Stretch card was much more protective—
generally a deck of cards, handled with reasonable care in a machine
room environment. The binary card discussed in Chapter 16 was expected
to be subjected to structural stress, the Stretch card was not.

35 IPC

IPC, Information Processing Code, was developed by Edward Morenoff,
John B. McLean, and Lt. Lawrence Odell in 1964. It was intended as an
information manipulation-oriented character set with associated binary
code representation. The author does not know if it was actually im-
plemented, but it has some interesting aspects. The design criteria were
somewhat similar to those of the Stretch code.

Criterion 1. The set should contain the following graphics:

®  Upper- and lower-case alphabetics
®  Numerics

®  The more important punctuation symbols found on office typewriters
200

b

B Special symbols peculiar to user operations.

Criterion 2. Certain subsets, 7-bit, 6-bit, 5-bit, 4-bit, should be easily
derivable.

Criterion 3. Code positions should be provided that would be dedicated
to local interpretation.

IPC was an 8-bit code. However, only 128 characters were specified,
and the use of the 8th bit was deliberately left undefined for specification
in local environments on the basis of particular applications. For example,
the 8th bit might be used as a parity bit to increase the reliability of data
transmission. Or it might be used to indicate that some special signifi-
cance should be attached to a particular character, such as being part of a
“keyword,” or a part of a highly sensitive piece of information. Since the
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Column 0 1 2 3 4 5 6 7

Bit b7] 0 0 0 0 1 1 1 1
Panernr’bs 0 0 1 1 0 0 1 1
b6 0 1 o 1 0 1 0 1

Row b4 b3 b2 b1

1] 00O0GC 0 c K g ( o 5 3
1 0001 1 c X s | N 3 2
2 0010 2 D 1, T ? g < @
3 0011 3 d 1 t # 1 @
4 0100 4 E M u o = > Bk,
5 0101 5 e n u / - % Bk,
6 0110 6 F N v Y o | Bk
7 0111 7 £ n v s ' Bk,
8 1000 8 G ) W * 8 .
9 100 1 9 g ° W ) ; 4 Cl
10 1010 SP H P X . @ ) C,
11 1011 RES h P X . X - Cq
12 1100 A 1 Q Y T " K c,
13 1101 a 1 q y B ' - Cs
14 1110 B J R z W $ C Ce
15 1111 b i r z + ¢ ] ¢,

Fig. 3.10 |PC, 7-bit subset

8th bit is undefined, the code is shown in a 7-bit representation (see Fig.
3.10). The names of the graphics and control characters are given in
Table 3.2.

As with the Stretch code, IPC has the upper- and lower-case
alphabetics interleaved. And as with the Stretch code, a decision had to
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TABLE 3.2. [IPC, special graphics and controls

( Left parenthesis " Quotes
! Exclamation > Apostrophe
?  Question $ Dollars
# Numbers ¢ Cents
°  Degrees Y. Summation
/  Slash 1/4 One quarter
*  Asterisk = Equal or less
) Right parenthesis 1/2 One half
Period = Equal or greater
, Comma 3/4 Three fourths
7 Pi o Infinite
—  Minus { Arrow (down)
o Omega 0 Theta
+ Plus 1 Arrow (up)
a Alpha ¢ Phi
X Multiply — Arrow (right)
B Beta k Kappa
+ Divide «— Arrow (left)
= Equals ]  Right bracket
- Dash [ Left bracket
v Square root *  Cubed
§  Integral > Squared
:  Colon Escape code #2
:  Semicolon €1 Escape code #1
@ At Bk; Blank key #i
X Box —x * Center dot

Ci Control #i

be made on which should precede within the pair. The IPC designers
chose that upper case should precede lower case, so that proper nouns
would collate ahead of common nouns. For example, Jack

0011110,0001101, 0010001, 0100001
collates ahead of jack
0011111, 0001101, 0010001, 0100001.

The most interesting aspect of IPC is the design philosphy of Criter-
ion 3—local interpretation. In the design of ASCII, described in later
chapters, a set of control characters was defined to include several types
of input/output equipments, thus forming a general set, which must of
necessity have more characters than the set contained in IPC that is
interpreted differently for different equipments.
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Example

The seven control characters could be locally interpreted as follows:

C1 backspace C5 Stop underline
C2 Unformatted tab C6 Carriage return
C3 Formatted tab C7 End of message

C4 Start underline

Cotumn 0 1 2 3 4 5 6 7
Bit b710 0 o 0 1 1 1 1
Patternl'—’ b6 (1] 0 1 1 0 0 1 1
b5 0 1 0 1 0 1 0 1

Row b4 b3 b2 b1

0 0000 0 C K S
1 0001 1 c k 8
2 0010 2 D L T
3 0011 3 d 1 t
4 0100 4 E M i}
5 0101 5 e m u
6 0110 6 F N A
7 0111 7 £ n v
8 1000 8 G 0 W
9 1001 9 g o w
10 1010 sp H P X
11 1011 RES h P X
12 1100 A T Q Y
13 1101 a i q y
14 1110 B J R 4
15 1111 b J r z

Fig. 3.11 IPC, 6-bit subset
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Contained within the set were four positions with unassigned meaning
and corresponding to two “blank keys” on a keyboard. Thus there are
two upper-case and two lower-case characters available for local interpre-
tation.

As stated under Criterion 3, subsets should be simply derivable. By
dropping the high-order bit, a 6-bit subset is derived (Fig. 3.11). It
contains numerics, upper- and lower-case alphabetics, Space, and the
reserved code for local use.

Column 0 1 2 3 4 5 6 7
Bit b7 |0 0 ] 0 1 1 1 1
Patternl——" b6 0 0 1 1 0 0 1 1
b5 0 1 0 1 0 1 0 1

Row [ b4 b3 b2 b1 '

0 0000 UN ¢ K S

1 0001

2 0010 UN D L T

3 0011

4 0100 UN E M 1)

5 0101

6 0110 UN F N v

7 0111

8 1000 UN G 0 W

9 1001

10 1010 SpP H P X

1" 1011

12 1100 A 1 Q Y

13 1101

14 1110 B J R Z

15 1111

UN - Unassigned

Fig. 3.12 IPC, b-bit subset
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Column 0
Bit b7
Pattern b6 0
b5
Row b4 b3 b2 b1
o 0000 )
1 0001 1
2 0010 2
3 0011 3
4 0100 4
5 0101 5
6 06110 6
7 0111 7
8 1000 8
9 1001 9
10 1010 UN
1 1011 N
12 1100 UN
13 1101 UN
14 1110 UN
15 1111 UN
. . UN - Unassigned
Fig. 3.13 IPC, 4-bit subset

By dropping the highest- and lowest-order bits, a 5-bit subset is
derived (Fig. 3.12). It contains upper-case alphabetics, Space and five
“unassigned” characters. One of these unassigned characters could be
used to indicate either upper- or lower-case representation.

By dropping the three highest-order bits, a 4-bit subset is derived
(Fig. 3.13). It contains the numerics and 6 ‘“‘unassigned” characters for

local interpretation.
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E;:“em——__’ 00 01 10 11
\ 4

0000 0 " - b
0001 1 A J /
0010 2 B K s
0011 3 C L T
0100 4 ) M u
0101 5 E N v
0110 6 F 0 W
0111 7 G P X
1000 8 H Q Y
1001 9 I R z
1010 o e v d
1011 = $ .
1100 s ) * (
1101 = 4 < >
1110 - il L -
1111 ; u ; n

o - OR u - Up Shift
~ - AND b - Space

e — End of line, end of card, d - Down Shift
or carriage return n - Null

Fig. 3.14 Early 64-character proposal

3.6 AN EARLY 64-CHARACTER CODE PROPOSAL

In a Letter to the Editor, Communications of the ACM, 1959 May, H. S.
Bright proposed a 64-character, 6-bit code. At that time, most printing
and keypunching equipment was limited to 47 or 48 characters. The
proposed code is shown in Fig. 3.14.

It is structurally compatible with BCDIC (Fig. 3.5). The sequence of
the code table columns containing the alphabetics has been reversed from
BCDIC, so that the alphabetics are in relative collating sequence. Oddly
enough, Space, which traditionally collates low to numerics, alphabetics,
and specials, was not assigned to the bit pattern 000000. This was
undoubtedly done so that zero could be given bit pattern 000000, so that
the numerics would be in relative collating sequence.
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3.7 AN EARLY 256-CHARACTER CARD CODE PROPOSAL

In 1959 September, R. W. Bemer proposed a “Generalized Card Code
for 256 Characters.” At that time, as stated previously, character
sets provided on printers and keypunches were mainly limited to 48.

As described earlier in this chapter, Project Stretch was started in
IBM in 1954. It was a project to develop a bigger and faster computer -
than any then in the field. One decision made was that Stretch would
have an 8-bit architecture, in contrast with most computers of that time
which had a 6-bit, or 6-bit oriented, architecture.

R. W. Bemer, therefore, foresaw the need for a 256-character card
code. The card code he proposed was not; in fact, adopted by Stretch, but
it has many ingenious aspects. The card code set had criteria for design.

Criterion 1. The new set must contain the existing 48-character set as a
subset, with exactly the same graphic-to-hole-pattern relationship.

Criterion 2. The new set should contain at least 256 combinations and
be expansible beyond this number.

Criterion 3. Meanings need not initially be assigned to all hole patterns.

Criterion 4. The hole patterns should be structured, if possible, on
existing zone punch/digit punch hole patterns.

Criterion 5. Hole patterns should be constructible and reproducible on
existing keypunches (for example, the 024 or 026).

Criterion 6. There should be no duals.
Criterion 7. ALGOL characters should be included.

Criterion 8. Characters not in the current IBM set or ALGOL set, but
used by other manufacturers, should be included.

Criterion 9. There should be a simple relationship between upper- and
lower-case alphabetic hole patterns.

There are 322 possible combinations of no more than four punches
per card column, when no more than two may be zones (12, 11, 0) and no
more than two may be digits (1 through 9). Figure 3.15 shows the 256 of
these that remain when all combinations with two-digit punches contain-
ing a 1-punch and ten other combinations are excluded. The figure also
shows assignment of both old and new graphics to hole patterns.

An ingenious aspect of this proposal is that each of the hole patterns
may be constructed in a card column by superimposing the hole patterns
for two of the alphameric characters in current use. These two characters
are chosen for their mnemonic content. Thus [ is represented mnemoni-
cally by LB (for Left Bracket) and is constructed of the hole pattern 11-3,
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An Early 256-Character Card Code Proposal

Fig. 3.156 A 256-character card code proposal

M Mnemonic

Zone

Punches 12 11 0 12-11 11-0 0-12

Digit

Punches | G | M| G M G M |G M G M G M |G M
P + le |- |-]o 0| & —+10 |o-1]0 +0

1 1 1 1A A J J / / a —A 1] oJ

2 21218 B K K|S S b —B | k 0K | s +S

3 313]|C C L L |T T c —C {1 OL |t +T

4 4 14 ]|D D M M | U U d —Di{m OM | u +U

5 5 6 |E E N N |V Y e —E | n ON | v +V

6 6 | 6|F F 0 o | W w f —F o 00 |w +W

7 71716 G P P X X ] —G|p OP | x +X

8 8 18| H H Q Q|Y Y h -H | q 0Q |y +Y

9 9 |9 |1 | R R | Z Z i = |r OR | z +Z

2-3 \ [ LB = LS |; SC

24 NN _ uUs

2.5

2-6 N switch | SW| bool BO

2-7 N { BG stop | SP | O BX

2-8 \ # sY v sQ

2-9 \ 1 RB | = RS

34 Xx A LM comm | CM ~ TD

35 t\\ ¢ |CE < LE [10 | TN

36 NN Y LO : co |« LW

3-7 { LP proc | PC complex | CX

3-8 # | #|. . $ $ , )

3-9 O Ccl | < LR cr CR | A TR

4.5 } ND | # UN

46 0 UW| do DO 1 DW

4.7 ° DG| * PM dbl pr | DP

4.8 @ @| X | X * % % " DQ |’ Qu

4-9 = ID \ RD

5-6 - NO v EO

5-7 > GE EP

5-8 ¥ EH = EQ

5-9 ifei | IE return | RE | | VR

6-7 goto | GO

6-8 % HF

6-9 ? IF orif | OR for FR | = RW

7-8

7-9 ) RP > GR

89 Ya QR array| RY | e 1Y

G  Graphic

83

for L, and 12-2, for B. Therefore, the hole pattern chosen to represent
Left Bracket is 12-11-2-3. Fig. 3.16 shows the derivation of the
mnemonics chosen for new graphics.

Some ALGOL words were arbitrarily assigned to single graphics:

If is assigned to ?
BEGIN is assigned to {
END is assigned to }
INTEGER is assigned to #
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Mne- Mne-
Graphic monic Symbolizing Graphic monic Symbolizing
+ + ’ ’
X * : SC SemiColon
/ / : co COlon
\ RD Reverse Divide ! EP Exclamation Point
t PM Plus or Minus ! Qu QUote
v sSQ SQuare root “ Da Double Quote
= EQ EQuals = LS Left Substitution
+ UN UNequals =: RS Right Substitution
> GR GreateR 10 TN base TeN
= GE Greater or Equal ] RB Right Bracket
< LE Lesser or Equal { LP Left Parenthesis
< LR LesseR ) RP Right Parenthesis
~ TD TilDe [ LB Left Bracket
l NO NOt 4 uw Up arroW
vV LO Logical Or ) DW Down arroW
A LM Logical Multiply - LW Left arroW
v EO Exclusive Or - RW Right arroW
= ID IDentical to { BG BeGin
} ND eND
¢ CE CEnts ] VR VeRtical
Ya QR one QuarteR A TR TRiangle
% HF one HaLf 0 BX BoX
cr CR CRedit ®) Ci Clrcle
° DG DeGree _ us UnderScore
oo 1Y InfinitY procedure PC ProCedure
go to GO GO to switch SW SWitch
do DO DO array RY aRraY
return RE REturn comment CM CoMment
stop SP StoP integer #
for FR FoR boolean BO BOolean
or if OR OR if complex CX CompleX
if either IE If Either double pr DP Double Precision

Fig. 3.16 Mnemonic derivations for characters

Other words could be assigned to single graphics:

COMMENT could be assigned to "
STOP could be assigned to !
RETURN could be assigned to <«
Record Mark #+ and Group Mark = were assigned to existing hole
patterns 0-8-2 and 12-8-5, respectively. The mnemonics chosen, SY and

EH, are not of course mnemonics for Record Mark and Group Mark, but
are mnemonics for the appropriate hole patterns for keypunching:

S, 0-2 Y, 0-8 SY, 0-8-2
E, 12-5 H, 12-8 EH, 12-8-5
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Column 0417 1 ‘ 2 ]473 a4 Jﬁ 5 l 6 I 7 8 I 9 ‘ A I B cAJ 944[ E LﬁF
Bit 00 019 10 11
Pat.
00 01 10 11 00 01 10 11 0o 01 10 11 00 01 10 11
Row
-
o |oooo SP
1 10001 A / J 1
2 joo010 B S K 2
2 [oors 2R3 AW o 3|t L
4 (0100 D U M 4
5 0101 TL CL E 5 v N
6 10110 < L F 6 W 0
7 o111 7 X P G
8 |1000 H Y Q 8
INQ
9 |1001
IDLE ir | T 9 Z R
A [1010 \ EgT ? 0 £ !
8 11011 # . S
¢ [1100 ; T'%L N e | « *
b |1101 v # A £
E (1110 > b - &
F l11114
TL -~ Transmit Leader INQ -~ Inquiry
CL -~ Control Leader ERR - Error
SOR1 ~ Start of Record 0dd IDLE - Idle
ACK! -~ Acknowledge 0dd *TEL - Telephone
SOR2 ~ Start of Record Even #EOT - End of Transmission/Message

ACK2 Acknowledge Even

. * May be sent as valid
Flg. 3.17 4-out-of-8 code data characters

3.8 4-OUT-OF-8 CODE

Another code of the early 1960s had an interesting characteristic. It was
used solely for data transmission; it was an 8-bit code. The interesting
characteristic was that, of the 8 possible bit positions for any bit pattern
of the code, exactly four of the bits would be one-bits. Hence the name,
4-out-of-8 code (see Fig. 3.17). Any single “hit” (the accidental change of
a zero-bit to a one-bit, or of a one-bit to a zero-bit) on a bit of a
transmitted bit pattern would create an other than 4-out-of-8 bit pattern,
and such erroneous bit patterns could be checked by very simple circuitry.
Each bit pattern, as received, was fed through a counter. If the count was
4, the bit pattern was accepted as valid, otherwise a data check was
raised. Of course, compensating hits (that is to say, hits on a single bit
pattern that changed some one-bit to a zero-bit and some zero-bit to a
one-bit) would not be detected, but occurrence of such hits was statisti-
cally very much less than occurrence of single bit hits.
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Mathematically, the code allows exactly 70 valid 4-out-of-8 bit
patterns. As can be seen by examination of Fig. 3.17, 64 of these were
graphic characters (called “data characters” at that time) and 6 were
control characters. Thus this code fittted BCDIC nicely with its 64
characters. As will be described in Chapter 5, 7 of the 64 characters of
BCDIC were control characters between various BCDIC CPU’s and
magnetic tape drives. However, these 7 BCDIC control characters were
not 4-out-of-8 control characters; that is to say, they would be transmit-
ted, end to end, without effecting any control actions on the data
transmission units.

Some of the 4-out-of-8 control characters did double duty, depend-
ing on the data transmission situation. Thus a data transmission unit,
sending a data record, would precede it with SOR1, Start of Record Odd.
When the transmission unit at the other end received this record, it would
send back to the original transmission unit ACKI, Acknowledge Odd
(providing no data check had been detected by the receiving unit).

Note from Fig. 3.17 that although the numerics and alphabetics are
not contiguous within columns, they are nevertheless BCD, under the
definitions in Chapter 2.
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The Duals
of
BCDIC

The code described in the previous chapter as ‘‘early BCDIC” will be
called BCDIC, Version 1 in this chapter. This coded character set was
extended; first by the addition of duals, to BCDIC, Version 2, and then by
an expansion to 64 characters, to BCDIC, Version 3.

4.1 BCDIC, VERSION 1

In the late 1950s, the chain printers provided by IBM had a printing
repertoire of 48 graphic characters, as follows:

Space 1
Alphabetics: A to Z 26
Numerics: 0 to 9 10
Specials:
Dollar sign
Slash
Lozenge
Asterisk
Percent sign
At sign
Ampersand
Minus, Hyphen
Number sign
Period .
Comma )

11

* I RE K FHR T

-

87
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Hole
Pattern— 0 1 12
SP - &
1 1 / J A
2 2 S K B
3 3 T L c
4 4 U M D
5 5 v N E
6 6 W 0 F
7 7 X P G
8 8 Y Q H
9 9 Z R 1
0 0
8-3 # $
8-4 @ A * ¢

Fig. 4.1 BCDIC, Version 1

These 48 graphic characters were also keypunchable, interpretable, and
verifiable by a single keystroke on the IBM keypunches and verifiers of
the day. These 48 characters, which constituted BCDIC, Version 1, are
shown in Fig. 4.1

4.2 BCDIC, VERSION 2

Two data processing requirements, European languages and FORTRAN,
led to the development of what came to be called “duals.”

4.2.1 European Languages Requirements

The languages of some European countries (Germany, Sweden, Den-
mark, Norway, Finland) require 29 letters—the usual 26 alphabetics of
English-speaking countries plus three letters called diacritics. Spanish and
Portuguese alphabets have 27 letters. It would be clearly advantageous,
from a marketing point of view, to be able to provide these extra
alphabetics on printers, keypunches, and verifiers. But how could this be
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done? The solution that was examined first was to increase the character
capability of printers, keypunches, and verifiers from 48 to 51.

In the case of chain printers, this was entirely feasible, since the chain
has a possible graphic capability of 240. In fact, on 48-character chains,
each of the 48 graphics appears five times on the 240-graphic chain. If
there are more than 48 graphics, 51, for example, some of these graphics
will not appear five times on the chain; in consequence, the printing speed
(lines per minute) would be reduced. Since printing speed was (and is) a
primary competitive factor for printers, the solution of providing 51
graphics on a chain, with consequent slower printing speeds, was unat-
tractive.

In the case of the keypunch (and verifier), two approaches were
examined. Under the first approach, card hole patterns beyond the 48
could be assigned and keypunched by the technique known as multi-
punching. Under this technique, while a “multipunch” key is held down,
other keys may be struck, but the punched card does not advance to the
next card column. Accordingly, a number of holes may be punched in a
single card column. Clearly, when any of the three diacritic letters is
encountered on a data sheet by a keypunch operator, the keypunching
mode would have to depart from touch-keying while the operator pays
special attention to holding down the multipunch key and to keying such
other keys as necessary to generate the appropriate hole pattern. In this,
approach, then, the keypunching speed would be reduced. As with the
line-printer solution discussed above, this approach to keypunching was
unattractive.

Under the second approach, either existing keypunches and verifiers
could be modified, or new keypunches and verifiers could be designed
with additional keys to generate each of the three diacritics with a single
keystroke. Presumably (after some training) keypunch operators would be
able to touch-key the additional keys, so keypunching speed would be
maintained. This approach would result in a relatively costly design and
development project, with a product that would have only a small market.
The projected additional price for European keypunches and verifiers was
unattractive.

A different kind of solution was then proposed. It was observed that
three special graphics @ # $ were peculiar in origin and use to English-
speaking countries. They were neither needed nor used at that time in
continental European countries. The suggestion was to substitute the three
diacritics for these three specials, wherever they appeared on the chain.
The consequence was that printing speed would not be reduced. Simi-
larly, they could be substituted on the keytops and printing plates of
keypunches.
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Under this substitution approach, only minor costs would be in-
volved. The solution, then, had the following characteristics:

No reduction in printing speeds.
No reduction in keypunching/verifying speeds.
Small cost.

This approach had the advantages above, and no (known) disadvantages.
It was adopted. The approach is still used in current products.

It should be noted, in respect to this approach, that there results a
number of graphics—multiple graphics, that is—for three card hole
patterns, as shown in Fig. 4.2. However, within a country, the graphic set
is unique, without duals.

Hole pattern | U.S.A. | Germany | Sweden | Finland | Norway | Denmark

8-3 # A A A £ £
8-4 @ o 6 R @ @
11-8-3 $ U A A A A

Fig. 4.2 Diacritic letters

4.2.2 FORTRAN Requirements

The FORTRAN programming language had, among its other objectives,
the objective of a printed listing that would resemble as much as possible
the formulae found in mathematical text books. Many of the mathemati-
cal symbols found in text books were deemed to be unnecessary for
FORTRAN. Some mathematical symbols / — ., were already provided
on IBM printers. It was decided that the asterisk * could be used to
represent multiplication. But five symbols ( ) + = ' (not provided on
IBM printers) were deemed to be absolutely necessary for FORTRAN.
How to provide them?

It was decided that the most economical and efficient solution was to
provide them by substitution, as with the European diacritics. The only
remaining problem was to choose which five of the specials provided on
IBM 48-character printers, keypunches, and verifiers should be replaced
by the five mathematical symbols. It was decided to replace % X & # @
by () + = ' (respectively). This solution resulted in duals within a
country. The addition of these five duals led to BCDIC, Version 2, shown
in Fig. 4.3.
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:’l:tltfern—'J 0 " 12
sP B - & or +

1 1 / J A
2 2 s K B
3 3 T L C
4 4 U M D
5 5 v N E
6 6 W o] F
7 7 X P G
8 8 Y Q H
9 9 Z R I
0 0 -

8-3 # or = s $

8-4 @ or ! % or ( * X or )

8-5

8-6

8-7

Hole Patterns:

[0] 8-2
(2] 0-8-2

Fig. 4.3 BCDIC, Version 2

Initially, this solution was ideal. With very few exceptions, computing
installations in those days were either of a commercial orientation or of a
scientific/engineering orientation. In ‘“‘commercial” installations, such
commercial applications as payroll, inventory, premium billing, and utility
billing were processed; in such installations, neither scientific nor en-
gineering applications were processed. Similarly, in ‘“‘scientific’’ installa-
tions, scientific or engineering calculations were processed, and commer-
cial applications were not. (I repeat, there were few exceptions.)

The exceptions that began to be noted were those users who had
installations that were commercially oriented, although the company itself
was of an engineering or scientific nature. In such companies, there were
people who wanted to use the computer for scientific or engineering
calculations. It is to be noted that the processes of compiling, debugging,
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and executing FORTRAN programs could be performed regardless of
whether the printers, keypunches, and verifiers had the scientific or
commercial graphic sets. However, if the installation had the commercial
graphic set, program listings were somewhat bizarre. For example, a
FORTRAN statement such as

X=A+B)*(C-D)E+F=*G)
would show in the program listing as
X#% A&BX*%C—Dx/% E&F*G x

Such program listings, though bizarre, were unambiguous. To FOR-
TRAN programmers who suffered in the commercial installations of the
day, the mental translation of

% to (
o to )
& to +
# to =
@ to '

became an automatic act.

It should be reemphasized that the scientific symbols seldom (if ever)
were needed or used in the listings that were the final results of the
executed programs. It was only in the listings of the original FORTRAN
programs that programmers had to put up with the graphic substitutions.
Programmers were (and, incidentally, still are) notably vocal. If there
were something to complain about, they complained vociferously. These
complaints gave rise to the question, Could this situation, admittedly
infrequent but nonetheless aggravating, be ameliorated?

4.3 BCDIC, VERSION 3

A solution to the ‘“‘duals problem” was attempted with the IBM 1410.
(Another attempt was made in the System/360. See Chapter 9, The Duals
of EBCDIC.) The 1410 was to have as its console, a typewriter. The
typewriter could provide up to 88 graphics. It was decided it would
provide 63, and Space. (The reasons for a character set size of 64 are
detailed in the following chapter, The Size of BCDIC.) The 47 graphics
and Space provided on 48-character chain printers are shown in Fig. 4.3.
The 63 graphics and space proposed to be provided on the 1410 console
typewriter are shown in Fig. 4.4; it is called BCDIC, Version 3.

It is to be observed in Fig. 4.4 that four of the five “scientific”
graphics () = ' were to be given unique card hole patterns. Curiously, the
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Hole
Pattern— 0 1 12
SP ¢ L] - &
1 1 / J A
2 2 S K B
3 3 T L c
4 4 U M D
5 5 v N E
6 6 W 0 ¥
7 7 X P ¢
8 8 Y Q H
9 9 VA R I
0 0 R ’
8-3 # R §
8-4 @ % * <
8-5 = ) (
8-6 > ' H >
§-7 v " A $
Hole Patterns:
[7] 8-2
[2] 0-8-2

Fig. 4.4 BCDIC, Version 3

fiftth scientific graphic + was not to be provided. The author does not
know the reason for this curious anomaly.

Beyond the four scientific graphics, 12 new graphics had been added.
These were of two kinds:

Kind 1 D2y < > 0t
Kind 2 + Vv A =
The graphics of Kind 1 were added as a result of market studies for
“most-needed graphics’ in data processing applications. The graphics of
Kind 2 were chosen to meet a criterion which will be described in the
next chapter.

This coded character set was announced for the IBM 1410. How-
ever, as will be discussed in the next chapter, a review of coded character

sets was then undertaken, and this led to the BCD Interchange Code,
BCDIC.






The Size
of
BCDIC

5.1 SIZE OF CHARACTER SET

What limits the size of a character set? Is it the number of characters in a
character set? The limitation is mathematical, and comes from the binary
characteristic of the code that represents the character set. Recall that the
binary aspect comes from the nature of the physical medium or hardware
that handles the character code. Once the binary aspect of the physical
medium is perceived, the binary capacity must next be determined. Some
examples follow.

Magnetic tape, seven tracks. One track is for parity, leaving six tracks
for storage of characters. The character set size is 2° = 64 characters.

Magnetic tape, nine tracks. One track is for parity, leaving eight tracks
for characters. Set size = 2% = 256 characters.

Paper tape, eight rows. One track is for parity, leaving seven tracks for
characters. Set size = 27 = 128 characters.

Punched cards, twelve rows. Set size = 2'> = 4096 characters. Most
punched card character sets have a set size less than the maximum
capacity. For the System/360, for example, the punched card character
set size is restricted to 256, in order to match the Nine Track Magnetic
Tape character set size of 256 characters.

As described in the previous chapter, IBM character set sizes before
the introduction of the 1410 were 48 characters, a limitation imposed by
the chain printers and keypunches of the day. The chain-printer limitation
of 48 characters was based not on the number of possible different

95
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graphic characters on the chain but on marketing considerations having to
do with printing speeds.

With the introduction of the 1410, its console typewriter provided a
possible character set size of 88 characters. The limitation of printing
speed held the chain printer set size to 48 characters, but it was decided to
expand the console typewriter set size beyond 48 characters. What should
this character set size be?

There were two hardware aspects which limited the set size, happily
to the same number. The 1410 architecture was 6 bits, hence maximum
set size was 64 characters. Magnetic tape for the 1410 was seven tracks.
One track was for parity leaving six tracks for characters. So the magnetic
tape also restricted the set size to a maximum of 64.

[t was decided to expand the 1410 character set size to 64 characters.
Before this time, the 48-character set, BCDIC, Version 2, was as shown in
Fig. 5.1.

?’iatttem A B BA
Hole
Pattern~—¥ 0 T 12
sp - & or +
1 1 1 / J A
2 2 2 S K B
21 3 3 T L c
4 4 4 U M D
a 1 5 5 v E
42 6 6 W 0 F
421 7 7 X P G
8 8 8 Y Q H
8 1 9 9 Z R I
8 2 0 0
8 21 8-3 # or = s $
8 4 8-4 @ or ' % or ( * T or )

Fig. 5.1 BCDIC, Version 2
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5.2 BCDIC, VERSION 3

The binary coded decimal (BCD) nature of the card-code-to-bit-code
relationship pointed to the obvious card-code expansion, to include 8-2,
8-5, 8-6, 8-7 digit punches in conjunction with the zone punches, as
shown in Fig. 5.2.

There were two problems to be solved in determining the 64 hole
patterns. Since the numeric “0” would clearly retain its card hole pattern
0, what hole patterns would be assigned to code positions in Fig. 5.2
indicated by ' and 2? Both of these code positions (following the table
column and table row indications) would have the card hole pattern of O,
but three code table positions with the same hole pattern, 0, would be
unacceptable.

?’iatttern - A B BA
Hole
Pattern—¥ 0 11 12
SP UN. L] - & or +
1 1 1 / J A
2 2 9 S K B
21 3 3 T L c
4 4 4 U M D
4 1 5 5 A N E
42 6 6 W 0 F
421 7 7 X P G
8 8 8 Y Q H
8 1 9 9 Z R I
8 2 0 0 E UN IL UN. L] UN. [S_
8 21 8-3 # or = , $
8 4 8-4 @ or ' %z or ( * X or )
84 1 8-5 UN. UN. UN. UN.
842 8-6 UN. UN. UN. UN.
8421 8-7 UN. UN. UN. UN.

Hole Patterns: UN. - Unassigned graphic

[1] 8-2
2] 0-8-2

Fig. 5.2 Expansion of BCDIC card code to 64
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?’iatttern A B BA
Hole
Pattern=—¥ 0 1 12
sP ¢ T—l - &
! ! 1 / J A
2 2 2 s K B
21 3 3 T L C
4 4 4 U M D
4 1 5 5 v N E
4 2 6 6 A 0 F
421 7 7 x P G
8 8 8 Y Q H
8 1 9 9 Z R I
8 2 0 0 ¥ L2 i ?
8 21 8-3 # , $
8 4 8-4 @ 9 * ﬂ
84 1 8-5 : = ) (
842 8-6 > ' ; <
8421 8-7 ;L " e R E
Hole Patterns: SP - Space
[7] 8-2
[2] 0-8-2

Fig. 5.3 BCDIC, Version 3

Note that the bit pattern for code table position ? is 82. From the
BCD relationship, therefore, a card hole pattern of 8-2 would generate
the proper bit pattern. Combining the digit punches 8-2 with a zone
punch 0 would therefore generate the correct bit pattern, A82, for code
table position 2. This hole pattern therefore was chosen for this code
position.

But what about code table position '? Although the numeric “0”
occupies code table position > and has the hole pattern 0, a proper hole
pattern from a BCD relationship point of view would be 8-2.

It should be pointed out that the objective was to determine a set of
64 hole patterns with a BCD relationship. One such set would be the 16
digit combinations, ‘“no-digits”’, 1, 2, 3, 4, 5, 6,7, 8, 9, 8-2, 8-3, 8-4, 8-5,
8-6, 8-7 taken with the four zone punches, “no-zone”, 0, 12, and 11.
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However, this set does not include the hole patterns 12-0 and 11-0, which
were widely used in card processing applications. In order to include
these in the BCDIC set, two would have to be dropped out of the set of
64 above. The two chosen to be dropped out were 12-8-2 and 11-8-2.
(Note: As described in Chapter 10, these were included in the 64-
character subset for EBCDIC, and 12-0 and 11-0 were not included.)

The hole patterns 11-0 and 12-0 fall logically, for the code table of
Fig. 5.2, in code positions * and °. The only remaining hole pattern from
the set of 64 above that has no logical position is 8-2, and the single code
table position without an assigned hole pattern is position !, so that by a
process of elimination, the hole pattern 8-2 was assigned to code table
position .

As described in the previous chapter, 16 graphics had been chosen
for the IBM 1410 to expand the character set from 48 to 64. The result,
BCDIC, Version 3, is shown in Fig. 5.3.

5.3 BCDIC, VERSION 4

Of these 16 graphics, four had been chosen to eliminate duals and
provide () ' = as unique graphics. Eight had been chosen as a result of
market studies for most-wanted additional graphics:

A G

Four had been chosen to meet an interesting criterion:

+ = J A

Thesc four graphics occupied code positions 2, ) 4, and °, whose bit
patterns had a control function with respect to magnetic-tape devices on
one or another of the IBM computing systems.

There is an aspect of human nature which surfaces in data proces-
sing. Experience has shown that if graphics are provided on a computing
system, they will be used in one way or another by customers, even if they
have no intrinsic meaning. The lozenge is an example. It has no intrinsic
meaning but customers came to use it to signify things peculiar to their
applications—within applications, customers gave the lozenge a meaning.
For example, in banking installations, the lozenge was frequently used on
tabulation listings to indicate (to the customer) second level totals.

But it would be very undesirable if customers, within an application,
used the graphics for code positions ?, 3, %, and ° so that they would be
required to print out on listings. The actual printing of such graphics
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would not present any hazard, but the data containing the bit patterns
representing these graphics, if written on or read from magnetic tape,
might cause strange and unwanted results. These bit patterns had a
common and interesting characteristic. They were generated or removed
automatically by the magnetic-tape hardware. The customer did not have
to enter them with his input data.

The obvious criterion for graphics to be assigned to these code
positions was that they should cause customers to be disinclined to use
them in applications. They should, therefore, be abstract shapes without
intrinsic meaning. The graphic shapes finally chosen to meet the criterion
are as follows:

2 3 4 5
+ Vv A #F

How well the graphics meet the criterion the reader can judge.
As stated in the previous chapter, a reconsideration of BCDIC,
Version 3 was undertaken. There were a number of reasons:
1. The plus sign was not provided.
2. The characters

l<|>|=l'|

[12-8-5 | 11-8-5 | 0-8-5

would require multipunching on a keypunch. The speed of
keypunching FORTRAN source language programs would be re-
duced.

3. FORTRAN program decks, keypunched according to the 1410 pro-
posal, BCDIC, Version 3, could not be compiled on any non-1410
computer, because the card hole patterns (and hence the bit patterns)
for () = ' had been changed. Similarly, the FORTRAN compiler for
the 1410 could not compile any FORTRAN program decks from
non-1410 computers.

4. If a 1410 FORTRAN program deck were entered into a 1410, it
would not list properly on the chain printer of the 1410. () = '
would not list as ( ) = ' nor indeed even list as % X # @ (the dual
graphics). Such a program deck could be listed properly on the 1410
console typewriter, but this mode of listing would be excessively slow
as compared with listing on a chain printer.
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Reason 3 above was crucial. The ability to enter, list, compile, and
execute a FORTRAN deck on any IBM computing system was a very
strong sales point. Therefore, the 1410 coding proposal was changed to
remedy the four problems above.

The result of this change became the BCD Interchange Code,
BCDIC. The criteria set for BCDIC were as follows:

1. The 48-character code would be extended to 64 characters—63
graphics and Space.

2. Compatibility with the 48 characters of the day—Space, 10 numerics,
26 alphabetics, and 11 specials (including the 5 duals)—would be
maintained. That is to say, BCDIC, Version 2 (Fig. 5.1) would be the
point of departure.

I?-"ie:ttern A B BA
Hole
Pattern—® 0 " 12
SP ¢ L2 - & or +
1 1 1 / J &
2 2 2 S K B
21 3 3 T L C
4 4 4 U M D
4 1 5 5 v N E
42 6 6 W 0 F
421 7 7 X P G
8 8 8 Y Q H
8 1 9 9 Z R I
8 2 0 0 % u | 2
8 21 8-3 # or = , $
8 4 8-4 @ or ! % or ) * Xor )
84 1 8-5 l—a- u |_6_
842 8-6 > Lk— ; <
8421 8-7 v L7 A A \_91 s 10
Hole Patterns: SP - Space
[7] 8-2
[2] 0-8-2

Fig. 54 BCDIC, Version 4
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3. As much as possible, compatibility with the announced 1410 set,
BCDIC, Version 3 (Fig. 5.3), would be maintained.

4. Graphics for control characters should have no intrinsic meaning.

Initially, these criteria led to the code table of Fig. 5.4.

5.4 BCDIC, FINAL VERSION

Code positions ©, 5, 2, * that had held () = ' in the 1410 proposal were
left blank, with four new graphics to be chosen.

Code positions 2, 7, °, '* with graphics # v A %= were deemed to
satisfy Criterion 4. But code positions ' and ® had bit patterns that
functioned as control characters on one or another IBM computer.
Graphics ¢ " were clearly a violation of Criterion 4; they were rejected.

This left code positions ', ?, and ® to be assigned graphics satisfying
Criterion 4, and code positions ° and © to be assigned new graphics.

Code positions °, >, and * had held ( ) ' under the 1410 proposal.
When new graphics [ | / were suggested to fill these code positions, the
suggestion was adopted.

After much debate, b y # were chosen for code positions !, 3, and ®
to satisfy Criterion 4. To satisfy Criterion 4, then, eight graphics had

been chosen:

b vy £ £ m AV #

How well these graphics satisfy the criterion, the reader may judge.

The final result was BCDIC, shown in Fig. 5.5. It was approved as an
IBM Corporate Systems Standard in 1962.

Two factors were primary in the development of BCDIC from early
BCDIC, Version 1: equipment limitations and compatibility. Equipment
limitations led to the introduction of duals both for alphabetic extension
and for programming language symbols. Compatibility led to the reten-
tion of the duals, even when the 1410 console typewriter removed one
equipment limitation. (It may be remarked that the chain of the chain
printer, with its capability of 240 graphic positions, did not limit the
printing set to 48. Another aspect of the chain printer, printing speed,
was responsible for limiting the printing set to 48 graphics.)

Compatibility with existing practice is an important factor in deci-
sions on coded character sets. In summary, the four objections to the
1410 proposal were as follows:

1. Absence of plus sign.
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3.
4.

BCDIC, Final Version

Bit

Pattern — A B BA
Hole
Pattern—9 0 1 12
SP b . - & or +
! ! 1 / J A
2 2 2 S K B
21 3 3 T L ¢
4 4 4 u M D
4 1 5 5 v N B
42 8 6 W o] F
421 7 7 X P G
8 8 8 Y Q H
8 1 9 9 Z R 1
8 2 0 0 ¥ 2 ! ?
8 21 8-3 # or s 3
8 4 8-4 @ or % or ( * M or )
84 1 8-5 Y ] L
842 8-6 > \ ; <
8421 8-7 v - A #
Hole Patterns: SP - Space
(7] 8-2
[z] 0-8-2

Fig. 5.6 BCDIC, Final version

Multipunching required for keypunching,

that is, for keypunching FORTRAN program decks.

103

FORTRAN incompatibility—1410 versus other computing systems.

1410 FORTRAN Programs not listable on 1410 chain printer.

All of these problems were in fact solvable at the time, admittedly at
some cost. The incompatibility that would have resulted pre- and post-
1410 was unacceptable. The problems were not solved. Duals were
assigned into BCDIC.






The Size
and Structure
of PTTC

6.1 INITIAL CONSIDERATIONS

In 1959, engineers had started to design and develop a new communica-
tions terminal which came to be the IBM 1050. The keyboard and
printing functions were to be provided by an electric typewriter. The
typewriter provides a capability of 88 graphics. The question to be
decided was what the transmission code should be. Since perforated tape
was also envisaged for this terminal, the code came to be named the
Perforated Tape and Transmission Code (PTTC).

In today’s technology, where hundreds and thousands of electronic
circuits can be placed on a small chip, the cost of a bit is negligible. But in
the technology of the early 1960s, the cost of a bit was appreciable—6-bit
registers cost appreciably more than 5-bit registers, 7-bit registers cost
appreciably more than 6-bit registers, and so on.

Another cost factor was implicit in the byte size. On serial data
transmission lines, a fixed factor was the number of bits transmittable per
second. To transmit, for example, a thousand characters of seven bits per
character would take appreciably more time than to transmit a thousand
characters of six bits per character. The length of time the data transmis-
sion line was in use was a direct factor in determining the amount of
money that had to be paid for the use of the data transmission line. In
short, data transmission line costs were dependent on the byte size of the
transmission code.

These two cost factors, hardware cost and transmission cost, both
pointed to the necessity of keeping the byte size of a transmission code as
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small as possible. In those days, a design engineer built his reputation on
his ability to ‘“squeeze the bits.”

Before the introduction of the IBM 1050, printing terminals had
been limited to single case capability. But the use of an electric typewriter
on the 1050 would give the capability of duocase printing—capital letters
and small letters. This duocase capability was held to be a very significant
marketing factor.

6.2 SIZE OF CHARACTER SET

Recall that the byte size of a code prescribes the number of characters
that can be incorporated into the code, by virtue of a simple binary
relationship. If the byte size if 5 bits, then 2° = 32, and there are 32
different bit patterns available; that is, a 5-bit code can have 32 charac-
ters. If the byte size is 6 bits, then 2° = 64, and there can be 64 characters.
Similarly, 7 bits leads to 128 characters, 8 bits leads to 256 characters,
and so on.

In designing a coded character set, the first determination must be
the number of characters needed to meet the requirements of the
applications in which the code will be used. This done, the code size may
then be determined by applying the analysis of the preceding paragraph
in reverse. For example, if 48 characters are needed, the 32 character
positions of a 5-bit code are insufficient, but the 64 character positions of
a 6-bit code are (more than) sufficient. A 6-bit code is needed if 48
characters must be provided.

In the case of the 1050, the determination of the number of charac-
ters proceeded as follows:

Alphabetics: 26 lower case and upper case
Numerics: 10

Specials: At this time, the character set for most IBM products was 47
and Space. For the console typewriter of the 1410, the set was 63
and Space. From this, it was rationalized that from 11 to 27 specials
should be provided. Assume at least 11 would be needed.

Space: 1

Controls: The number of control characters needed was not known in the
initial design phase of the 1050. Clearly, characters would be needed
to control the typewriter, to control the perforated-tape facility, and

to control the data transmission lines. Initially, let the number of
control characters be x.
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The above tabulates as follows:

Lower case alphabetics 26
Upper case alphabetics 26 ‘ ‘
Numerics 10 73 graphic characters®
Specials 11 at least
Space 1
Controls x

74 + x

Therefore, initial analysis showed that (at least) 73 graphic characters, the
Space character, and an as yet undetermined number of control charac-
ters would be needed for PTTC. This apparently showed that a 6-bit,
64-character set was insufficient; a 7-bit, 128-character set was appar-
ently indicated. But it was pointed out that a particular technique of
coding, which involved the use of shift characters, could reduce the size

requirement to 6 bits. (A full discussion of this coding technique is found
in Chapter 2.) '

6.3 PTTC, VERSION 1

Recall from Chapter 2 the formula 2*** — y (where x is the number of
bits in the code byte and y is the number of characters wanted to be
independent of preceding shift characters). For PTTC it was decided that
the Space character and all control characters should be independent of
preceding shift characters. At a first analysis, x was taken to be 6.

2x+1_y ____26+1_y
=128 —y

Thus it was seen that with a byte size of 6 bits, and using the technique of
shift characters, 128 - y characters could be realized. Also, if y =
number of control characters, including Space, then the number of
graphic characters is 128 — 2y. The following possibilities were reviewed.

*1t is to be noted that the number of graphic characters needed would be more
than 73. This would certainly be realizable on the 88 graphic capability of the
electric typewriter. Also, the figure 88 would clearly dictate that the maximum
number of specials would be 88 — 62 =26.
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Number of Number of Number of
control graphic different
characters characters characters
(y) (128 — 2y) (128 — y)
17 94 111
18 92 110
19 90 109
20 88 108

At first it was argued that, since the typewriter provides 88 graphics
only, the choice should be 20 control characters (including Space) and 88
graphics.

It was counter-argued that extensive analysis of applications suitable
for the 1050 showed that 16 control characters and the Space character
would be sufficient. Consequently, the choice should be 17 control
characters (including Space) and 94 graphic characters. While it was
admitted that the typewriter could print 88 graphics only, it was also true
that paper tape, punched cards, data transmission lines, and serial printers
could certainly implement 94 graphic characters.

At this point, a completely different factor emerged. At this time,
standards committees, nationally and internationally, were developing a
standard interchange code. All details of this code were not yet decided,
but some details were decided:

a) The code would be 7 bits.

b) There would be 32 control characters, the Space character, the
Delete character, and 94 graphic characters.

It was now proposed that the 1050 should implement the 7-Bit Code, so
that it would be compatible with the emerging national and international
standards. On the question of 7-bit size for the 1050, two counter-
arguments were voiced:

a) A 7-bit 1050 would cost much more than a shifted 6-bit 1050, and
low cost was a primary design objective of the 1050.

b) The 1050 development schedule was such that it would certainly be
developed and announced before the slowly developing national and
international standards were approved. Details of the standards, such
as number and choice of control characters and graphic characters,
changed from one committee meeting to the next. It was a reason-
able certainty, then, that the 1050 character set would disagree, in
greater or lesser detail, with the finally approved character set of the
standards.
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These two factors, particularly the cost factor, were decisive. The earlier
decision, to design and develop a shifted 6-bit 1050, was upheld.

However, out of this debate emerged another factor, which was
decisive on the earlier question of graphics and controls. A communica-
tions system was postulated which would have terminals implementing
the 7-bit code, communicating via a computer, with 1050s implementing
the shifted 6-bit code. The significant aspect here was that a message,
consisting of graphic characters and the Space character, would go from
one kind of terminal, through a computer, to the other kind of terminal.

If these different kinds of terminals needed different control charac-
ters to send or receive messages, the computer program could accommo-
date such differences, removing or injecting control characters into the
data stream as necessary. But if the terminals had different graphic sets,
no computer program could compensate. The number of graphics, and
the actual graphics must match.

From this analysis, it was decided that the number of graphics in
PTTC and the 7-bit code should be the same, 94. At this stage, the actual
graphics could not be matched, since the 7-bit code was not yet finalized.
However, after the 7-bit code was finalized, a later model of the 1050 could
match the graphics. So the decision was made for the 94 graphic charac-
ters. As a consequence, Space and 16 control characters would be
independent of shift. The initial code chart for the 1050 looked like Fig.
6.1.

The 16 control characters to be independent of shift were:

PN Punch On
BYP Bypass
RES Restore

PF Punch Off

RS Reader Stop

LF Line Feed

NL New Line

HT Horizontal Tab

UuC Upper Case
EOB End of Block

BS Back Space

LC Lower Case
EOT End of Transmission
PRE Prefix

IL Idle
DEL Delete

Upper Case and Lower Case would be the two required shift characters.
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Fig. 6.1 PTTC, Version 1

6.4 PTTC, VERSION 2

Since there was to be a card reader/punch attached to the 1050, a
translation would be needed for the bit code of PPTC to/from the card
code. In order to minimize the cost of such a translator, it was decided to
structure the code, with respect to alphabetics and numerics;, so that it
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Fig. 6.2 PTTC, Version 2

resembled BCDIC; that is, the alphabetics would be distributed into three
columns of the code table. Clearly, a corresponding upper- and lower-
case alphabetic would be on the same 1050 keytop. In order to minimize
the logic circuitry between keytops and the generation of the bit patterns
of PTTC, lower-case and upper-case alphabetics should occupy corres-
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ponding (same bit pattern) locations in the code table. The numerics
should be in the lower-case side of the code table, since they are
commonly on the lower-case shift of a typewriter. Finally, with these
decisions made with respect to numerics, upper-case alphabetics and
lower-case alphabetics, it seemed intuitively right that the controls occupy
the block of four rows at the bottom of the table. This led to the code
table of Fig. 6.2.

6.5 PTTC, VERSION 3

There now remained the assignment of 32 specials to code positions. It is
to be noted that, with 94 total graphic positions and a typewriter printing
capability of 88 graphics, 6 of these remaining 32 code positions would
contain graphics not printable on the typewriter. Clearly, because of the
typewriter concept of upper- and lower-case graphics on a key, it would
be confusing to an operator if any key had a printable graphic in one
case but not in the other case. Also, it would complicate the logic circuitry
to realize such an aspect. These considerations led to the conclusion that
three of the nonprintable graphics should be in lower case and three in
upper case. Also, they should be located in corresponding positions in the
code table (to do otherwise would create the undesirable aspect). It was
decided that positions ' and ? (Fig. 6.2) would be assigned to nonprintable
graphics.

Before decisions were made on specific assignment of the 32 specials,
some preliminary decisions were made with respect to the associated card
code. The reason behind this sequencing of decisions was as follows.
Hopefully, card-code assignments could be made on some orderly basis
that would optimize the card-code to bit-code relationship, and hence
minimize the cost of the hardware translator. If such an assignment of
card codes could be worked out, then most of the 32 specials would
automatically locate themselves in the code table, because of their already
established BCDIC card codes.

The first problem to be solved was with respect to alphabetics.
Hitherto, in data processing equipment and applications, only one set of
alphabetics was provided. It would be more correct to call these alpha-
betics “capital letters,” rather than ‘““upper-case letters.” To refer to them as
‘“upper-case alphabetics” would imply the existence of ‘‘lower-case
alphabetics,” and these latter were not, in general, provided on data
processing printers.

The “capital letters” had well-established card codes. Now, however,
on the typewriter of the 1050, there were to be both lower- and
upper-case letters. The question was, should lower- or upper-case letters
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be assumed as corresponding to the previous capital letters and hence be
assigned their card codes? At first, the answer seems obvious. Upper-case
letters should be considered equivalent to the previous capital letters.
After all, they would have the same graphic shapes when printed.

There was a counter-argument. Three modes of operation were
visualized for the 1050. In the first mode, a communications network
would consist of 1050s only, with human operators sending, receiving,
and routing messages. In the second mode, the network would consist of
1050s communicating to a computer, and not directly to each other. In
this mode, a computer program would do the work on routing or
switching messages. In the third mode, the network would be of the same
kind as for the second mode, but the 1050s would be considered as data
entry points, with the computer executing some data processing applica-
tion on the data received.

In the first two modes (for which the telegraph network of Western
Union might be considered an example), it was assumed that the mes-
sages sent and the messages received would use both lower- and upper-
case letters. There was a human-factor reason for this decision. Human
beings are educated to read text in lower- and upper-case letters. Books,
magazines, newspapers, etc., display text in both lower- and upper-case
letters. It is interesting to read a page of text, printed only in upper case.
It is difficult to read; quite possible, of course, but difficult. Interestingly, a
page of text in lower-case letters poses very little difficulty in reading. The
reason is clear. In a page of text, very few capital letters appear. First
word in sentence, people’s names, names of cities, towns, countries, etc.,
are initially capitalized. But all other letters are lower case. A human being
is more used to reading lower-case letters. On the Telex telegraphic
network, this human factor was recognized, and text on a Telex printer is
totally lower-case letters (no capitals). By contrast, a Western Union
telegram, printed on Teletype printers, all in capital letters, is more
difficult to read.

To repeat, it was assumed that in the first two modes, both lower-
and upper-case capability would be used. But in the third mode, remote
data entry to a computer, it was assumed that only upper-case letters
would be used. This was because the printer of the computer had capital
letters only. There would be less confusion if both terminal and computer
printers printed letters of the same shape, that is, capital letters. This
assumption led to a most interesting conclusion.

The fewer times an operator has to depress the case shift key, the
higher the operator productivity. The numerics on the typewriter are in
lower case. On the assumption that capital letters would be used, and not
small letters, it would be more efficient (in this particular communications
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mode) if the capital letters were actually reached by the lower-case shift
of the printing element. In fact, recognizing this potential efficiency
factor, typewriter elements were provided that had capital letters in
lower-case shift as well as in upper-case shift.

In the first two communication modes, then, it was assumed that
small letters would predominate, with occasional occurrence of capital
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1 1 1 11-1 12-1
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Fig. 6.3 PTTC, Version 3
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letters. In the third communication mode, it was assumed that capital
letters would be used exclusively. At this point, a principle was evolved,
as follows: :

In common data processing applications a particular set of card hole
patterns is associated with the letters. In such data processing appli-
cations, such letters happen to be capital letters. In 1050 communica-
tions applications, this same set of card hole patterns should be
associated with the set of letters predominantly used in the applica-
tion. In the first two modes of 1050 communication applications, the
predominant letters will be small letters. In the third mode, the
predominant (actually, the only) letters will be capital letters. What is
significant is that, for all three modes, the predominant letters will
appear in the lower-case shift of the typewriter. Therefore, the card
hole patterns that have, in data processing applications, been as-
signed to capital letters, should for PTTC be assigned to the lower-
case shift of the code, regardless of whether small or capital letters
are implemented in the lower-case shift.

After considerable debate, agreement was reached on this principle. The
card code assignment to PTTC then began to take shape. Compare Fig.
6.2, where the assignment of the numerics and lower-case letters is
shown, to the preliminary card code for PTTC as shown in Fig. 6.3.

6.6 PTTC, VERSION 4
Some further decisions were now made with respect to card codes:

1. Upper-case alphabetics would have the same digit punches as lower-
case alphabetics, but with zones corresponding as shown below:

Zone punches

Lower-case alphabetics 0 11 12
Upper-case alphabetics 11-0 | 12-11 12-0

2. In code positions ' and ? in Fig. 6.3, hole patterns of 11-0, and 12-0,
respectively, would be assigned.

3. For the sixteen control characters, the digit punches would be 4, 5, 6,
and 7, to optimize the bit-code to card-code translation relationship.

4. The control characters would have the zone punches already assigned
to the table columns for lower-case alphabetics, and also, for all
control characters, an additional zone punch, 9.
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These decisions deserve some comment. In choosing the zone punches for
the upper-case alphabetics, the reasoning was as follows:
a) There would be no more than two zone punches.

b) Of the two zone punches, one would match that of the corresponding
lower-case alphabetic.
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Fig. 6.4 PTTC, Version 4
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In choosing 11-0 and 12-0 for code positions ' and ? in Fig. 6.3, the
objective was to provide the algebraic sign capability already provided in
common practice. That is, the eleven punch over a digit punch in a
numeric card field should indicate a negative number for all numerics, 0
through 9. Similarly, the twelve punch over a digit punch in a numeric
field should indicate a positive numeric for all numerics, 0 through 9.

The choice of 4, 5, 6, and 7 as digit punches for the bottom four rows
of the table would optimize their BCD translation to/from the PTTC bit
code.

A zone punch of nine would distinguish all control characters from
all graphic characters. Advantage could be taken in the hardware of this
distinguishing characteristic.

With these decisions, the card code assignments shown in Fig. 6.3
were increased to those shown in Fig. 6.4.

6.7 PTTC, VERSION 5

There now remained 32 graphic positions in the PTTC code table with
unassigned graphics. Of these 32 code positions, 30 had not yet been
assigned card hole patterns. The numerics, alphabetics, and Space of
BCDIC had been assigned. There remained 27 BCD graphics and hole
patterns to be assigned in PTTC. For compatibility reasons, the 27
BCDIC graphics and hole patterns should match the 27 in PTTC. The
BCDIC specials were now reviewed:

@ 8-4 11-8-6
/ 0-1 b 8-2
- 11 %( . 0-8-4
&+ 12 : 8-5
#= 8-3 % 11-8-4
+ 0-8-2 [ 12-8-5
g 0-8-3 ] 11-8-5
$ 11-8-3 # 0-8-7
” 12-8-3 =+ 12-8-7
A 11-8-7 0-8-5
\ 0-8-6 8-7
< 12-8-6 ! 11-0
> 8-6 2 12-0
X 12-8-4

The card hole patterns 11-0 and 12-0 had been assigned in locations *
and ? in Fig. 6.4, so the BCDIC graphics ! and ? would be assigned to
these PTTC code positions.
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Fig. 6.6 PTTC, Version 5

For translation reasons, the hole pattern 11 should be assigned in
position 2, and the hole pattern 12 in position * of Fig. 6.4, which would
then dictate the assignment of graphics — and & +. For translation pur-
poses, hole patterns 8-3, 0-8-3, 11-8-3, and 12-8-3 should be assigned
in positions ¢, 7, 8, °, respectively, which in turn would dictate the
location of graphics # =, $ . (respectively). For translation purposes,
hole pattern 0-1 should be assigned in position °, which would dictate
the location for /.

These decisions resulted in Fig. 6.5.
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Fig. 6.6 PTTC, Final Version

6.8 PTTC, FINAL VERSION

There are 23 unassigned code positions (shaded) and 18 unassigned
BCDIC graphics. The remaining card hole patterns and remaining PTTC
bit patterns were simply not able to be matched to any orderly translation
relationship. The assignments were made to optimize the translation
relationship as much as possible, while realizing that the relationship
could not be very good.
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When the 18 BCDIC graphics and hole patterns were assigned in the
PTTC code table, there would remain five unassigned code positions. Five
graphics and five hole patterns were finally chosen as follows:

Graphic  Hole pattern

. (UC) 12-8-1
, (UC) 0-8-1
' (UC) 11-8-2
? (UC) 12-8-2
" 8-1

These five were then assigned into the PTTC table, leading to Fig. 6.6,
the final version of PTTC.

These five hole patterns were chosen for the following reason. An
examination of the table shows that all combinations of digit punches 1,
2, 3,4,5,6, 7, 8,9, 83, 84, 8-5, 8-6, 8-7 with zone punches
“no-zones”, 0, 11, and 12 (the hole patterns from BCDIC) had been
assigned in PTTC. Additionally, for the capital letters, the double-zone
combinations 11-0, 12-11, 12-0 had been introduced as previously de-
scribed. Additionally, the two BCDIC hole patterns 8-2 and 0-8-2 had
been assigned. Now five more hole patterns were needed. What should
they be?

They could have been some combination of double-zone punches
with the double-digit punches 8-3, 8-4, 8-5, 8-6, 8-7, but this would have
resulted in hole patterns of four holes. It was thought preferable to choose
hole patterns of no more than three holes, and there were six such that
suggested themselves; 8-1, 0-8-1, 11-8-1, 12-8-1, 11-8-2, 12-8-2. The
8-1 was first choice, since it was a hole pattern of two holes only. Then
four of the five remaining possibles were chosen, 0-8-1, 12-8-1, 11-8-2,
and 12-8-2.
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Structure of
EBCDIC

7.1 INITIAL CONSIDERATION

It is supposed by some people that the requirement that led from
computers with a 6-bit architecture to computers with an 8-bit architec-
ture was the requirement for a larger set of characters. It was known that
the then current 64-character set of 6-bit computers, while sufficient for
most data processing applications, was becoming insufficient for some
data processing applications. On the one hand, an insufficient number of
graphic code positions had led to the use of duals (Chapter 4). On the
other hand, an insufficient number of control code positions had led to
the development of PTTC (Chapter 6). The implementation of PTTC on
the IBM 1050 (which was based on an electric typewriter) had introduced
lower-case as well as upper-case alphabetics to many people in the data
processing world. Also, a new data processing application, text proces-
sing, had led at least one customer to order a special IBM 1403 print
chain and to have special instructions developed for his 1401 computer to
allow him to manipulate and process upper- and lower-case alphabetics.
These situations and applications in the data processing field cer-
tainly emphasized the needs for a larger coded character set than that of
BCDIC. But these needs were very far from sufficient to dictate a
requirement for an 8-bit computer architecture. There were two other
very fundamental aspects of computer architecture that pointed at the
requirement for an 8-bit architecture. These aspects led to the develop-
ment and marketing of the IBM System/360. Once an 8-bit architecture
was decided on, with a consequent possible 256 character code positions,

121
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the opportunity to enlarge or extend the character set from that of
BCDIC was obvious. IBM did indeed take that opportunity; the 8-bit,
256-character EBCDIC was developed and implemented.

The first aspect was the efficiency of representation of numerics in a
coded character set. The requirement for 26 (or 29) code positions to
represent alphabetics and for 10 code positions to represent numerics
together set a requirement for at least 36 code positions. In its turn, the
requirement for at least 36 code positions set a requirement for a code
byte of at least 6 bits, and BCDIC was (and is) a 6-bit coded character
set.

Although 4 bits at most are required to represent the 10 numerics,
the 10 numerics of BCDIC are represented by 6 bits, 2 bits more than
needed for numeric representation only. That is to say, numerics in
BCDIC have an unnecessarily large, and hence inefficient, bit representa-
tion.

So numerics are inefficiently represented in BCDIC. Is this signific-
ant? Indeed it is. It was variously estimated in the early 1960s that
approximately 75 percent of the data used in data processing applications
was numeric data. In short, 75 percent of the data was inefficiently
represented. Was this fact significant? In previous paragraphs, it has been
stated that requirements for larger character sets, although clearly per-
ceived, were not deemed sufficient to increase the bit size of computer
architecture. But the inefficiency of numeric data representation affected
about 75 percent of the data processed in computers. It hardly needs to
be said that efficiency of a computing system was (and is) one of the key
elements of any computer marketing strategy. Could the efficiency of
numeric representation be improved?

The “packing” of two numeric digits into one 8-bit byte would
essentially represent numeric data in 4 bits, the practical minimum.
Maximum efficiency of numeric representation would be realized. This was
one of the aspects which led to the IBM decision to develop an 8-bit
architecture for computers.*

The other aspect had to do with the binary nature of the System/360.
In designing the Stretch Computer [7.1], for a number of reasons the
organization was chosen to be binary rather than decimal. Similar reasons
led to the decision that System/360 would be binary. Not only, of course,

* It must be noted that 8 bits, while ideal for representation of packed numerics,
is not ideal for the representation of all data, such as alphabetics and special
graphics. To represent all of numerics, alphabetics, and an adequate number of
special graphics, 6 bits is sufficient. So, to represent alphabetics and special
graphics by an 8-bit code is for them, inefficient. That is an illustration of a design
trade-off.
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would arithmetic be binary but so also would addressing be binary. For
binary addressing of memory words, there is considerable advantage in
choosing the number of bits in each word to be a power of 2. The three
possibilities looked at were

2°=32
2°=64
27=128

The choice of 64 bits gives a good compromise between speed and cost of
memory, and provides ample space to represent a floating-point number
in one memory word. _

Since the memory word size of 64 bits was chosen, and since a byte
must be an integer submultiple, eight 8-bit bytes was the natural choice.

The decision to go to 8 bits was made, and a coded character set of
potentially 256 characters resulted. The 6-bit code had been named the
BCD Interchange Code, with BCDIC as the acronym. Since the number
of available character positions was to be extended from 64 to 256, the
new code came naturally enough to be named the Extended BCD
Interchange Code, with EBCDIC as the acronym.

7.2 TECHNICAL DECISIONS
7.2.1 8-Bit Code Table

The first technical decision, then, was that the coded character set would
be 8 bits with a potential of 256 characters, although as narrated above,
this was more a consequence than a decision. The second decision was
how to exhibit it in manuscripts, documents, manuals, and so on. At the
time, 6-bit codes were being exhibited in 4-by-16 code tables; 7-bit code
tables were being exhibited in 8-by-16 code tables. The natural decision
was to exhibit EBCDIC in the form of a 16-by-16 code table.

7.2.2 Bit Numbers

The next step was to decide how to number or name the bits of an 8-bit
byte, for reference purposes. The philosophy for BCDIC was bit naming:
B, A, 8§, 4, 2, 1. The philosophy for ASCII was a combination of bit
naming and bit numbering: b7, b6, b5, b4, b3, b2, bl. A common
engineering practice was to number from left to right and to associate the
order of the numbering with high to low significance; for example,
memory addresses in a computer, columns on a punched card, tab stops
on a typewriter. It was decided to number the bits of an EBCDIC byte
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according to this same philosophy (0, 1, 2, 3, 4, 5, 6, 7) from the
high-order to the low-order bit of a byte, as shown:

ol1[2]3]4]5]6]7

7.2.3 Hexadecimal Numbers

The next step was to decide how to reference a particular code position.
It was decided that the 16 columns (from left to right) and the 16 rows
(from top to bottom) would be named 0, 1, 2, 3,4, 5,6,7,8,9, A, B, C,
D, E, F, as shown in Fig. 7.1.

A particular code position would be referenced by giving its column
name followed by its row name: for example, code position A7 in Fig.
7.1. This notation came to be called the hexadecimal notation, or hex
notation.

The columns and rows could have been named (numbered) 0, 1, 2, 3,
4, 5, 6,7, 8,9, 10, 11, 12, 13, 14, 15, as was done with another 8-bit

Column 0 [ 1 ] 2 l 3 a4 l 5 l 6 l 7 8 I 9 ] A B c l D l E ] F
Bit 00 01 10 11
Pat. =

Q0 01 10 1 00 01 10 11 00 01 10 11 00 01 10 11

0 0000

1 0001

2 0010

3 0011

4 0100

5 0101

6 0110

7 0111 A7

8 1000

9 1001

A 1010

B 1091

c 1100

D 1101

E 1110

F 1711

Fig. 7.1 Hexadecimal columns and rows
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code form (to be discussed in Chapter 20). The hex notation is more
compact, and always requires exactly two “‘typing” spaces for the man-
uscript representation of a code position; 35, A7, EF, etc. By contrast,
the numeric notation requires a separating mark (the slash /) to avoid
confusion; 0/9, 3/15, 1/11, etc. Also, if allowed to be a non-uniform
notation to gain compactness, as 1/6, 1/11, 11/1, 11/11, the number of
“typing’’ spaces could vary from three to five, while, if uniformity was
imposed, as 01/06, 01/11, 11/01, 11/11, the number of ‘“‘typing” spaces
required would be exactly five. Either way, the hex notation, with its
always uniform requirement for exactly two ‘‘typing” spaces, seems
superior.

7.2.4 Quadrants

The final decision, also for purposes of referencing the code table, was to
consider the code table to be divided into four equal quadrants, as shown
in Fig. 7.2. The quadrants would then be referred to as the first quadrant,
the second quadrant, etc., or as quadrant one, quadrant two, etc.

w
F-Y
.
o
-
-]
~
<
o
—
>
| SR
o
[e]
=]
1
™m
L
1l

Column 0 1 1 2 |
00

Bit
Pat.

-

0 0000

1 0001

2 0010

3 0011

4 0100

3 0101

6 0110

I
7 0111 :

I Quadrant

8 1000

9 1001

A 1010

B 1011

c 1100

D 1101

E 1110

F 1111

Fig. 7.2 EBCDIC quadrants
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7.2.5 Blocks

The code table would have to be shown with four unequal blocks in order
to exhibit the card code (as described in Chapter 2), as shown in Fig. 7.3.

Biock 1
Block 3
Block 2
Block 4
 Figure 7.3

7.3 SUMMARY

In summary, then, five decisions were made in order to exhibit and
reference the EBCDIC Code Table:

1. The cbde table would be 8 bits, with a potential of 256 characters.

2. The bits of an EBCDIC byte would be numbered 0, 1, 2, 3, 4, 5, 6,
7, from left to right, that is, from high-order bit to low-order bit of a
byte.

3. The 16 columns and 16 rows of the code table would be named
according to a hexadecimal notation: 0, 1,2, 3,4,5,6,7,8,9, A, B,
C, D, E, F. A particular code position would be referenced by giving
first its column name, then its row name.

4. For purposes of reference the code table would be considered to be
divided into four quadrants of four columns each; first quadrant,
second quadrant, etc.

5. In order to exhibit the card code, the code table would be shown in
four (unequal) blocks.

These decisions having been made (the last four decisions might be
considered more of an administrative than of a technical nature), atten-
tion was then directed to the technical aspects of EBCDIC. Ten criteria
emerged.

7.4 CRITERIA

Criterion 1 (Collatability)

The 64 characters of BCDIC, when embedded in the 256 code positions
of EBCDIC, should have the same collating sequence, not necessarily
contiguously, as BCDIC.
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Criterion 2 (Space collatability) _

The Space character should collate low to all EBCDIC graphic charac-
ters, those immediately assigned and those to be assigned in the future.
Criterion 3 (Separability)

Control characters should be easily distinguishable, by their bit-patterns,
from graphic characters; that is, graphic and control characters should be
separable.

Criterion 4 (Duocase capability) ;

Lower-case alphabetics, as well as upper-case alphabetics, should be
assigned.

Criterion 5 (Duocase relationship)

Corresponding upper- and lower-case alphabetics should differ only in
high-order, or zone, bits. The bit patterns for corresponding upper- and
lower-case alphabetics should have the low-order four bits identical.
Criterion 6 (Sign capability)

The concepts of positive, negative, and absolute numerics, zero through
nine, should be incorporated.

Criterion 7 (Card-code compatibiiity)

The card hole patterns for the 64 BCDIC characters should be the same
for BCDIC and EBCDIC.

Criterion 8 (Translation simplicity)

The translation from the 64 6-bit bit patterns of BCDIC to their equival-
ent 8-bit EBCDIC bit patterns should be as simple as possible.
Criterion 9 (Subsetability)

By dropping the two high-order bits of the 8-bit EBCDIC bit patterns, a
compact 64 character subset should emerge. This subset should consist of
the 64 BCDIC characters but need not have the same bit patterns.

Criterion 10 (No duals)

The five dual pairs of BCDIC should be climinated, giving rise to ten
unique EBCDIC characters.

It was recognized that Criterion 10 conflicted with Criteria 1, 7, 8,
and 9. The resolutions of this conflict led to user dissatisfaction, as
described in Chapter 9, The Duals of EBCDIC. '
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Criteria 1 through 7 are discussed in Chapter 8; Criteria 8 and 9 are
discussed in Chapter 10: Criteria 7 and 10 are discussed in Chapter 9.

REFERENCE

7.1 W. Buchholz, “Planning a Computer System.” New York: McGraw-Hill,
1962, Chapter 5. ‘



The
Sequence of
EBCDIC

During the late 1950s and early 1960s, the code used on IBM computers
was a 64-character, 6-bit code, called BCDIC. It met the require-
ments of the time well enough. The 64 6-bit bit patterns were sufficient to
represent the following:

a) Space, alphabetics, and numerics.

b) The extra diacritic and accent letters needed for the major European
Latin alphabets.

c) Special graphics needed for most data processing applications.

d) Special graphics needed for the major programmmg languages (As-
sembler, COBOL, FORTRAN, etc.).

e) Control characters needed for control of either data processing
devices (mainly tape drives) or formatting of data.

It came to suffer from two defects—duals and collating sequence. (For a
discussion of the duals problem, see Chapter 9.)

We learned in Chapter 7 of the decision to go to an 8-bit computer
architecture. This led to the potentiality of a 256-character, 8-bit code set
and to the establishment of ten criteria. The application of seven of these
criteria, beginning with Criterion 1 relating to collatability, are discus-
sed in this chapter.

8.1 BCDIC COLLATING SEQUENCE

The 63 graphics, and Space, of the BCD Interchange Code (BCDIC) are
shown in Fig. 8.1, arranged in sequence of bit patterns from low (00,0000)

129
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sz-imtt"ern_—-’ 00 01 0 '
0000 : sp b - & or +
0001 1 / J A
0010 2 S K B
0011 3 T L C
0100 4 U M D
0101 5 v N E
0110 6 W 0 F
0111 7 X P G
1000 8 Y Q H
1001 9 Z R I
1010 0 % ! ?
1011 # or = , $

1100 @ or ' % or ( Lk Hor )
1101 : Y 1 C
1110 > \ : <
1111 v « A E:
Fig. 8.1 BCDIC

to high (11,1111). There was, however, an established collating sequence
for these 64 characters. Each graphic character, and the Space character,
was assigned a collating number, from low (0) to high (63). In Fig. 8.2 are
shown the collating numbers assigned to the 64 characters of Fig. 8.1. As
can be seen, the bit-pattern sequence of the 64 characters did not
correspond in any way to the collating sequence of the 64 characters. The
graphic characters, arranged in collating sequence, are shown in Fig. 8.3,
with collating numbers running from 0 (low) to 63 (high).

The basic element in any sorting or collating application is a com-
parison of the magnitude of two quantities. Essentially, the question is
asked (by machine instructions in a program):

Is item A greater than, equal to, or less than item B?

Depending on the answer, the item is inserted into an ordered list of
items. This comparison (by executing what was generally called a Com-
pare instruction) is generally implemented in hardware by subtracting one
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?’i;nem >
0 19 12 6
55 13 36 ' 26
56 46 37 27
57 47 38 28
58 48 39 29
59 49 40 30
60 50 41 31
61 51 42 32
62 52 43 33
63 53 b4 34
54 45 35 25
20 14 g 1
21 15 8 2
22 16 9 3
23 17 10 4
24 18 11 5

Fig. 82 BCDIC collating numbers

item from the other and inspecting the sign and magnitude of the result
(positive, zero, or negative).

In order that the Compare instruction would function correctly on
the basis of the established collating sequence, and despite the disordered
bit-pattern sequence, one of two approaches has been employed.

8.1.1 Convert/Compare/Reconvert Approach

On the binary machines (704, 709, 7090, etc.) an instruction was pro-
vided, generally called a Convert instruction. When executed, this instruc-
tion would convert the 6-bit bit patterns to another set of bit patterns.
This other set of bit patterns had the characteristic that the bit pattern
sequence matched the collating sequence. Thus, when executed, the
hardware Compare instruction subsequently would function so that the
data would be arranged into the correct collating sequence. After the
sorting or collating function was implemented on all the data, that portion
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T ] B T3 N )
S R FU B FTY E——
I or ) L2 w  L[22] p B w Leo]
r L p L] e8] x L]
R S R 1 g L y L2
2] e or r 2Y kB0 z L5
& or + L2 oo 22 L el N
P 2 e Y R T R T
x L8 /Ei'— NL"—O—# 2Ii
P e TH N 73
; N p L2 s L2
S o, B,
S U e 1 B (TS R 7Y
P R v B T Ty
RS RS T R Y R— 7Y
% or ) & p o B r 2] o oo

Fig. 8.3 BCDIC graphics in collating sequence

of the data that had been “converted” had to be reconverted back to its
correct BCD bit patterns. This reconversion was accomplished by another
instruction.

8.1.2 Comparator Approach

On the character machines (1401, 1410, 705, 7080, etc.) special hardware
called “comparator” hardware was built in. This hardware, when execut-
ing a compare instruction, first performed the equivalent of the Convert
instruction described above, then executed the actual comparison of the
two items. Thus, the hardware, without actually converting any data (and
thus eliminating the need for a subsequent reconversion) allowed the data
to be sorted or collated into the correct sequence.
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An analysis of the two approaches reveals the following:

® In the Convert/Compare/Reconvert approach, no extra hardware
was required, but extra CPU time was required to execute the
conversion and reconversion parts of the program.

® In the Comparator approach, no extra CPU time was required, but
the Comparator hardware itself increased the cost of the computing
system.

There was, therefore, either a performance penalty or a hardware cost
penalty.

8.2 EMBEDMENT OF BCDIC COLLATING SEQUENCE

In the design of the new 8-bit CPU code, the Extended BCD Code
(EBCDIC), it was postulated that the above penalties could be removed,

Column 0 l 1 | 2 ] 3 4 | 5 I 6 L7 8 I 9 l A l 8 c ‘ D l E ‘ F

Bit | 00 01 10 11

Pat.

00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11

Row .
0o Joooo i I 0 19 12 6
1 |oo001 55 13 36 26

-

2 (o010 56 46 37 27
3 foo11 57 47 38 28
4 (o100]. 58 ue 39 213
5 0101 II] 59 49 40 39
6 (0110 60 50 41 31
7 (0111 ) 61 51 3 32
8 |1000 62 52 43 33
9 1001 63 53 Lt I
A |1010 ITT] s+ 55 35 25
B |1011 20 14 7 1
c [1100 21 15 8 2
D (1101 V] 22 16 9 3
E {1110 23 17 10 "
F Jt111 2y 18 11 5

Fig. 8.4 Blocks in BCDIC
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without any deleterious effects on the user. Let us see what actually
happened.

In studying Fig. 8.2, it was observed that the code table could be
visualized as being in four major blocks, designated I, II, III, and IV in
Fig. 8.4. Then if the blocks were rearranged relative to each other, with a
view towards coming closer to a correct collating sequence, the result
would be as shown in Fig. 8.5. Then, if the two high-order bits of each
column were inverted (zero for one, and one for zero) and the columns
reordered on the new two high-order bits, the result would be as shown in
Fig. 8.6. Finally, given the freedom that columns, or if necessary, partial
columns, could be distributed into the 16 column spaces of an 8-bit code
table, the results would be as shown in Fig. 8.7.

In Fig. 8.7, observe that the 64 characters are almost (not quite, see
character 0 and character 13) in correct collating sequence, albeit not
contiguously in bit-pattern sequence. The fact that the BCDIC collating
sequence could be embedded in the EBCDIC collating sequence was the
primary design factor for EBCDIC.

Column| © l 1 I 2 [ 3 a [ 51 8 l 7 8 ] 9 I A l B c l D ] E 1 F

Bit 00 01 10 11

Pat. |
Row 00 | 01 10 11 oo | 01 10 [ 11 oo | 01 10 11 00 | 01 10 11
o |oooo 20 15 7 1
1 |ooo01 21 15 8 2
2 (o010 IV} 22 16 9 3
3 [o011 23 17 10 u
4 0100 24 18 11 5
s |o101 I 0 19 12 6
6 o110 ITIT | su us 35 25
7 0111 55 13 36 26
8 (to00 56 46 37 27
9 |1001 57 w7 38 28
A (1010 II § 58 48 39 29
8 [1011 59 w9 wo 30
¢ {1100 60 50 41 31
D {1101 61 51 w2 32
e |1%10 62 52 43 33
F {1111 63 53 4y 3y

Fig. 8.6 BCDIC rearrangement 1



Column 0 [ 1 I 2 1 3 4 I 5 ] 6 l 7 8 | 9 I A l 8 c I D ] E I F
Bit 00 01 10 11 ]
Pat.
Row 00 01 10 11 0o 01 10 11 00 01 10 11 00 01 10 11
0 (o000 1 7 14 20
1 0001 2 8 15 21”
2 0010 v 3 9 16 22
3 |0011 4 10 17 2374
-1
4 |o100 5 11 18 24
5 0101 I 6 12 19 0
6 0110 IIT | 25 35 45 sy
7 (o111 26 36 13 55
8 [1000 27 37 46 56 )
9 1001 28 38 u7 5777
A [1010 29 39 ue 58
B |1011 IT] 30 4o 49 59
c |[1100 31 41 50 60-~
D (1101 32 u2 51 61
E (1110 33 43 52 524
F 1111 34 b 53 637
Fig. 8.6 BCDIC rearrangement 2
Column| © I 1 I 2 l 3 4 ] 5 l 6 I 7 8 I 9 l A [ B c I D J E ] f
Bit | 00 01 10 11
Pat. |
Row 00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11
o (oooo0 1 7 1n 20
1 0001 2 8 15 21
2 Jloo1o v 3 9 16 22
3 (0011 u 10 17 23
4 (o100 5 11 18 24 n
5 |0101 Il s 12 19 ® -
6 0110 IIT } 25 35 45 54
7 loe111 26 | 36 | @) | 55
8 |1000 27 37 L6 56
9 1001 28 38 47 57
A |1010 29 39 48 sa-
8 1011 1T 30 4o 49 59
c (1100 31 41 50 60
]
D (1101 32 42 51 61
E |1110 33 43 52 62
F {1111 3k uh 53 63

Fig. 8.7 BCDIC rearrangement 3 (two collating exceptions)
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8.3 BCDIC CARD CODE RELATIONSHIP

It was at this point that several other factors were reviewed as design
requirements. Following this review, criteria for EBCDIC design were
established, and the final EBCDIC was designed. Before looking at the
criteria, let us look at the other design factors.

First, in BCDIC, there was a reasonably simple relationship between
BCDIC card hole patterns and BCDIC bit patterns (see Fig. 8.8). This
relationship, the cornerstone of the binary coded decimal algorithm,
results in relatively simple and inexpensive hardware translators in card
reader/punch units serving as input/output units to CPU’s. It was deemed
desirable to maintain this simple bit-pattern—to-hole-pattern relationship
in EBCDIC, if possible. The translation relationship, bit patterns to/from
hole patterns, reveals itself on examination of Fig. 8.8.

?’i;nern Y No Zone A B BA
No Pch 8-2 = 11 12

1 1 0-1 11-1 12-1

2 2 0-2 11-2 12-2

21 3 0-3 11-3 12-3

4 4 0~4 11-4 12-4

4 5 0-5 11-5 12-5

42 6 0-6 11-6 12-6

421 7 0-7 11-7 12-7

8 8 0-8 11-8 12-8

8 1 9 0-9 11-9 12-9

8 2 0 L] 0-8-2 -0 B o L

8 21 8-3 0-8~3 11-8-3 12-8-3
8 4 8-4 0-8-4 11-8-4 12-8-4
84 1 8-5 0-8-5 11-8-5 12-8-5
842 8-6 0-8-6 11-8-6 12-8-6
8421 8-7 0-8-7 11-8~7 12-8-7

Exception translation

Fig. 8.8 BCDIC-BCD relationship
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Zone punches—no zone, zero zone, eleven-zone, twelve-zone—
translate to/from the two high-order, or zone, bits—No zone, A, B,
BA.

Digit punches 1, 2, 3, 4, 5, 6, 7 translate to/from their binary
equivalents, 1, 2, 21, 4, 41, 42, 421.

Eight punch translates to/from its binary equivalent 8. This holds
whether or not it is in conjunction with digit punches 1,2, 3,..., 7.

Nine punch translates to/from its binary equivalent 8 1.

Zero punch translates a little trickily, depending on whether it is a
zone punch or a digit punch. It is a zero punch if it is alone, or if it is
in conjunction with either zone punch 12 or 11 and then translates
to/from its conventional BCD equivalent 8 2. It is a zone punch if it
is in conjunction with any other digit punch 1, 2, 3,...,7, 8,9, and
translates to/from the A zone bit.

] o [ [ 2[5 s ][5 ]o]a]e]c]olc]r
Bit 00 01 10 11
Pat.
00 01 10 11 oo | 01 10 11 00 | 01 10 11 oo | 01 10 1
Row
o |oooo GO (@ |25 |35 [us | su
1 |oo001 26 | 36 [ @) | 55
2 |ooto 27 37 w6 56
3 {0011 28 38 w7 57
4 |o100 29 39 ug 58
»
5 (0101 30 ) ¥9 59
6 0110 31 41 50 60
7 o111 32 42 51 61
8 |1000 33 u3 52 62
9 1001 34 ['4" 53 63
A |1010
-
B (1011 1 7 1y 20
c [1100 2 8 15 21
D |1101 3 9 16 22
E (1110 Y 10 17 23
F |1111 5 11 18 24

Fig.

8.9 BCDIC rearrangement 4 (five collating exceptions)
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In order to maintain this hole-pattern-to-BCD bit-pattern relationship, it
is clear that the embedment of the 64 BCDIC characters in the 8-bit code
table, as shown in Fig. 8.7, would be wrong. Instead, the embedment
shown in Fig. 8.9 would come closer to preserving both the collating
sequence and the BCD relationship.

Block I is a little garbled on the collating sequence, and Block III
would put the BCD bit patterns 8 2 in the top row. But these are
peculiarities which we will study later.

8.4 TECHNICAL DECISIONS

Decision 1

The first decision was with respect to control characters and graphic
characters. It was decided (on a purely intuitive basis) that there would be
64 control character code positions and 192 graphic character code
positions.

Decision 2

The second decision was with respect to the code table location of the
control and graphic characters. It was decided that a quadrant would be
devoted to control characters (i.e., control characters should not overlap
quadrants) and that the first quadrant would be reserved for control
characters. Both Decision 1 and Decision 2 were based on Criter-
ion 3 (see Chapter 7): “Control characters should be easily disting-
uishable, by their bit patterns, from graphic characters; that is, graphic
and control characters should be separable.”
The first structuring of EBCDIC began to emerge (Fig. 8.10).

1 2 3 4
Control
characters Graphic characters
Figure 8.10

Decision 3

It was decided that the special graphics should be contained in one
quadrant (mostly) and the alphabetics and numerics in another quadrant,
as shown in Fig. 8.9. This decision was based on Criterion 1, the
requirement to embed the BCDIC collating sequence in the EBCDIC
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collating sequence. Letting S stand for special graphics, and AN stand for

alphabetics and numerics, this gave rise to three possibilities, as shown in
Fig. 8.11.

1123 |4 112 (3] 4 112 |3 |4
S [AN S \ AN S |AN
Possibility one Possibility two Possibility three
Figure 8.11

Decision 4

Criterion 2 dictated that the Space character should occupy the first
code-table position in the Second Quadrant (Fig. 8.12).

Space

/
L4

1 2 3 4

Figure 8.12

Decision 5

The gross collating sequence of BCDIC, and hence of EBCDIC, was
specials, alphabetics, numerics. It was decided (intuitively) that specials
should collate low to lower-case alphabetics as well as to upper-case
alphabetics.

Decision 6

Criterion 4 (inclusion of lower-case alphabetics) and Decision 5 clearly
ruled out Possibility 3 of Fig. 8.11.

Decision 7

It was decided (intuitively) that lower-case alphabetics as well as upper-
case alphabetics should collate low to numerics.

Decision 8

Decision 7 clearly ruled out Possibility 1 of Fig. 8.11, and left Possibility
2 as the only possible structure for EBCDIC. Decision 2, and Decisions
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3, 5, 6, and 7 which led to Decision 8, established the EBCDIC structure
as shown in Fig. 8.13.

Column 1] l 1 l 2 ] 3 4 I 5 l 6 I 7 8 l 9 1 A I B c l D l E [ F

Pat, |
i 00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11

0 |(oooo} SP

1 0001

2 0010

3 0011

4 agio00

5 0101

] 0110

7 0111

8 1000

9 |1001 .L

A 1010

B 1011

[ 1100

D 1101

E 1110

F 1111

Fig. 8.13 EBCDIC gross structure

Decision 9

It was decided that Criterion 1 would be applied absolutely, regardless of
other criteria. An examination of Fig. 8.9, therefore, indicated that
characters 6, 12, 19, 0, and 13 must be rearranged and Figs. 8.14 and
8.15 show the final result.

It is to be noted that Criterion 6 was also met by Fig.
8.15. The card hole patterns and positive, negative, and absolute
numeric equivalents were as shown in Fig. 8.16. Note also that some of
the card hole patterns for EBCDIC had now been established, as shown
in Fig. 8.17. It was decided at this time that, as regards small letters and
capital letters, the capital letters should be assigned to the BCDIC hole
patterns for alphabetics, in order to ensure a more reasonable migration
from BCDIC to the EBCDIC environments.



cowm] 0 | 1] 2] 3] s s 6] 7] s]s]als][c]o]c]r
Bit | 00 01 10 11
Pat.
0o 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11
Row
0 (o000 I 0 6 12 19 III§ 25 35 45 54
1 0001 13 26 36 55
2 {oo10 27 37 L6 56
3 {0011 28 38 W7 57
4 0100 29 39 48 58
5 0101 II] 30 40 49 59
R
6 0110 31 41 50 60“‘
7 [o111 32 42 51 61
8 [1000 33 43 52 62
9 1001 34 Ly 53 63
A [1010 4
B 1011 1 7 14 20 J
[o] 1100 2 8 15 21
—
D |1101 v 3 9 16 22
E 1110 4 10 17 23 l
F 1111 5 11 18 24
Fig. 8.14 BCDIC rearrangement 5 (correct collating sequence)
Column| 0 | 1 ] 2 ] 3 4 I 5 I 6 ] 7 8 I 9 I A l B c ro l E [ F
Bit 00 01 10 11 B
Pat.
0o 01 10 11 00 | 01 10 11 00 01 10 11 00 | 01 10 11
Row
6 |ooo0 SP | &+ - b ? 1 t 0
1 0001 / A J 1
2 |oo10 B i'd S 2
3 |oo011 [ L T 3
4 0100 D M U 4
5 (0101 E N v 5
6 (0110 F 0 W 6
7 o111 G P X 7
8 1000 H Q Y 8
] 1001 I R 7 9
A [1010
-
B [1011 . $ , #=
c |1100 ) * 5 o(|le’
D [1101 L ] Y
E [1110 < R \ >
F 1111 ¥ A # Y

Fig. 8.16 BCDIC graphics in EBCDIC
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Hole Numeric Hole Numeric Hole Numeric
Graphic | pattern | equivalent | Graphic | pattern | equivalent | Graphic | pattern | equivalent
? 12-0 +0 ! 11-0 -0 0 0 0
A 12-1 +1 J 11-1 -1 1 1 1
B 12-2 +2 K 11-2 -2 2 2 2
C 12-3 +3 L 11-3 -3 3 3 3
D 12-4 +4 M 11-4 -4 4 4 4
E 12-5 +5 N 11-5 -5 5 5 5
F 12-6 +6 O 11-6 -6 6 6 6
G 12-7 +7 P 11-7 -7 7 7 7
H 12-8 +8 Q 11-8 -8 8 8 8
1 12-9 +9 R 11-9 -9 9 9 9
Fig. 8.16 EBCDIC-BCD relationship
Coumn[ 0 [ 1 J 2 ] 3 a [ 5] 6 7 8 | o [ A B c[ o[ ET F
Bit 00 01 10 11
Pat, "17o0 [ 01 | 10 | 11 00 | 01 ] 10 | 11 00| 01 ] 10 | 11 00 | 01 10 11
Hole Hole
Pat. 12 Pat.
| 11 N
Row 0 -
o loooo ] 2] 13 Ly . 5 XLG_ X|_7_ lf_‘ XL‘L X‘O XLu ;lli
1 |{ooc01 }éﬁ X X W X 1
2 (o010 X X X X 2
3 |o0o11 X X X X 3
4 (61060 X X X X 4
5 (0101 X X X X 5
6 o110 X X X X 6
7 {0111 X X X X 7
8 |1000 X X X X 8
9 |1001 X X X X 9
A [1010 [1s)
B {1011 8-3 X X X X
c |1100]| 8-4 X X X X
D [1101] 8-5 X X X X
E [1110] 8-6 X X X X
F 1111 8-7 X X X X
12
Hofe | 11
Pat. 0
X = Assigned Hole Patterns
Hole Patterns:
1] 11 [13] 0-1
E Block | Hotle Patterns at:
E E 12-0 1 3 1 Top and Left
E 11-0 2 Bottom and Left
[:5] No Pch @ 0-8-2 2 4 3 | Top and Right
E] 12 [E 0 4 | Bottom and Right

Fig. 8.17 Preliminary EBCDIC hole patterns
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9.1 A- AND H-DUALS

In Chapters 4 and 5 there is a discussion of the five duals of BCDIC; why
they came into being, an attempt to eliminate them, and why they were
not eliminated after all. The duals came into existence because of
equipment limitations and were retained for reasons of compatibility.

A number of different 48-character chains were provided for the
families of 6-bit computers. These chains were designated by letters A, B,
C, D, E, F, G, H, I, etc. One of these chains carried the ‘“commerical”
graphics and was designated an A chain. Another chain carried the
“scientific’’ graphics and was designated the H chain. In time, the duals
came to be designated by these letters; the A-duals and the H-duals.

Hole patterns A-duals H-duals

0-8-4 % (
12-8-4 X )
12 & +

8-3 # =
8-4 @ '

While EBCDIC was being developed (as described in previous chapters),
the question arose again, ‘“‘Should the duals be eliminated?”
9.2 IMPLICATIONS OF REASSIGNING DUALS

Certainly, the equipment limitations could be removed. While the
System/360 was being designed, a new keypunch (which came to be the
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IBM 029 Keypunch) was being designed. It would expand from the
capability of the 026 Keypunch to key 48 characters by single key-stroke
to a capability of 64 characters. New printers were being designed, and it
was assumed or hoped that the long-established 48-character printing set
could be expanded without sacrificing printing speed. The question of
compatibility of card hole patterns with BCDIC would obviously arise
and would have to be reviewed. But the full implications of any such
incompatibility could not be reviewed in depth until the nature and extent
of the incompatibility was known. The first thing to be determined was
what the incompatibility might be. There were four possibilities:

Possibility 1. Retain the de facto BCDIC hole patterns for the A-duals,
and assign new hole patterns to the H-duals.

Possibility 2. Retain the de facto BCDIC hole patterns for the H-duals,
and assign new hole patterns for the A-duals.

Possibility 3. Retain the de facto BCDIC hole patterns for some of the
A-duals and for some of the H-duals, and assign new hole patterns to the
other A-duals and to the other H-duals.

Possibility 4. Assign new hole patterns to the A-duals and to the
H-duals.

It was clear that, whatever the implications of Possibilities 1 and 2, these
must be determined first, after which the implications of Possibilities 3
and 4 could be determined easily. So Possibilities 1 and 2 were looked at
first.

Three data processing customer situations were reviewed:

Situation 1. Customer now, or in the future, will take a successfully
performing application on a BCDIC computer and convert it to run on an
EBCDIC computer.

Situation 2. An application will be organized so that it is processed
partially on a BCDIC computer and partially on an EBCDIC computer.

Situation 3. An application will be processed completely on an EBC-
DIC computer.

With respect to Possibilities 1, 2, 3, and 4, Situation 3 seemed to display
no implications, so it was disregarded in further review.
Two assumptions were now made:

Assumption 1. A-duals will appear mainly in data. That is, they will be
required to be input to the system, will exist in data during various stages
of processing, and may be required in output listings or other output data.
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Assumption 2. H-duals will appear mainly in programming source lan-
guage statements. That is, they will require to be input to the system, and
will be required for source language program listings, and will be required
during compile processes, but will not then be required in further stages
of processing.

Some implications now emerged:

Implication 1. Possibility 1 posed no adverse implications under As-
sumption 1 for any of Situations 1, 2, or 3, but it posed adverse
implications under Assumption 2.

Implication 2. Possibility 2 posed no adverse implications under As-
sumption 2 for any of Situations 1, 2, or 3, but it posed adverse
implications under Assumption 1.

Implication 3. Possibilities 3 and 4 posed adverse implications for all of
Situations 1, 2, and 3 under both Assumptions 1 and 2.

Before we consider adverse implications, let us look at another
assumption that was made.

Assumption 3. Under Possibilities 1, 2, 3, and 4, the “new” hole
patterns would nevertheless be contained within the set of 64 BCDIC
hole patterns. That is to say, the “new” hole patterns™ could still be input
to BCDIC computing systems, even though their graphic meanings had
been changed.

Now, let us examine the adverse implications in detail. First we need
some terminology to cover the four Possibilities precisely.

If the old and therefore compatible hole patterns are retained for the
A-duals, the data containing these duals will be called ‘“compatible
BCDIC A-data,” or “compatible EBCDIC A-data,” depending on which
code is used. Similarly, if old hole patterns are retained for the H-duals,
reference will be made to “compatible BCDIC H-data,” or to ‘“compati-
ble EBCDIC H-data.”

If new and therefore incompatible hole patterns are assigned to the
A-duals, reference will be made to “incompatible BCDIC A-data” or to

*An intriguing aspect of “new” hole patterns emerged in EBCDIC. A 64-
character subset of the 256 EBCDIC hole patterns was the set that was single-
stroke keypunchable on the 029 Keypunch. But the EBCDIC set of 64 hole
patterns did not match the BCDIC set of 64 hole patterns. EBCDIC subset
contained 12-8-2 and 11-8-2, but not 12-0 and 11-0 (12-0 and 11-0 were, of
course, contained in the total set of 256 EBCDIC hole patterns). BCDIC set
contained 12-0 and 11-0, but did not contain 12-8-2 and 11-8-2. This anomaly is
fully discussed in Chapter 10.
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“incompatible EBCDIC A-data.” Similarly, if new hole patterns are
assigned to the H-duals, reference will be made to “incompatible BCDIC
H-data” or to “incompatible EBCDIC H-data.”

9.2.1 Situation 1 Consequences
Consider Situation 1 under each of the four Possibilities:

Situation 1/Possibility 1. There will be no problem with A-data, but all
programs will have to be either reprogrammed or rekeypunched for the
incompatible EBCDIC H-data, then recompiled and redebugged.

Situation 1/Possibility 2. Data containing compatible BCDIC A-data
will have to be converted to incompatible EBCDIC A-data. Programs
will have to be either reprogrammed or recompiled and redebugged (but
not rekeypunched).

Situation 1/Possibility 3. The actual situation here would depend on
which A- and H-duals were, or were not, changed. However, for those
applications with A-data whose A-duals had been changed, data would
have to be converted. Programs would have to be either reprogrammed
or rekeypunched, then recompiled and redebugged.

Situation 1/Possibility 4. Data containing compatible BCDIC A-data
would have to be converted. Programs would have to be rekeypunched,
recompiled, and redebugged.

9.2.2 Situation 2 Consequences

Now, Situation 2 had to be defined in greater depth. There are three
considerations:

s BCDIC computer does, or does not, process H-data.

"  BCDIC computer does, or does not, pass A-data to EBCDIC
computer.

=  BCDIC computer does, or does not, receive A-data from EBCDIC
computer.

The various possible situations are shown in the left column of Fig. 9.1.
For these various situations, the table indicates whether implications are
unsatisfactory (U) or satisfactory (S). For the various Situations under the
four Possibilities, Situation/Possibilities were unsatisfactory in 12 in-
stances because of change of H-duals, unsatisfactory in 18 instances
because of change of A-duals. Assuming all Situation/Possibilities were
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BCDIC Possibility Possibility Possibility Possibility

Computer 1 2 3 4
Processes H, yes U S U U
Passes A, yes S U U U
Receives A, yes S U U U
Processes H, yes U S U U
Passes A, yes S U U U
Receives A, no S S S S
Processes H, yes U S U U
Passes A, no S S S S
Receives A, yes S U U U
Processes H, yes U S U U
Passes A, no S S S S
Receives A, no S S S S
Processes H, no S S S S
Passes A, yes S U U U
Receives A, yes S U U U
Processes H, no S S S S
Passes A, yes S U U U
Receives A, no S S S S
Processes H, no S S S S
Passes A, no S S S S
Receives A, yes S U U U
Processes H, no S S S S
Passes A, no S S S S
Receives A, no S S S S

Figure 9.1
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equally likely to occur, the table shows more unsatisfactory implications

for A-dual changes than for H-dual changes.
There was another consideration. There are vastly more tapes con-

taining application data (i.e., containing A-duals) than there are source
language program tapes (i.e., tapes containing H-duals). In general, it was
reasoned that the costs of converting data (if A-duals were changed)
would be vastly greater than the costs of converting programs (if H-duals
were changed). Possibility 1, therefore, seemed to pose very much less of
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a cost implication for users than Possibility 2. Possibilities 3 and 4 seemed
to pose more cost implications for users than either Possibilities 1 or 2. In
short, Possibility 1 seemed to be the least onerous choice.

9.3 FIRST DECISION

The first decision was made. If one of the four Possibilities were chosen, it
would be Possibility 1—to retain the BCDIC hole patterns for the
A-duals and to change the hole patterns for the H-duals. This Possibility
would be taken together with Assumption 3—to retain the 64 BCDIC
hole patterns.

The next step was to decide which five BCDIC graphics would be
replaced by the EBCDIC H-duals:

() + ="

9.4 FURTHER DECISIONS
Soine further decisions were made:

1. Space, numerics, alphabets would not be changed.
2. @ # % & X would not be changed.
3. ., * /' $ — would not be changed.

This left the following BCDIC graphics for consideration:

o2 < > [
/] b v * £ # A V

This problem was being considered in the same time frame as the
design and development of the System/360. It had already been decided
that none of the control functions provided by the seven BCDIC control
characters would be provided as functions on the System/360, and the
seven graphics would not be provided on the System/360. Therefore, the
seven graphics would not be provided in EBCDIC, and the seven
corresponding code positions were available for assignments of the H-
duals or of new graphics as seemed appropriate.

It was decided that the five H-duals would not be assigned to any of
these seven code positions. The reasoning went as follows. The five
H-duals were graphics used in programming languages. It was entirely
possible that source language programs intended for execution on
System/360 might first pass through a BCDIC computer, for one or
another reason. But such programs would have to have the “new” codes
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for the H-duals, whatever they might be. If the H-duals were assigned to
the hole patterns of BCDIC control characters, then, when such programs
were entered into a BCDIC computer, the H-duals would have bit
patterns of control characters. And if such programs were then recorded
on seven-track magnetic tape, during the recording or subsequent reading
of such tapes on BCDIC computers, the control bit patterns might cause
unexpected and undesirable effects. Might not, of course, if care was
taken, but the feeling was, it was better to be safe than sorry. The
H-duals should not be assigned to the hole patterns of the BCDIC control
characters.

This left the following set of BCDIC graphics, of which five were to
be replaced by H-duals:

; bo< > N ]
Intuitively, it was decided to replace
[ ] by ()
leaving
o< >\

three of which were to be replaced by
+ =

As has been mentioned before, it had already been decided not to
provide on the 029 keypunch the hole patterns 12-0 and 11-0 as
single-stroke keypunchable characters. In consequence, the hole patterns
of the BCDIC graphics ? ! were not available to be replaced by any of the
H-duals. (The reason for this aspect of the design of the 029 Keypunch is
discussed more fully in Chapter 10.) This left BCDIC graphics

;< >\

The ; was a required graphic in COBOL, so it could not be replaced.
Both < and > were also COBOL graphics, but the COBOL standard
stipulated that they could be represented by two-character representa-
tions; GT (Greater Than) for > and LT (Less Than) for <. It was
decided that < and > were the two BCDIC graphics to be replaced, and
+ and = were chosen to replace them, respectively. BCDIC ; and
EBCDIC ; would be matched. This left BCDIC graphic either : or \ to be
replaced by ’; on not much more than a toss of a coin basis, it was decided
to replace

by '
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The situation was now as follows:

BCDIC EBCDIC
Space match Space
0-9 match 0-9
A-Z match A-Z
A IV B match R A S
@ # % & H match @ # % & H
> [ < ] replaced by = +)
71 hole patterns not

to be assigned
EBCDIC graphics

\ undecided
By + = #AY not to be assigned
in EBCDIC

At this stage then, five BCDIC graphics < > [ ] : were to be replaced,
the card hole patterns of two BCDIC graphics ? ! were not to be on the
029 Keypunch, and no decision has been made with respect to the
BCDIC graphic \ .

The next question was whether any of the seven BCDIC graphics

< > [1] :!?
should be reassigned to BCDIC hole patterns to be vacated by
+ = # b AV vy

9.5 PL/I CONSIDERATIONS

While this question was being considered, a new factor came on the
scene. A new higher-level programming language, PL/I was being de-
veloped. PL/T itself has some character set requirements. The Space
character would be needed and so would the following 59 graphics:

10 numerics 0to9
26 alphabetics AtoZ
3 alphabetic extenders # $ @
20 syntactics™® + = -/ = () < > -

, Do 2T % &

* A syntactic is a character that has some specific meaning within the syntax of a
programming language.
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Actually, the PL/I designers had wanted more graphics, in particular |
and ], but the requirement to implement the set on a 60-character chain
made it impossible to provide the brackets to PL/I.

It was decided that these 59 graphics must definitely be assigned in
EBCDIC and to hole patterns that are single-stroke keypunchable on the
029 Keypunch. Many of them had already been assigned, under the
discussion above. The Space character, numerics, alphabetics, and al-
phabetic extenders had been assigned. Of the syntactics, 13 had been
assigned:

() + =", % & [ % -

Seven syntactics remained to be assigned:

< > | 7 - 7

Also, graphics for three lower-case alphabetic extenders needed to be
assigned. Ten BCDIC graphics had not yet been replaced:

2 1\ b + = # A V

Of these ten, as mentioned previously, the hole patterns 12-0 and 11-0
for ? and ! were not to be available on the 029 Keypunch. Compensating
for this, two new hole patterns would be available, 12-8-2 and 11-8-2.

It seemed like a fortuitous match—seven syntactics and three lower-
case alphabetic extenders needed to be assigned, and eight BCDIC hole
patterns and two new hole patterns were available. This fortuity quickly
disappeared, for the following reasons.

9.6 88 - 26 = 62"

The console typewriter for the System/360 would provide 88 graphics and
the Space character. Of these 88, 26 are lower-case alphabetics, leaving
62 graphics. The 029 Keypunch can provide 63 graphics and the Space
character, but if it does so, one of those 63 graphics cannot be typed on
the console typewriter. The system would be out of balance. To resolve
this system imbaldnce, the 029 Keypunch must be allowed to provide
only 62 graphics, and the Space character. The 029 would have the
physical capability of providing a 63rd graphic, but it must not do so. This
reasoning was accepted. (A fuller discussion is given in Chapter 10.) The
029 Keypunch was designed to have a key that will generate the 0-8-2
hole pattern, but no graphic is interpreted on the punched card. Since the
0-8-2 hole pattern was selected, no EBCDIC graphic would be assigned
to replace the BCDIC =+.
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9.7 ASCIl CONSIDERATIONS

The consequence of this decision was that there were 9 hole patterns
available and 10 graphics to be assigned. This dilemma was resolved by
consideration of another factor. It would be helpful in the long run if
EBCDIC provided the same set of graphics as ASCIIL. A corollary of this
was that EBCDIC should not have graphics that were not in ASCIIL. This
focused attention on three EBCDIC graphics:
| © X

The first part of the solution involved | and ' . As described in Chapter
24, this problem was solved when the standards committees decided that
the ASCII graphics ! and " could be stylized as (that is, substituted by) |
and "\

This left the graphic X to be resolved. Attempts to persuade the
standards committees to assign this graphic in ASCII were unavailing.
Eventually, it was decided not to assign X in EBCDIC. This decision, as it
turned out, was not subsequently accepted by many customers, who
requested that it be provided on printers for the System/360. It was

provided to these customers, although it ostensibly did not exist in
EBCDIC.

9.8 BCDIC CONTROL CHARACTERS

This brought the counts back to match—EBCDIC graphics for BCDIC
hole patterns. The question that now arose concerned the fact that six of
these BCDIC hole patterns represented BCDIC control characters. As
stated above, BCDIC hole patterns that represented BCDIC control
characters were avoided in reassigning the H-duals. Shouldn’t they also
be avoided in assigning the rest of the PL/I syntactics?

It would not be possible to avoid them, however, if Assumption 3
above was to be valid. So the question was not how to avoid assigning
PL/I graphics to BCDIC control characters, but rather what the implica-
tions of such an assignment might be. The reasons for avoiding BCDIC
control characters for H-duals were reviewed:

= H-duals were used in FORTRAN and COBOL source language
programs.

®  Such programs, intended for execution on a System/360, might
nevertheless be processed in some way on a BCDIC computer before
arriving at the System/360.

®*  During the processing on a BCDIC computer, the source language
program might be stored on magnetic tape.
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®=  The control bit patterns might cause unpredictable and unwanted
results.

Since PL/I, as a programming language, was not being developed for
use on a BCDIC computer, it seemed unlikely that any PL/I source
language programs intended for execution on a System/360 would be
entered into a BCDIC computer for any reason. Therefore, it seemed
that assigning PL/I syntactics to BCDIC control bit patterns was unlikely
to lead to trouble. Two of these syntactics < and > were also COBOL
syntactics, so it was decided not to assign < and > to BCDIC control
characters. There were just two BCDIC noncontrol characters remaining
unassigned, X (freed up as described above) and \. These two hole
patterns were assigned to < and > (respectively).

The five remaining PL/I syntactics | 7 _ : ? were assigned to the hole
patterns previously assigned to BCDIC graphics £ y A b # respec-
tively.

9.9 LOWER-CASE ALPHABETIC EXTENDERS

The sole remaining problem, then, was assignments for the three lower-
case alphabetic extenders. While this development work on EBCDIC was
going on, a new PTTC was being developed for the System/360 (see
Chapter 12). The criterion developed for lower-case alphabetic extenders
for the new PTTC was as follows:

U.S.A. graphics for the three lower-case alphabetic extender code
positions must be such that they will not be required or wanted in
any European country with a Latin alphabet. That is, in such
countries, the U.S.A graphics can be “throwaways.”

The three graphics ¢ ! ” were chosen to meet this criterion. (These
graphics also met the requirement that they be ASCII graphics, although
¢ disappeared from ASCII before ASCII was finally approved as an
American National Standard.) And so ¢ ! were assigned to the two new
hole patterns, 12-8-2 and 11-8-2, and » was assigned to the sole re-
maining BCDIC graphic / with its hole pattern of 8-7.

It should be pointed out that because of their card hole patterns 12-
8-2 and 11-8-2, the EBCDIC ¢ and ! came in time to be associated with
the ASCII graphics [ and ] associated with those hole patterns. When this
association became firm (when the American National Standard Hollerith
Punched Card Code was approved), it was suggested that EBCDIC be
changed, replacing ¢ and ! with [ and ] (respectively). This suggestion was
reviewed, but not adopted, for the following reasons.



154 The Duals of EBCDIC

1. The cost to replace 029 Keypunch printing plates and keytops,
printer chains and trains, typewriter printing elements, graphic dis-
play character generators, etc., would be considerable.

2. Graphics [ and | were in ASCII code positions which corresponded
to National Use positions in the ISO 7-Bit Code. ISO 7-Bit Code
National Use graphics, like EBCDIC alphabetic extenders, were ex-
pected to be replaced in those European countries with Latin al-
phabets of more than 26 letters; that is, the graphics [ and ] would
not, in fact, appear in Europe.

3. In FORTRAN and PL/I, there had long been an unfulfilled require-
ment for a second pair of “parentheses.” The [ and ] would certainly
serve that purpose. If the brackets were put on the 029 Keypunch,
that would make them available for just such a second level of
parentheses.

4. But such a compiler would not serve in Europe, where the brackets
would be replaced by letters.

5. To avoid such a potential dichotomy for programming languages
between Europe and the U.S.A., graphics [ and | were not put on the
029 Keypunch.

6. A small glitch between ASCII and EBCDIC—{ and ] corresponding
respectively to ¢ and '—seemed preferable to the potential program-
ming language dichotomy of reason 5 above.

9.10 FINAL ASSIGNMENT OF SPECIALS

Figure 9.2 shows the final assignment of specials into EBCDIC in 1970,
as a result of reassigning the H-duals. Figure 9.3 shows, for comparison,
the graphics that would have been assigned in EBCDIC if the BCDIC
specials, complete with A/H-duals, had been assigned according to their
BCDIC card hole patterns. Of the 27 BCDIC specials, only 11 ended up
with unchanged code positions in EBCDIC.

9.11 CONSEQUENCES OF REASSIGNMENT

A question that arose was whether the collating sequence had been
affected by these changes. The primary criterion in the development of
EBCDIC was that the collating sequence of BCDIC should be embedded
in the EBCDIC collating sequence (see Chapter 8). In a very real sense,
this criterion had not been aborted, even though many BCDIC graphics
ended up with EBCDIC card hole patterns different than their BCDIC
card hole patterns.



] 0] 1] 23] ] 5] 7] s s a]s]c]o]c]cr
git 00 01 10 11
Pat.
00 | 01 10 11 oo | 01 10 | 11 00 | 61 10 11 00 | 01 10 11
Row
0 (0000 SP & -
1 |0001 /
2 |oo010
3 |oo11
4 |o100
5 {0101
6 [0110
7 Jot111
8 1000
9 (1001
A |101%0 ¢ ! :
B [1011 . $ . #
c |1100 < * % @
D (1101 ( ) '
E |1110 + s > =
F 1111 ] - ? "
Fig. 9.2 EBCDIC specials
ColumnOl‘l[ZIS 415‘6!7 e[slAla clnlels
Bit | 00 01 10 11
Pat.” |
60 | 01 10 11 00 | 01 10 | 11 0o | 01 10 | 11 oo | 01 10 11
Row
o |o0o0o00 SP | &+ - ? ! }
1 o001 /
2 {0010
3 |0011
4 (0100
s |0101
—
6 {0110
7 |01
8 [1000
g 1001
A 1010 %
.
B [1011 . $ s ft=
¢ [1100 Yyl * |72 (|@
D |1101 L ] Y :
€ (1110 < H \ >
Fol1119 3 A " v

Fig. 9.3 BCDIC specials in EBCDIC

165



156 The Duals of EBCDIC

Example

The field on which records are sorted or collated is called a keyword.
Keypunch a set of records, and keywords, on an 026 (BCDIC) Keypunch.
Enter the data into a BCDIC computer. Sort the records in sequence of
keywords.

Take the same card deck, and enter it into an EBCDIC computer.
Sort the records in sequence of keywords.

The sequence of records in the BCDIC computer and the sequence
of records in the EBCDIC computer will be identical.

The sequence of records will be identical, but will anything be
different? List the keywords and records on the printer of the BCDIC
computer. List the keywords and records on the EBCDIC computer.
Compare the listings. If all graphics in the keywords and records are in
the following set, the listings will be identical:

Space

Numerics 0to9

Alphabetics A to Z

Specials o, xS - 5 & % # @

If graphics are used in keywords or records beyond the set above, the
listings will look different, the differences corresponding to the differences
between Fig. 9.2 and 9.3. But it must be reemphasized that the sequence of
records will be identical.

Were there any adverse effects of the reassignment of the H-duals?
Yes, indeed! The first effect showed up for programmers who were
developing various programs for the System/360. Engineering models of
the System/360 were available for the use of programmers, but 029
Keypunches were not. Programmers could not get their programs
keypunched according to the EBCDIC card hole patterns. If programs
could not be keypunched, they could not be entered and debugged. The
solution to this impasse was to modify several 026 keypunches to gener-
ate the EBCDIC hole patterns for () + = '. Then the programs could be
keypunched, entered, and debugged.

The second effect was on customers who had received a System/360.
Of course, old BCDIC machine language programs would not work on
the System/360, but, to the extent that customers had retained source
language program decks or program tapes for COBOL or FORTRAN,
the programs could be recompiled, a task which was a far less onerous
proposition than reprogramming. Unfortunately, such program decks or
tapes would have the old BCDIC H-dual hole patterns or bit patterns for
() + = ' and the System/360 compilers for COBOL and FORTRAN had



9.1

Consequences of Reassignment 157

Column

Bit

&

0]71]2‘3 4‘5TG[7 BIL[AIB C|DTEIF

00 01 11

Pat.

00 01 10 11 00 01 10 11 00 01 10 1 00 01 10 11

0 0o0ao

&
+

1 0001

2 0010

3 0011

4 0100

] 0101

6 0110

7 0111

8 1000

9 1001

A 1010

B 1011

D

c 1100

D 1101

E 1110

F 1111

Fig. 9.4

A- and H-duals in EBCDIC

been written assuming the new EBCDIC patterns for these graphics.
Could this dilemma be resolved?

It could, and was, with the aid of some IBM customers. Consider Fig.
9.4. EBCDIC hex positions 4D, 5D, 4E, 7E, and 7D were the assigned
positions for the bit patterns of () + = ‘. EBCDIC hex positions 6C, 4C,
50, 7B, and 7C were where these graphics would have been assigned
according to their old BCDIC hole patterns or bit patterns. Three things
were done.

1. The

logic in the control unit of the chain and train printers was

modified, as shown in Fig. 9.4, so that

either hex position 4D or 6C printed (
either hex position 5D or 4C printed )
either hex position 4E or 50 printed +
either hex position 7E or 7B printed =
either hex position 7D or 7C printed '
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2. The scan portion of the FORTRAN compiler was modified so that
either of the equivalent pairs of bit patterns would be accepted for ()
+ ="

3. The scan portion of the COBOL compiler was similarly modified.

By these actions, old FORTRAN or old COBOL program decks or tapes
could be read into a System/360, listed for debug purposes, compiled, and
executed.

Clearly, if these actions had been taken during the development cycle
of System/360 programs, the first adverse effect above would not have
occurred, and unmodified 026 Keypunches could have been used. Hind-
sight is easily come by.

With the reassignment of H-duals in EBCDIC, and with the assign-
ment or reassignment of the remaining PL/I syntactics and of the lower-
case alphabetic extenders, the 88 graphics of EBCDIC were set in place.
Attention now centered on completing the 256 card-hole-patterns—to—
bit-patterns assignments. This will be discussed in Chapter 11.



The
Graphic Subsets
of EBCDIC

The 256-character code EBCDIC was designed as the CPU code for the
System/360. As described in Chapter 8, a decision was made to reserve
64 code positions for control meanings and 192 code positions for graphic
positions. The physical capability of chain/train printers of providing up
to 240 different graphics did not limit the total numbers of graphics to be
assigned in EBCDIC. Other factors did set limits and gave rise to graphic
subsets of EBCDIC.

10.1 88-GRAPHIC SETS

The console printer for the System/360 was based on an electric typewri-
ter, duocase, with 44 keys, and a capability of printing the following 88
graphics:

10 numerics 0to9
26 lower-case alphabetics atoz
3 lower-case alphabetic extenders ¢ ! "
26 upper-case alphabetics AtoZ
3 upper-case alphabetic extenders # $ @
20 specials /| *+ = - & % |
e, Y= > () !

As described in Chapter 8, these 88 graphics were assigned to code
positions as shown in Fig. 10.1.
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cwm] o | 1 [ 2] s ]« s s 7 e 9] Aa]e]c]o]c]r

Bt 0o 01 10 11

Pat.
Row ¢ 0o 01 10 11 0o 01 10 11 00 01 10 11 00 01 10 11
0 (0000 SP & - 0
1 0001 / a 3 A J 1
2 |oo010 b k s B K S 2
3 [o0011 c 1 t C L T 3
4 |0100 d m u D M U 4
5 10101 e n v E N v 5
6 0110 f o w F 0 W 6
7 (o111 g P X G P X 7
8 (1000 h q y H Q Y 8
9 {1001 i r z I R A 9
A |1010 ¢ 1
B 1011 . $ s #
c |1100 < * % @
D {1101 ( ) _ '
E [1110 + ; > =
F 1111 | - ?

Fig. 10.1 EBCDIC 88-graphic set

10.2 62-GRAPHIC SUBSET

From the duocase set of 88 graphics emerged a monocase set. The IBM
029 Keypunch was being designed at the same time as the System/360,
and it had been decided to provide 64 hole patterns on the 029. One of
these hole patterns would be the “no-holes” hole pattern for the Space
character, leaving 63 hole patterns to be assigned. It was decided that the
029 Keypunch would provide a monocase set, and that the hole patterns
for the monocase alphabetics would be those already assigned to the
upper case alphabetics of EBCDIC. A keypunch keyboard is represented
in Fig. 10.2.

By the decision to assign the hole patterns of the EBCDIC upper-
case alphabetics to the keypunch monocase alphabetics, the EBCDIC
lower-case alphabetics were excluded from the keypunch—excluded in
the sense of being single-stroke punchable. That is to say, of the 88
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[4}]
e
o}
o
e
Q
C
3
o
2
+
D
Q
@
e
£
<

(Not to scale)

161

Fig. 10.2 029 keyboard
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Hole
Pattern—) 12 1" 0
& - 0 SP
1 A J / 1
2 B K S 2
3 c L T 3
4 D M U 4
5 E N A 5
6 F 0 W 6
7 G P X 7
8 H Q Y 8
9 1 R Z 9
0 ¢ !
8-3 $ , #
8-4 < * 9 @
8-5 ) _ [
8-6 + =
8-7 ( - ? "

Fig. 10.3 EBCDIC 64-graphic set

EBCDIC graphics, 88 — 26 = 62 could be provided. But the keypunch
could provide 63 graphics. There were, then, two possible choices:

1. Assign 63 graphics on the keypunch, and add a graphic to EBCDIC,
making a total of 89.

2. Assign 62 graphics on the keypunch, and thus leave one of the 63
hole patterns unassigned.

If choice (1) were made, the 89th graphic could then not be printed on
the 88-graphic console typewriter. An imbalance in the system would be
created. For this reason, choice (1) was rejected.

Under choice (2), the keypunch could punch and interpret 62 charac-
ters and the Space character. The hole pattern 0-8-2 has no graphic



10.2

62-Graphic Subset

Hole

Pattern—> 12 (] 0
& or + - 0 SP
1 A J / 1
2 B K S 2
3 c L T 3
4 D M U 4
5 E N v 5
J T ) W 6
7 e P X 7
8 H Q Y 8
9 1 R z 9
0 ? Lo ! 2] ¥ b
8-3 ] , # or =
8-4 o or ) * % or ( @ or '
8-5 L ] Y
8-6 < 3 \ >
8-7 % A " 4

Hole Patterns:

(] 12-0
2] 11-0

Fig. 10.4 BCDIC 64-graphic set
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assigned. As can be seen from Fig. 10.2, 0-8-2 is engraved on a keytop.
When this key is depressed, the hole pattern 0-8-2 is punched in the card,
but no graphic is interpreted on the card. (As described later in Section
10.3, a graphic was assigned some years later to the hole pattern 0-8-2,
but it is not interpreted on the 029 Keypunch.)

The 64 characters of this EBCDIC subset are shown in Fig. 10.3.

Figure 10.4 shows the 64-character set of BCDIC. It is to be noted that
the two sets of 64 hole patterns are not quite the same. EBCDIC-64 has
hole patterns 12-8-2 and 11-8-2, and does not have 12-0 and 11-0.
BCDIC has hole patterns 12-0 and 11-0, and does not have 12-8-2 and
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11-8-2. The hole patterns 12-8-2 and 11-8-2 were chosen instead of 12-0
and 11-0 for the 029 Keypunch because of a mechanical problem.*

It is of interest that these 64 hole patterns of the 029 Keypunch are
the hole patterns assigned to the 64 graphics and Space in columns 2, 3,
4, and 5 of the 7-Bit Code (Fig. 2.26). In that code, the graphic \ is
assigned to the hole pattern 0-8-2, and the graphics [ and ] are assigned
to the hole patterns 12-8-2 and 11-8-2, respectively, as contrasted to the
EBCDIC graphics ¢ and !. Further, in the 7-Bit Code, graphics ! and A
are assigned to hole patterns 12-8-7 and 11-8-7, respectively, as con-
trasted to the stylistically similar EBCDIC graphics | and —. This
64-graphic set is shown in Fig. 10.5.

Another 64-character set emerged during the design of the IBM
System/3. It was decided to provide a printing set of 63 graphics and
Space. Of these 63 graphics, it was quickly decided that 62 would be
those of EBCDIC previously described. But what should the 63rd graphic
be? It will be recalled that for the System/360, a console typewriter of
88-graphic capacity limited the EBCDIC monocase set to 62 graphics.
But for the System/3, a 63 monocase printer would be provided for the
console, so the system imbalance limitation did not appear.

In the System/3, as with other BCD computers, the BCD relation-
ship for alphabetics would be provided. That is, as discussed in Chapter 2,
hole patterns 12-1, 12-2,...,12-9 would mean A, B,...,I as alpha-

betics, but would mean +1, +2, ..., +9 as signed numerics; hole patterns
11-1, 11-2,...,11-9 would mean J, K, ..., R as alphabetics, but would
mean —1, —2,...,—9 as signed numerics.

When signed numerics are printed out in final listings, the sign — is
separated from the units position of a numeric field and printed sepa-
rately. But during debugging runs, the sign is generally not printed out.
That is to say, —1, =2,..., =9 will print as J, K, ..., R. While this may
look peculiar, it is quite unambiguous to the programmer, and is accepta-
ble. Similarly, +1, +2,..., +9 will print as A, B,..., L

The problem is, what will print for —0 and for +0 ? The problem
with +0 is not so pressing, since input data for debugging generally has
absolute (unsigned) numbers instead of positive (signed) numbers. But the

* Without going into details on this mechanical problem, let it suffice that to
interpret from hole patterns 12-0 and 11-0 would be quite difficult, while to
interpret from hole patterns 12-8-2 and 11-8-2 was quite easy, so the latter pair
were chosen. The hole patterns 12-0 and 11-0 are included in the total set of 256
hole patterns of the EBCDIC card code, but they are not in the 64-character set
of the 029 Keypunch.
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Hole

Pattern—% 12 " 0

& - 0] SP
1 A J / 1
2 B K S 2
3 C L T 3
4 D M U 4
5 E M v 5
6 F 0 W 6

~
[p]
rd
s
~

8 H Q Y 8
9 I R Z 9
0 L ] \

8-3 $ , #

8-4 < ® % @

8-5 ( ) — !

8-6 + 3 > =

8-7 ! ” ? "

Fig. 10.5 7-Bit code 64-graphic set

problem for —0 remains. It was decided that there must be an actual
graphic to represent —0. The bit pattern for —0 is in hex-position D0. As
explained later in this chapter, the graphic } had been assigned to this
EBCDIC code position. Therefore, it was chosen to represent —0 in the
System/3.

It seemed strange to provide, in a printing set, } and not to provide {.
However, with the addition of } to the 62 graphics and Space, all positions
of the 64-character set were filled. If { were to be provided, then one of
the 62 graphics would not be provided, and this possibility was rejected
by the System/3 designers. The 64-character set of the System/3 is shown
in Fig. 10.6.
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Column| © I 1 [ 2 I 3 4 l 5 T 6 i 7 8 I 9 I A I B c I D [ E l F
Bit 0o 01 10 11
Row Pt 00 | 01 [ 10| 11 ] oo [ 01 10 | 11 | oo | 01 10 [ 11 J oo | o1 ) 10| 11
o |oooo SP & - } 0
1 |ooo01 / A J 1
2 o010 B K S 2
3 |o011 c L T 3
4 (0100 D M U 4
5 |0o101 E N v 5
6 (0110 F 0 W 6
7 |o111 G P X 7
8 (1000 H Q Y 8
9 (1001 I R Z 9
A |1010 ¢ !
B 1011 s , #
c |1100 < * % @
D |1101 ( ) _ !
E |[1110 + : > =
Foi111 | - ? "
Fig. 10.6 System/3 64-graphic set

10.3

94-GRAPHIC SUBSETS

ASCII, the U.S.A. version of the ISO 7-Bit Code, has 94 graphics. When
the card code for ASCII was approved (to be discussed in Chapter 17), it
was possible to match the graphics of EBCDIC with the graphics of
ASCII, through their associated card hole patterns. At that time, the four
anomalies previously described were revealed:

Hole pattern ASCII EBCDIC
12-8-2 [ ¢
11-8-2 1 !
12-8-7 ! |
11-8-7 A -

(A fuller discussion of the respective matching of ! and A with | and — is
found in Chapter 24.)
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In addition to these four anomalies, the 94-graphic set of ASCII
contained 6 more graphics than the 88-graphic set of EBCDIC. Since
these 6 graphics had associated hole patterns, and since the hole patterns
had associated code positions in EBCDIC, it was possible to determine
where to locate them in EBCDIC, as follows:

Hole Hexadecimal

Graphic pattern position
Back slash \ 0-8-2 EO0
Grave accent 8-1 79
Opening brace { 12-0 Co
Vertical line | 12-11 6A
Closing brace } 11-0 DO
Tilde ~ 12-11-0-1 Al

These six graphics were assigned in EBCDIC, as shown in Fig. 10.7.

Coumn| 0 l 1 ] 2 ] 3 4 ] 5 l el 7 8 I 9J A l 8 c I D ( E I F
Bit 00 01 10 11
Row Pet ~ 00 | 01 10 | 11 00 | 01 10 | 11 00 | 01 10 | 11 60 | 01 10 | 11
o |oooo Sp | & - { } \ 0
1 o001 / a 3 - A J 1
2 |0010 b k s B K S 2
3 [oo011 c 1 t C L T 3
4 Jo100 d m u D M U 4
5 [0101 e n v E N \4 5
6 |0110 £ o \ F 0 W 6
7 o111 g p X G P X 7
8 |1000 h q v H Q Y 8
9 [1001 © 1 r z I R z 9
A [1010 ¢ ! !
B [1011 $ it
c |1100 < # % @
D |1101 ( ) _ '
E 1110 + ; > =
F 1111 [ - ? "

Fig.

10.7 EBDIC 94-graphic set
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10.4 CHAIN/TRAIN PRINTER SETS

It is necessary to understand the fundamental principles of chain/train
printers in order to see the rationale for printer sets of graphics.

Chains and trains are similar in concept. They are loops of printing
slugs which are continuously circulated in a plane normal to the plane of
the paper on which printing is to take place (Fig. 10.8).

One principle of a chain/train is significant: the more times a graphic
is repeated around the chain/train, the more frequently it will pass a
printing position. It is common practice to repeat sets of graphics around
the chain/train. Thus a 48-graphic set can be repeated 5 times (5 X 48 =
240), a 60-graphic set can be repeated 4 times (4 X 60=240), and so on.
The chain/train does not move more rapidly, but individual graphics pass
a given printing position more frequently. The following table presents
comparative information. Nominal printing speed is given in number of
lines printed per minute (LPM).

Number of graphics Repeated sets Nominal printing speed
40 6 1250 LPM
48 S 1100 LPM
60 4 950 LPM
120 2 570 LPM
240 1 300 LPM
Type array

Hammer unit

)
Armature

hammer
magnet

Paper form

Fig. 10.8 Schematic representation of chain/train printer
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10.5 “PREFERRED” GRAPHICS

A more subtle method is to repeat more frequently used graphics more
often than less frequently used graphics. The sets of more frequently used
graphics are called “preferred” graphics. Of course, the principle is still
the same—the more times a graphic is repeated around the chain/train,
the more frequently it passes a given printing position.

Consider a 60-graphic set, which could be repeated 4 times around
the 240 position chain/train, with nominal printing speed of 950 LPM.
But it is also possible to repeat 45 of the graphics 5 times and 15 graphics
just once:

(45 X 5) + (15 x 1) = 240

Then, if all the data being printed on a line contain graphics only in the
set of 45, the nominal printing speed will be 1100 LPM. If the data of a
line contains one or more graphics in the set of 15, the printing speed of
those lines will be 300 LPM. If the data consists mostly of graphics in the
set of 45, printing speeds will approach 1100 LPM, as compared with
950 LPM for a chain/train with 60 graphics repeated 4 times.

Some examples of chain/train sets with preferred sets are given, with
both 48- and 60-character chains for comparison:

Chain/train sets Repeat pattern Nominal printing speed

48 1100 LPM

60, with 45 preferred 45 X 5 = 225 950 LPM
15x1=_15
60 240

52, with 47 preferred 47 X 5 = 235 950 LPM
Sx1=_5
52 240

42, with 39 preferred 39 X 6 =234 1250 LPM
3x2=_6
42 240

84, with 78 preferred 78 X 3 = 234 770 LPM
6x1=_6
84 240

120 120 x 2 = 240 570 LPM
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10.6 48-GRAPHIC SETS

We know that 48-character sets are very popular. They strike a good
balance between reasonably fast printing speeds and adequate graphic
capability. Two well-known sets emerged in the days of BCDIC (Chapter
4) called the A-set and the H-Set, and were perpetuated into EBCDIC
(Chapter 9). Some care must be taken with the terminology. A 48-graphic
set for BCDCIC consisted of 47 graphics and Space, while a set for
EBCDIC consisted of 48 graphics and Space. The X of BCDIC was
replaced by the < of EBCDIC.

11 specials
BCDIC A-set Space 0 to 9 AtoZ , /¥ =9 % X # @ &
H-set Space 0to9 | AtoZ 1P =% () =" +
12 specials
EBCDIC A-set | Space0to9 | AtoZ 1 F =% & 4+ % < # @
H-set Space 0 to 9 AtoZ , /- 8% & + () ="'

10.7 PL/I SUBSETS

The 60-character set for the programming language PL/I consists of 59
graphics and Space:

1 Space

10 numerics 0to9

26 alphabetics AtoZ

3 alphabetic extenders # $ @

20 specials /] * 4+ = - | 7 _ & %
() <> " ., : s ?

In addition, four 2-character operators are recognized by PL/I:

>= QGreater than or equal to
<= Less than or equal to
—1= Not equal to

| Concatenation

A 48-graphic subset of PL/I consists of 48 single-graphic representa-
tions and some 2- and 3-graphic representations:

1 Space
10 numerics
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26 alphabetics

12 specials A
+ - () =&
Operator ~ Representation Meaning
: Colon
; . Semicolon
% /1l Percent
> GT Greater than
< LT Less than
>= GE Greater than or equal to
<= LE Less than or equal to
= NE Not equal to
- NOT Logical NOT
| OR Logical OR
& AND Logical AND
I CAT Concatenation

10.8 KATAKANA SUBSETS

The Japanese written language, like the Chinese written language on
which it is based, consists of ideographs—one ideograph per word. Kanji,
as it is called, consists of many thousands of ideographs. For normal data
processing printers, with limited graphic repertoires, the printing of Kanji
is quite impossible.

Another alphabet, invented by the Japanese and called Katakana, is
more amenable to data processing printer technology. Katakana is a
phonetic alphabet; each Katakana character consists of a vowel, or of a
consonant and a vowel, as shown in Fig. 10.9. Thus, Japanese spoken
words can be phonetically approximated by a written or printed
alphabetic. '

As originally assigned in EBCDIC, Katakana consisted of 47
graphics assigned to bit patterns as shown in Fig. 10.10. From this
assignment, two Katakana sets were available.

64-character
Space
10 numerics
Katakana graphics
6 specials — / y . ,




Shape Name Shape Name
P A N HA
1 1 t HI
. U p) FU
1 E A HE
* 0 i HO
h KA ? MA
¥ KI = MI
] KU I MU
5 KE A ME
3 KO T MO
bl SA P YA
o SHI
2 SU 1 YU
1 SE
Y SO 3 YO
A TA 5 RA
¥ CHI ] RI
Y TSU I RU
F TE v RE
r T0 0 RO
¥ NA 9 WA
- NI W) N
| NU
b NE N Voiced Sound Symbol
J NO ° Semi-voiced Sound Symbol
Fig. 10.9 Katakana-47, phonetics
Columnol112]3 4]5]6]7 B]BlA]B CIDIEJF
Bit 00 01 10 11
Pat 00 | 01 10 | 11 00 | 01 10 | 11 00 | 01 10 | 11| oo | 01 10 | 11
Row
0 0000 Sp - Y 0
vo[oco0s / ? 3 A J 1
2 |[o0010 1 ¥ ) B K S 2
3 |o0011 D] Y i C L T 3
4 |0100 I T 2 D M U 4
5 (0101 7 N R E N A 5
6 |0110 | ¥ 4 F 0 W 6
7 0111 * - A G P X 7
8 1000 ) 4 t H Q Y 8
9 (1001 bl 2 P 1 R zZ 9
A [1010 1 J 1 L
8 (1011 ¥ , 0
c {1100 * bl 3 P
D (1101 ¥ N ) v
E |1110 2 £ 0l *
Fol1111 © J i °
Fig. 10.10 Katakana 89-graphic set
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This set, outlined by heavy lines in Fig. 10.11 is provided by collapse logic
(as described in Chapter 2).

89-character
1 space
10 numerics
26 Latin alphabetics
47 Katakana alphabetics

*

5 Specials . , -/

The 64-character set was sufficient for most normal data processing
applications. The 89-character set was provided on 44-key electric type-
writers. The 89-graphic set is shown in Fig. 10.10.

We shall learn in Chapter 18 that the assignment of Katakana in
EBCDIC created complications.

o] o [ [ 2] ]« s o[ 7] e]e]a[s o]

ait 00 01 10 11

Pat.
Row ; 00 ) o1 | io | 11 { 00| o1 | 10| 11| 00| o1 | 10} 11 ] 00 01| 10| 11
o |ooo0o0 SP - Y 0
1 |o0o001 / P 3 1
2 |oo10 4 7 2
3 |oo11 4 v & 3
4 |o100 T F 2 4
5 |o101 * b = 5_
6 (0110 n b) A 6
7 [0111 + = A 7
8 |1000 7 X € 8
9 |1001 ) % g 9
A 1010 3 J N U
B {1011 . ¥ , 4]
c |1100 #* 4 3 9
D |1101 Y N 2 W
E [1170 2 -t 1] w
F o111 I P b °

Fig. 10.11 Katakana 64-graphic set
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The
Card Code

of EBCDIC

As described in Chapters 8 and 9, some 63 graphic and card hole-pattern
and bit-pattern assignments had been made in EBCDIC. In Fig. 11.1, the
code positions designated X indentify the hole patterns assigned in
EBCDIC.

11.1 PTTC CONSIDERATIONS

In Chapter 6, it was noted that the de facto monocase card hole patterns
12-1,...,12-9, 11-1,...,11-9, 0-2, 0-3,...,0-9 were assigned to
lower-case alphabetics A, B,...,LL J, K,...,R, S, T,...,Z, and that
new card hole patterns 12-0-1, 12-0-2,...,12-0-9, 12-11-1, 12-11-2,
..., 12-11-9, 11-0-2, 11-0-3,...,11-0-9 had been assigned to upper-
case alphabetics. However, as will be described in Chapter 12, a new
version of the IBM 1050 terminal was being designed for the System/360,
and with it, a new PTTC emerged, which reversed the assignments of
lower-case and upper-case alphabetics noted above. In Chapter 8, it had
been decided to locate the lower-case alphabetics in hex-columns 8, 9,
and A. The card hole-pattern—-to—bit-pattern assignments for EBCDIC
were thus extended from those of Fig. 11.1 to those of Fig. 11.2. In
Chapter 9, two hole patterns, 12-8-2 and 11-8-2, were noted and
assigned to graphics ¢ and ! in hex-positions 4A and 5A, respectively.

Figure 11.2, then, shows the hole patterns assigned at this point.
Where a graphic is shown in the code table, the corresponding hole
pattern was assigned.

175
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Cowen[ o | 1 | 2] 3 a [ s 1 61 7 g8 [ 9] a 8 c| b e F
Bit 00 01 10 11
Pat. "] oo 01 10 11 00 01 10 11 00 a1 10 11 00 01 10 11
Hole Hole
Pat. 12 Pat.
» 11 <
e ' T
1 2 3 4 5 6 7 18] 19] 10 11 12
o o000 = = = Xl-“ XL— XI— X X X X
13 14
1 |oc01 Xl_ X X [ X 1
2 o010 X X X X 2
3 |0011 X X X X 3
4 (o100 X X b e X 4
5 (0101 X X X X 5
6 |0110 X X X X 6
7 |0111 X X X X 7
8 (1000 X X X X 8
9 |1001 X X X X 9
15
A 1010 X X l'— X
B [1011] 8-3 X X X X
c |1100| 8-4 X X X X
D |[1101| 8-85 X X X X
E |1110] 8-6 X X X X
F |1111] 8-7 X X X X
1
- 12
Hole 11
Pat. 0
= Asgigned Hole Patterns
Hole Patterns:
] 11 [3] o-1
E Block | Hole Patterns at:
[ﬂ E 12-0 @ 1 3 1 Top and Left
E 11-0 2 Bottom and Left
E No Pch E 0-8-2 2 4 3 Top and Right
El 12 @ 0 4 Bottom and Right

Fig. 11.1

EBCDIC card code, Version 1
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; -‘ —
Column| 0 1] 2 ] s a | s | 6 | 7 8 9 | A B c [ 3] e[ F ]
Bit N 00 01 : 10 11 ]
Pat. T oo [ o1 [ 10 | 11 00 | o1 [ 10 [ 11 00 ] o1 ] 10 [ 11 00 | 01 10 11
Hole .| Hole
Pat. 12 [12 12 [N S LA
¥ 11 (11 11 N
Row 0 0 0
2 3 a 5 ® 7 8 9 10 T 12
o loooo (2] (3] L4] SPl_ﬁ,» &L._ _l.< [ ER [11] 0
13 . ial
t 10001 /L—~ a i A J 1 1
2 |0010 b k s B K 5 2 2
3 (0011 c 1 t C L T 3 3
a lo1o0 d m u D M 1 4 4
6 (0101 e n v E N v 5 5
6 |0110 £ o w F 0 W 6 6
7 (0111 g p X G P X 7 7
8 (1000 h q y H Q Y 8 8
9 (1001 i r z I R Z 9 9
A {1010 ¢ | [15]
B [t1011] 8-3 $ , #
c [1100]| 8-4 < * % @
D |1101]| 85 ( ) _ '
E [1110( 8-6 + ; > =
F 1111 8-7 l - 9 "
12 ) -
Hole 11
Pat. 0 I I
Hole Patterns:
] 11 (3] 0-1
E Block | Hole Patterns at:
[E] 12-0 @ 1 3 1 Top and Left
E 11-0 2 Bottom and Left
[s] N0 Pch [17] 0-8-2 2 4 3 | Topand Right
[s] 12 [iz) o 4 | Bottom and Right

Fig. 11.2 EBCDIC card code, Version 2
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Hote | 9 9 9 9 9 9 9 9
Pat, | 12 12 12 12 12 12 12 12

8-6

8-7

Fig. 11.3 256 hole patterns

In order to arrive at the total EBCDIC set of 256 different hole
patterns, two decisions were made:

Decision 1 All 32 possible combinations of the zone punches 9, 12, 11,
0, 8 (including ‘“no-zones”) would be used.

Decision 2 With each of the 32 possible zone-punch combinations, one
of the digit punches 1, 2, 3, 4, 5, 6, 7 (including “no-digits”) would be
used.

The logical set of 256 hole patterns is shown in Fig. 11.3.

In BCDIC, 0 had served both as a zone punch and as a digit punch
for the numeric 0. Thus, in 0, 12-0, and 11-0, the 0 is regarded as a digit
punch rather than a zone punch. In a sense 8 also served as both a zone
punch and a digit punch. With the decision for EBCDIC that 9 would
serve as a zone punch, 9 would also serve both as a zone punch and as a
digit punch for the graphics 9, I, R, Z, i, r, and z.

As described in Chapter 6, in PTTC 16 hole patterns had been
assigned to control characters, as shown in Fig. 11.4. It was decided to
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carry these assignments forward into EBCDIC. The control characters
might, probably would, not be needed for EBCDIC as a CPU code, but it
was sensible to preempt these hole patterns in EBCDIC, so that they
could not subsequently be assigned to EBCDIC control characters that
would conflict with the PTTC control characters. Besides, with the
decision to attach the IBM 1050 (implementing PTTC) to System/360, it
was clear that PTTC data would enter the System/360. It would be
necessary to have EBCDIC bit patterns into which all PTTC bit patterns,
controls, and graphics could be translated.

In Chapter 8, it was decided that the first quadrant of EBCDIC
would be reserved for control characters. In consequence of this decision,
the PTTC control characters would be located in the first quadrant.
Therefore, zone punches 9-12, 9-11, 9-0, and 9 would be assigned to
Quadrant 1.

Zone
punches
9 9-0 | 9-11| 9-12
Digit
punches
4 PN |BYP | RES | PF
5 RS |LF [(NL | HT
6 UC |ETB|BS |LC
7 EOT | ESC | IL DEL

Fig. 11.4 PTTC hole patterns for control
characters

11.2 TRANSLATION CONSIDERATIONS

From Fig. 11.2, it was noted that zone patterns 12, 11, 0, and “No-zone”
would appear for the bottom six rows of Quadrant 2 and for the top ten
rows of Quadrant 4. It was decided for purposes of reducing translation
complexity (bit patterns to/from hole patterns) that the zone patterns for
the top ten rows of Quadrant 2 should also be the zone patterns for the
bottom six rows of Quadrant 4. (This decision was later slightly amended,
but the spirit of it was maintained.) Fig. 11.5 represents decisions up to
this point.
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ColumnOl‘l[Z[S

Bit

>

Pat.

L

Hole

Pat.

0000

0001

0010

0011

ZONES

0100

9 - 12

0101

9 - 11

0110

9-20
9

0111

1000

1001

1010

1011

1100

1101

1110

[

?

gRd sy ol

gea i

>

—p
Hole

Pat.

Hole Patterns:

]
(=]
E3
(<]
(=]
[e]

Bl =6 [ =

BIBIE

Fig. 11.6 EBCDIC card code, Version 3

Block

Hole Patterns at:

Top and Left

Bottom and Left

Top and Right

Bottom and Right

This left zone patterns 12-11-0, 9-12-0, 9-12-11, 9-11-0, 9-12-11-0
unassigned. It seemed intuitive that the fourth zone pattern for Quadrant
3 should be one of these five without a 9-zone, that is, 12-11-0.

To meet the criterion above for the top ten rows of Quadrant 2 and
the bottom six rows of Quadrant 4, the zone patterns 12-0, 12-11, 11-0,
12-11-0 clearly could not be assigned, because they had already been
assigned to the top ten rows of Quadrant 3. Also since zone patterns
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9-12, 9-11, 9-0, 9 were to be assigned to Quadrant 1 (not yet decided if
to the top ten rows, the bottom six rows, or to both the top ten and the
bottom six rows), they could not be assigned to the top ten rows of
Quadrant 2 and the bottom six rows of Quadrant 4. This left only one
choice; zones 9-12-0, 9-12-11, 9-11-0, 9-12-11-0 for the top ten rows of
Quadrant 2 and for the bottom six rows of Quadrant 4. We now had Fig.
11.6.
This now left two choices:

Choice 1

= 9-12, 9-11, 9-0, 9 for the top ten rows of Quadrant 3.

= 12-0, 12-11, 11-0, 12-11-0 for the top ten rows of Quadrant 3 and
the bottom six rows of Quadrant 1.

Choice 2
= 0-12, 9-11, 9-0, 9 for both the top ten and the bottom six rows of
Quadrant 1.

Column| ' © ] lAJ 2 lﬁa a \ 5 I 6 | 7 8 [ ° l A [ B c ‘ D l E | F

Bit 00 7 01 10 11

Fig. 11.6 EBCDIC card code, Version 4
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= 12-0, 12-11, 11-0, 12-11-0 for both the top ten and the bottom six
rows of Quadrant 3.

Choice 2 posed a less complex translation relationship (hole patterns
to/from bit patterns) and Choice 2 was decided. This led to Fig. 11.7.

Column] 0 1 [ 2] 3 a | s 6] 7 s | o ] ATl B c [ o] e[ F
Bit N 00 01 10 11
Pat. [ o0 | 01 10 11 00 | o1 10 | 11 00 [ 01 [ 10 [ 11 oo | 01 10 11
Hole 9 9 9 9 9 9 9 9 Hols
Pat 1 12 12 12 12 112 12 12 12 Pat.
11 11 11 11 11 11 11 11
7 0 0 0o Joflo o ] o Q
0000 [ 2 3 a 15 3 7] (=] e no| [11] 12
0001 1 (3] 14
0010 2
0011 3
0100 a
0101 5
0110 6
0111 7
1000 8
1001 9
1010} 8-2 18]
1011} 8-3
1100| 8-4
1101 8-5
1110| 8-6
1111 8-7
9 9 9 9 9 9 9 9
> 12 12 12 12 12 12 12 12
Hole 11 11 11 11 11 11 11 11
Pat. 0 0 0 ol ol o ol 0@
Hole Patterns:
(1] [3]
EJ Block | Hole Patterns at:
=] 2] [38] 1 1 | Top and Left
(] 2 | Bottom and Left
[s] (1] 2

Fig. 11.7 EBCDIC card code, Version 5
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11.3 8-1 VERSUS 9

It was now noted (Fig. 11.7) that certain hole patterns appeared twice: for
example, 9 in hex F9 and in hex 30, 9-12 in hex C9 and hex 00. Further,
missing from the set of hole patterns were zone punches combined with

Coumn] 0 [ 1 [ 2 | 3 4 | s [ & | 7 a | 9 ] A | 8 ¢ [To [ & F]
Bit L 00 01 10 ]
Pst. 00 | 01 ] 10 | 11 | 00 | 01 ] 10 | 11 [ 00 ] 09 | 10 [ 11 | 00 [ o1 [ to [ 11
Hole 9 9 9 9 9 9 9 9 o Hole
Pat. [ 12 12 [12 12 |12 [12 12|12 T e
" 11 11 11 11 11 11 11 11 ]
Row 0 0 0 0 0 0 0 0
o loooo L 2] 3] o] ] lef [z] L8] Lo lop aaf a2
1 {0001 1 [13] { |
B U S
2 (o010 2
3 |oo11 3
4 |o100| 4
5 {0101 5

6 |0110 6

7 (0111 7

8 (1000 8

9 (1001 8-1

16
A |1010| 8-2 [—“

B 1011 8-3

cC f1100| 8-4

D (1101 8-5

 —— e 44—
€ 1110 8-6

- .}_ —
F 1111 8-7 J
9 1919 ]9 9 1 91 9] 9] ’

12 12 12 |12 12 (12 [12 12" ]
Hols 11 11 11 [ 11 [ 11 11 [11 |11
Pat. 0 0 0 0 0 0 0 0

Hole Patterns:

Block | Hole Patterns at:

G & E

1 1 Top and Left

2 Bottom and Left

2] (] () ] [ [
Bl E 3 [e] =] 4

Fig. 11.8 EBCDIC card code, Version 6
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8-1 hole patterns. This glitch could be fixed by applying the digit-punch
combinations 8-1, rather than the digit 9, to hex row 9. The result was
Fig. 11.8.

While the card code of Fig. 11.8 would lead to a translation (bit code
to/from card code) of not unreasonable complexity, it was not acceptable.

Coumn| 0 [ 1 [ 2 | 3 4 [ 5 [ & [ 7 a [ o ] AT B c [ o] EJF
Bit 00 01 10 11
Pat "1 a0 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11
Hote 9 9 9 9 9 9 9 9 Hole
Pat. | 12 12 12 12 12 12 12 12 ‘P‘"-
7 11 1L 11 [11 11 |11 |11 11
f 0 0 0 0 0 0 0 0 +
0000 7 O & E E] ] E 5] [mo] [ Tz
13 14
0001 1 a3} [14] )
0010 2 2
0011 3 3
0100 4 4
0101 5 5
0110 ] 6
0111 7 7
1000]| 8 8
1001{ 8-1 9
1010| 8-2 s 8-2
1011 8-3 8-3
1100| 8-4 8-4
1101 8-5 8-5
1110 8-8 8-6
1111 8-7 8-7
9 9 9 9 9 9 9. 9
12 12 12 112 12 {12 112 12
Hole 11 11 11 11 11 11 11 11
Pat. 0 0 0 0 0 0
Hole Patterns:
KN 11 [13] o-1
@ Block | Hole Patterns at:
E E 12-0 E] 1 3 1 Top and Left
E 11-0 2 Bottom and Left
[s] No Pch [11] o0-8-2 2 4 3 | Top and Right
[e] 12 [E] 0 4 | Bottom and Right

Fig. 11.9 EBCDIC card code, Version 7
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The digit-punch combination 8-1 could not be assigned to hex row 9 of
Quadrants 3 and 4, because i, r, z, I, R, Z, and 9 (all of which had the
digit punch 9) were already assigned to that row.

But if hole patterns 9-12-0, 9-12-11, 9-11-0, 9-12-11-0, 9-12, 9-11,
9-0, and 9 are assigned to hex row 9 of Quadrants 3 and 4, then hole
patterns 9-12-0-8-1, 9-12-11-8-1, 9-11-0-8-1, 9-12-11-0-8-1, 9-12-
8-1, 9-11-8-1, 9-0-8-1, and 9-8-1 must be displaced. Since the hole
pattern 8-1 translates in BCD the same as 9, these displaced hole
patterns were assigned intuitively to hex row 9, Quadrants 1 and 2, as
shown in Fig. 11.9. Note that the horizontal line is now staggered as it
crosses between hex columns 7 and 8. |

11.4 EXCEPTION TRANSLATIONS

As shown in Fig. 11.2, there were eight code positions with exception
hole patterns. These are also noted in Fig. 11.9. These eight exception
hole patterns would, of course, displace eight more hole patterns, as
shown in Fig. 11.10. These exception hole patterns, if they had occupied
their “theoretical” code positions in Fig. 11.9, would have occupied
positions as shown as shown in Fig. 11.11.

Thus there were twelve code positions affected directly or indirectly
by the exception hole patterns:

40, 50, 60, 61, 6A, 80, 90, CO, DO, EO, E1, FO

Code-table Exception Displaced
location hole patterns hole patterns

40 No punches 9-12-0
S0 12 9-12-11
60 11 9-11-0
61 0-1 9-11-0-1
Co 12-0 12
DO 11-0 11
E6 0-8-2 0
FO 0 No punches

Fig. 11.10 Exception and displaced hole patterns
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Exception Theoretical
hole patterns code-table location
No punches FO

12 Co
11 DO
0-1 E1l
12-0 80
11-0 90
0-8-2 6A
0 EO

Fig. 11.11 Theoretical code-table
locations

In the accommodation of the displaced hole patterns, even more hole-
pattern exceptions were generated, giving rise to a total of 15, as shown
in Fig. 11.12.

The card code shown in Fig. 11.12 became the EBCDIC card code. It
was incorporated into IBM’s Corporate System Standard CSS 2-8015-
002 [11.1], later designated CSS 3-3220-002 [11.2]. The EBCDIC code
chart of that time (1964 October) was completed with the assignment of
the 16 control characters of PTTC (from Fig. 11.4).

11.5 A DIFFERENT BLOCKING

It was subsequently discovered that if the blocking into four blocks was
done in a slightly different way, and if the four zone patterns above block
1 were amended as shown in Fig. 11.13, four of the exception translations
(hole pattern to/from bit patterns) would disappear, namely those in hex
positions 00, 10, 20, and 30. It is to be emphasized that while the tableau
of Fig. 11.13 is different than that of Fig. 11.12, the actual translation
relationship (hole patterns to/from bit patterns) is, in fact, identical for
both tableaux. For both tableaux, the hole patterns for hex positions 00,
10, 20 and 30 are 9-12-0-8-1, 9-12-11-8-1, 9-11-0-8-1, 8-12-11-0-8-1,
respectively.
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Columnl 0o [ 1+ J 2 [ 3 a s T 61 7 8 9 [ a ] * e[ ol e F
Bit N 00 01 10 11
Pat. "1 o0 01 10 11 00 01 10 | 11 00 [ 01 10 | 11 00 | 01 10 11
Hole 9 9 9 9 9 9 9 9 Hole
Pat. | 12 12 12 12 12 12 12 12 Pat.
' 11 ] 11 11 11 11 11 11 11
Row o] 0 0 [¢] 0 0 0 4]
1 [ 7 8 10
0 |0000 (2] E1 4] SPLE_' &I_‘ __l:" e EX L—‘ K} (;]E
13 14
1 |ooon 1 /L* a i A J 3 1 1
2 o010 2 b k s B K S 2 2
3 |[0011 3 c 1 t [ L T 3 3
4 |o1oo| a4 |pF |RES |BYP |PN d n u D MU 4 4
5 o101 5 | HT NL LF RS e n v E N v 5 5
6 ({0110 6 |LC BS ETB | UC f o <ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>