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Foreword 

The field. of systems programming primarily grew out of the efforts of 

many programmers and managers whose creative energy went into pro- 
ducing practical, utilitarian systems programs needed by the rapidly grow- 

ing computer industry. Programming was practiced as an art where each 

programmer invented his own solutions to problems with little guidance 

beyond that provided by his immediate associates. In 1968, the late 

Ascher Opler, then at IBM, recognized that it was’ ‘necessary to bring 

programming knowledge together in a form that would be accessible to all 

systems programmers. Surveying the state of the art, he decided that 

enough useful material existed to justify a significant publication effort. 

On his recommendation, IBM decided to sponsor The Systems Pro- 

gramming Series as a long term project to collect, organize, and publish 

principles and techniques that would have lasting value throughout the 

industry. 

The Series consists of an open-ended collection of text-reference 

books. The contents of each book represent the individual author’s view 

of the subject area and do not necessarily reflect the views of the IBM 

Corporation. Each is organized for course use but is detailed enough for 

reference. Further, the Series is organized in three levels: broad introduc- 

tory material in the foundation volumes, more specialized material in the 

software volumes, and very specialized theory in the computer science 

volumes. As such, the Series meets the needs of the novice,.the experi- 

enced programmer, and the computer scientist. 

The Editorial Board





Preface 

The word ‘‘code’’ is a word of broad meaning and application. Legal 

codes, fire safety codes, building construction codes, a code of ethics, 

and so on, exemplify the use of the word in some of its dictionary 
meanings, ‘‘a system of rules or regulations on any subject.’’ A dictionary 

meaning that comes closer to the context of this book is ‘‘a system of 

signals.”’ 

From early beginnings, humans have used many methods to convey 

information over a distance. Indians (of North America) used a set of 

smoke signals for sending messages. A semaphore, a vertical post with 

one or more arms moving in a vertical plane, was and is used to send 

messages over line-of-sight distances. 

The method that comes close to the meaning used in this book is the 

Morse Code, an alphabet in which the letters are expressed as dots and 

dashes. This method can be used visibly with short and long flashes of 

light, audibly with short and long bursts of sound, electrically with short 

and long pulses of current, and so on. The interesting aspect of the Morse 

Code is that it is based on two possible states—dot or dash, short or 

long, and so on—that is to say, it is binary in nature. Standing aside from 

the spaces between dots and dashes, and between letters, the Morse 

Code may be regarded as a binary code. 

Analogously to the Morse Code, the set of alphabetic, numeric and 

special (such as period, comma, plus sign, minus sign) symbols processed 

by a computer are associated with a set of particular binary representa- 

tions. Such a set of graphic symbols and binary representations is called 

a coded character set, or, more familiarly, a code.
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The binary aspect of a coded character set stems naturally from the 

binary, or two-state, nature of many mechanisms, components, or proc- 

esses of a computer. A switch is on or off, a relay is normal or transferred, 

a vacuum tube is or is not passing current, a condenser is or is not 

charged, a magnetic pole is north or south, a voltage is positive or 

negative or is equal to or less than a reference voltage, and so on. Relays, 

vacuum tubes, transistors, magnetic cores, diodes, as used in computer 

circuits, are binary in nature. 

In the decimal number system, there are ten digits—0, 1, 2, 3, 4, 5, 

6, 7, 8, 9. In the binary number system, there are two digits—0 and 1. 

Very early in the history of computing, the words “‘binary digit’? were 

contracted to the word ‘‘bit’’; ‘‘a bit may be 0, or 1,’’ means *‘a binary 

digit may be 0 or 1.’’ A discrete grouping of contiguous bits, 1001011 for 

example, is called a bit pattern. 

A coded character set, or code, is a set of meanings associated with 

a set of bit patterns. For a particular code, the number of bits is generally 

a fixed number; all bit patterns in a particular code have five bits, or all 

bit patterns in a particular code have six bits, and so on. This aspect of 

a fixed number of bits in the bit patterns of a particular code is frequently 

used to characterize a code as a 5-bit code, or as a 6-bit code, and so on. 

In this respect, the Morse Code, which has different numbers of bits for 

different letters, although it continues to be used for sending messages, 

was deemed not to be satisfactory for computing purposes. 

The number of different possible bit patterns in a particular code 

depends on the fixed number of bits of that code. In consequence, the 

number of different possible meanings that may be associated on a one- 

to-one basis with the different bit patterns of a code depends on the 

number of bits of a code. Reasoning in the opposite direction suggests 

that the number of different meanings required in the code of a computer 

may be a determining factor in the number of bits in a code. 

Perhaps the most famous code in the history of computing was that 

invented by Dr. Herman Hollerith of the United States Census Bureau 

in the late nineteenth century. His code was a decimal code based on the 

position of a punched hole across a paper card—ten digits, ten punching 

positions. His code was actually a twelve-position code—ten positions 

for digits, two positions for other purposes (positive or negative, for 

example). Today, more than seven decades later, Dr. Hollerith’s twelve- 

position code is fundamental in the punched card code used by 

many/most computers. 
A number of different codes have evolved in the computing and data 

communication fields: different codes evolved because different require- 

ments emerged as computing and data communication evolved. Many
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factors shaped the different codes. This book describes those factors and 

how they either led to or mandated decisions in the development of some 

codes. This book is not a definitive book on all computer or data com- 

munication codes. Discussion is limited to those codes which have 
evolved, have been developed, or have been used in the author’s personal 

experience. 
Mainly, the factors discussed are of a technical nature, but some of 

the factors are of an economic or cost nature. For example, in computers, 

bit patterns are stored in registers. In early computers, registers were 

implemented in vacuum-tube technology. The number of bits to be stored 

in a register bore a relation to the number of tubes needed in the register— 

8-bit registers required more tubes than 6-bit registers. The manufacturing 

cost of a register was related to the number of tubes in the register. In 

this sense, a 6-bit code was considered to be more ‘‘economical’’ than 

an 8-bit code. 

Two processes have shaped the evolution and development of codes. 

One process is the process of developing computing and communication 

products and systems, a process of individual manufacturers. The other 

process is the developing of standards for the data processing industry, 

a process of both manufacturers and users, in concert. 

With respect to the first process, during the 1960s, two great tech- 

nological evolutions were occurring in the data processing field. On one 

hand, computing systems were evolving from an architecture of six bits 

to an architecture of eight bits. (Many people consider this to have been 

more of a revolution than an evolution.) On the other hand, communi- 

cations systems were evolving from five-bit codes to six-, seven-, and 

eight-bit codes. 

With respect to the second process, during the 1960s, there was a 

quite remarkable development of standards in the field of data processing. 

One particular area of standardization was the area of coded character 

sets and their representation on physical media—magnetic tape, paper 

tape, punched cards, data transmission, tape cassettes, and so on. This 

standardization effort was exerted on both the national and international 

level. In the United States alone during the 1960s, some twenty standards 

in this area were started, and most were completed. 

As might be supposed, the interaction between these two processes 

was considerable. One characteristic of codes is very interesting. In the 

data processing industry over the last twenty years, older computing and 

communications products and systems have not infrequently been re- 

placed with newer, more economically efficient products and systems. 

But old codes do not die, nor do they fade away. A 5-bit telegraph 

communications code standardized in 1931 is still in wide use although
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a 7-bit communications code was standardized in 1963, and many prod- 
ucts implementing the 7-bit code are available. A 6-bit computer code 
developed in 1962 continues in wide use, although 8-bit computers with 

an 8-bit computing code have largely replaced the 6-bit computers. Codes 

have the characteristic of continuity and long-life expectancy due to 

user’s application demands. 

A problem that has to be faced in a technical book such as this is 

the existence of the specialized jargon used by professionals in the sub- 

ject. Words or terms that make up the jargon came from two sources. 

The first source is words with a general meaning or meanings in the 

English language that are given a very specialized meaning in the jargon. 

Such specialized meanings are not in common use and will not be found 
in common dictionaries. An example is the word ‘‘track.”’ In railroading, 

‘*track’’ means one thing; in fur trapping, it means something else; and 

in horse racing, it means yet something else. These meanings will likely 

be found in common dictionaries. But in the field of magnetic tape en- 

gineering, ‘‘track’’ has a meaning most unlikely to be found in common 

dictionaries, although it is likely to be found in technical dictionaries for 
the field of data processing. The second source of jargon is new words 

or terms invented by the professionals. An example here is ‘‘bit.’’ The 

meaning ‘‘binary digit,’’ from which ‘‘bit’’ was contracted, is not likely 

to be found in common dictionaries, although its meaning is well known 

in the data processing field. 
Technical jargon must be used in a book on a technical subject. 

Early in this book some terms and concepts very necessary to an under- 

standing of the field of coded character sets are defined and explained; 

the glossary of this book is devoted to a comprehensive set of definitions 

of terms. 
Just as letters, digits, and special symbols make up a language in 

which humans intercommunicate, the letters, digits, and special symbols 

with associated bit patterns of a coded character set make up the language 

in which information is passed, interchanged, and processed by com- 

puters. A complete knowledge of the art of computing, which includes 

both the manufacture and use of computers, requires a knowledge of the 

art of coded character sets. This book describes some of that art. 

The author would like to express his appreciation to Mrs. Helena 

Russo, Mrs. Janet Palome, and Mrs. Betty Birdsall, who did the lengthy 
and frequently very difficult typing of the manuscript of this book. 

Poughkeepsie, New York C.E.M. 

January 1980
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The 
Standards 
Process 

Most of the codes discussed in this book have been developed in the 

context of developing data processing standards of one kind or another. 
These standards may be categorized as being either public or company 

standards. Public standards are those developed by governmental, 

national, or international organizations. Company standards are those de- 
veloped by a company. Many company standards are well known outside 
the developing company, and in many instances are used by companies or 
organizations other than the developing company. Although the discus- 
sion of company standards is intended to be of a general nature, it does 
draw primarily on the author’s experience in the IBM Corporation.” 
Also, most of the national standards discussed in this book are those 

developed in the United States of America, again by reason of the 
author’s familiarity. Equivalent national standards have been developed 

in many other countries. 

1.1 THE PUBLIC COMMITTEE PROCESS 

The suggestion to standardize in a particular subject area may originate 

anywhere; an individual, a company, a government agency/department, a 

society/association, a standards committee, and so on. 

Public standards are developed by committees—committees estab- 

lished specifically for the process of developing the standard, or stan- 

dards, and staffed with professionals from the field. of the subject. 

* The views expressed in this book are those of the author and not necessarily 
those of the IBM Corporation.



2 The Standards Process 

Generally speaking, the organization is as follows. At the top will be an 
administrative body, whose functions are to establish the procedural rules 
for developing standards, to monitor adherence to these rules, to deter- 

mine that any particular standard is not in technical conflict with other 
standards, and to publish and distribute the standards. In the case of 

national standards, the administrative body will generally be the national 

standards institute or association of the country. 

Reporting to the administrative body will be one or more managerial 
committees, each dedicated to a particular subject area of standardiza- 
tion. The area of standardization assigned to the managerial committee is 
generally divided into subareas. Technical subcommittees are established 
to develop standards for the subareas. One main function of such mana- 

gerial committees is to direct and coordinate the activities of technical 
subcommittees who do the actual work of developing and drafting the 
standards. The other main function is to assess the economic (and 

sometimes social) implications of draft standards. 

Usually some organization will serve as secretariat for the committee 

and subcommittees. The secretariat distributes to the members, and keeps 
on file, the minutes, papers, and other correspondence of the committee 

and subcommittees. 
The committees and subcommittees function very similarly. There 

will be a chairman, usually a vice-chairman (sometimes called chairperson 

and vice-chairperson today), and a secretary. Minutes of the meetings are 
kept. Members submit papers of a technical, economic, or social nature. 
The papers, and the subject matter of the standard(s), are discussed at 
meetings. Decisions on points of issue and points of agreement are taken 

by votes or ballots, under various rules of majority, consensus, or unanim- 
ity. The meetings are conducted under parliamentary rules of procedure. 

Draft standards are (generally) subjected to some form of public review 
before final approval. 

In the case of national managerial committees, members are com- 
panies, governmental units, and professional societies or associations, In 
the case of national technical subcommittees, members are professionals 
knowledgeable in the subject area of the standard(s). In the case of 
international committees and subcommittees, members are countries, 

with actual attendees at meetings being delegations selected by the 

countries. Not unexpectedly, the individuals on country delegations are 
usually selected from the members of national committees and subcom- 
mittees. 

1.2 THE COMPANY PROCESS 

Company standards are generally developed by the same procedures and 

methods the company uses to manage itself and to develop its products.
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1.3. DECISION PROCESSES 

Usually, national and international standards are derived from and based 
on well-established industrial practices or techniques. The task of a 
standards committee developing a standard in such instances is to de- 
scribe completely, consistently, and unambiguously what already exists, 
removing or smoothing any incompletenesses, inconsistencies, and am- 
biguities. 

In some cases, standards committees foresee the need to develop a 
standard where practices or techniques are not well established, or do not 
exist at all. Such standards are called anticipatory standards. The main 
problem for standards committees in such instances is to try to guess or 
anticipate what the needs of users will be. These guesses are always 
speculative and judgmental, and frequently controversial. Sometimes, the 
most controversial aspect of such guesses is whether a standard is actually 
needed before users build up experience, practices, and techniques over a 

period of time and a range of applications. 
The development processes for public and company standards are in 

some respects the same. A group of professionals knowledgeable in the 

subject area is called together, a chairman or coordinator is appointed, 

and the group is charged with the responsibility to develop a standard for 
the subject area. The group reviews the subject area, reviews relevant 
technical facts, and drafts the standard. 

Inevitably, on one or more aspects of the standard, technical alterna- 
tives will emerge, and decisions for one of the alternatives must be made. 

If, after review of the alternatives, the group is unanimous in selection of 
a particular one, the matter is resolved. But if the group is not unanimous 
in Opinion, a decision must be made. It is in respect of such technical 
decisions that the process in a company is quite different from the process 

of a standards committee. 
In the company, if the group is not unanimous, a management 

decision must be made. It may be made by the group coordinator. Or it 
may be referred to a higher level of management or to a series of 

management levels. But in all cases, the decision will be made by a single 

person. It is made after that person reviews the alternatives, and the pros 

and cons, and makes a decision based on personal judgment. 

In a public standards committee, the decision is not made by a single 
person. It is made by taking a vote or ballot, the outcome of the voting 

process being determined by pre-established rules of majority or consen- 
sus for the particular committee. That is to say, the decision is a reflection 
of the combined personal judgments of all committee members, each 
committee member’s judgment being given an equal weight. In theory, it 
should be possible to follow the company approach of letting the most
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knowledgeable person on the committee make the decision. In practice, it 
is not possible to determine who of the committee members is the most 

knowledgeable. The equal-weight voting approach is the only practical 

and workable one for a committee. 
In a particular situation when the pros and cons of alternatives are 

based purely on technical aspects, the committee is not likely to have 

difficulty in arriving at a decision. The decision can be made purely on 
technical merit, and it is simply a question of determining the relative 

technical merits of the alternatives. The professionals on the committee 

are very well qualified to make such determinations. . 
An interesting situation that sometimes arises, (more likely in the 

development of an anticipatory standard than in the standardization of an 
established industry practice) is that two technical alternatives face the 
committee, and each alternative would be equally satisfactory. In such 
situations, the act of making the decision is more important than the 
technical matter of the decision. For example, standardization in the area 
of data communications eventually faced the question of order of trans- 
mission of the bits of a byte—should transmission be low-order bit first or 

high-order bit first? A priori, there were arguments in favor of each of the 

alternatives, and the arguments were clearly of equal technical weight. It 

did not matter, a priori, which choice was made, but it was necessary to 
make the choice. 

A posteriori, once the choice was made, and implementations 
emerged, it did matter, because then the fact of implementation for the 

particular choice was a weighty argument. 

Intuitively, it would seem that, for a particular subject area, one 
standard, which is to say one technique or one practice, best serves the 

interests of the data processing industry. Thus, if a card code is to be 

standardized, only one card code (whatever it may be) should be standard- 

ized. Two card codes would result in conflicts and confusions. Many 

standards associations, as a cardinal principle, forbid the approval of 

conflicting standards in any area. 
But there are situations where more than one standard, a family of 

standards, is a viable solution, each member of the family serving a 

particular purpose in the general subject area. For example, in the area of 

data transmission, standards specifying different speeds or rates of trans- 

mission have been developed. In the area of magnetic tape, standards 
specifying different densities of recording have been developed. Such 
families of standards reflect the practical economics that exist. Thus, in 
general, the lower the density of recording, the lower the cost of the 
magnetic tape drive. A low density of recording may be quite satisfactory 

in some data processing applications, and then the user will appreciate the
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lower cost of tape drives. Other data processing applications may require 
a higher density of recording, and for such situations, the user accepts the 
higher cost of tape drives. 

1.4 ECONOMIC CONSIDERATIONS 

Frequently, factors other than technical, such as economic and sometimes 
social, are involved, and then the committee’s decision process becomes 

much more difficult. A standard committee, when developing standards in 
a particular subject area, may face a number of possible situations. 

Situation 1. There is a single, uniform practice in the subject area. 

Situation 2. There is essentially a single practice in the subject area, but 
with slight individual variations. 

Situation 3. There are a number of different practices in the area, with 
much in common but with appreciable differences. 

Situation 4. There are a number of different practices in the subject area, 
with little if anything in common. 

Situation 1 is the simplest for the committee. All that is needed is to 
draft a standard which accurately describes the established practice. Of 
course, there may be some question on the accuracy of the description, 
but the committee members are well qualified to resolve just such 
questions. 

Situations 2, 3, and 4 become increasingly more difficult for the 
committee members to resolve. The difficulty is the same kind for these 
three situations, but different in degree. The difficulty is that the practices 

under review are in use in the industry, and the final decision of the 
standard will make some current practices standard, while making other 
current practices nonstandard. Then, if those who are using the just- 

defined nonstandard practice want to use the just-defined standard prac- 
tice, they will have to change what they are doing, or the way they are 
doing it. Such changes will generally involve cost to the user. 

In such situations, then, economic as well as technical factors affect 

the decision process. Indeed, there are situations where the economic 

factors are more, sometimes much more, significant than the technical 
factors. And, while the technical factors can be determined with some 

degree of precision, it will generally be difficult or impossible to deter- 
mine the economic factors with any degree of precision.
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1.5 NAMES OF STANDARDS 

National and international standards take their titles (which lead to their 

names) from the organizations under which they were developed, and to 
some extent, from the purpose for which the standard was developed. 
Company standards often take their titles from the purpose for which the 
code was developed (the Paper Tape and Transmission Code, for 

example). 
The international organization responsible for standards in the data 

processing field (as well as in many other fields) is the International 
Organization for Standardization (ISO). Until recently, “‘standards”’ de- 

veloped under ISO were not called “‘standards,”’ but were called ““Recom- 
mendations.” The intent of such documents was vested in the name, 

“Recommendation.” It was recommended when national standards 
bodies developed their own national standards that such standards be 
based on the ISO Recommendations. Recently, ISO decided to call their 
documents ISO Standards in name as well as in fact. Another interna- 
tional organization, responsible for all matters pertaining to worldwide 
telegraph and telephone communications, is the International Telegraph 
and Telephone Consultative Committee. Its acronym, CCITT, comes 
from the equivalent French name for the organization (Commité Consul- 
tatif International Telegraphique et Telephonique). A European organi- 
zation that develops data processing standards is the European Computer 

Manufacturers Association (ECMA). 

In the United States, the national standards organization has gone 
through a number of changes of name. Organized in 1918 as the 
American Engineering Standards Committee, it became the American 
Standards Association (ASA) in 1928. In 1966, it was re-named the 

United States of America Standards Institute (USASI) and in 1969 it 

took its present name, the American National Standards Institute (ANSD. 

A 5-bit code was standardized in 1931 by CCITT for telegraph 
communications purposes. It is designated CCITT #2, and is still in 

worldwide use. 
The U.S. Army developed a 7-bit code for data communications that 

became a U.S. Military Standard in 1960. Its developers coined for it the 
name FIELDATA. 

A 7-bit code described in this book has been standardized by a 
number of national and international standards organizations: 

a) In 1963, under ASA, it became the American Standard Code for 

Information Interchange, acronym ASCII (pronounced 'ass-key). 
When ASA became USASI in 1966, the code was called the United 

States of America Standard Code for Information Interchange, with
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b) 

d) 

e) 

Names of Standards 7 

acronym USASCII (pronounced you-’sass-key). However, the previ- 
ous acronym ASCII, prominent in the literature, was officially desig- 

nated as an acceptable alternative acronym. When USASI became 
ANSI in 1969, the code was called the American National Standard 

for Information Interchange. Needless to say ANSCII was proposed 

as a new acronym, but the standards committee rejected further 
name changes, and ANSCII as an acronym was rejected. ASCII was 

then designated as the preferable acronym. (USASCII is an accepta- 
ble alternative acronym, but has fallen into disuse.) 

In 1967, it was incorporated into the ECMA Standard for a 7-Bit 
Input/Output Character Code, ECMA-6. 

In 1967, it was incorporated into an ISO Recommendation, the 6 

and 7-Bit Coded Character Set for Information Processing Inter- 

change. In that context, it is referred to as the ISO 7-bit code. 

In 1969, it was incorporated into the Japanese Industrial Standard 
Code for Information Interchange (JISCI). 

In 1968, it was incorporated into a CCITT standard designated 
CCITT #5. 

These 7-bit codes are essentially the same. They differ in graphic symbols 
which reflect different national requirements. This similarity is not coinci- 
dental; it is intentional—the result of professionals in different countries 

working together to achieve that result. 

The original twelve character (ten numerics and two special symbols) 
code invented by Dr. Herman Hollerith in the late nineteenth century 

grew to include alphabetics and special symbols. It also was incorporated 
into national and international standards, specifying either 128 or 256 
characters: 

a) 

b) 

d) 

In 1969, 128 characters were incorporated into the American Na- 
tional Standard Hollerith Punched Card Code. This standard took its 

name from the original inventor of the card code. It is now referred 

to as the Hollerith Card Code. 

In 1970, 128 characters were incorporated into an ISO Recommen- 
dation, Representation of ISO 7-Bit Coded Character Set on 12-Row 

Punched Cards. It is referred to as the ISO 12-Row Card Code. 

In 1970, the American Standard was extended to incorporate 256 

characters, retaining the same name. 

In 1971, another ISO Recommendation incorporated 256 characters, 

Representation of 8-Bit Patterns on 12-Row Punched Card. It also is 

referred to as the ISO 12-Row Card code.
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Items (a) and (b) are identical; items (c) and (d) are identical. The 128 

characters of (a) and (b) are a subset of the 256 characters of (c) and (d). 

As with the 7-bit code standards, this is intentional, not coincidental. 

Four codes developed in IBM are discussed in this book. Two of 
these codes (described in more detail in Chapter 2) were named in 
consequence of a particular aspect of codes; namely, that the decimal 
numbers 0 through 9, when represented in a binary code, have particular 
binary bit-patterns which are called binary coded decimal in the litera- 
ture. The acronym, BCD, is well understood in the data processing 
industry to characterize a code whose decimal numbers are in the binary 
coded decimal representation. 

The first code developed in IBM, formalized in 1962, is a 6-bit code 

called the BCD Interchange Code, with acronym BCDIC (pronounced 
bee-see-dick). An 8-bit code adopted within IBM in 1964 is called the 
Extended BCD Interchange Code with acronym EBCDIC (pronounced 
ebb-see-dick). 

Two other IBM standard codes were developed for use in perforated 

tape and transmission products. These 6-bit codes were originally named 
Perforated Tape and Transmission Code for use in 6-Bit BCD Environ- 
ments, with acronym PTTC/6, and Perforated Tape and Transmission 
Code for use in 8-Bit BCD Environments, with acronym PTTC/8. These 
names turned out to be confusing. People thought that PTTC/6 meant 
that it was a 6-bit code, and PTTC/8 meant it was an 8-bit code. The 

former was correct, the latter was incorrect. Therefore, PTTC/6 was 

renamed the Perforated Tape and Transmission Code for use in BCDIC 

Environments, with acronym PTTC/BCD, and PTTC/8 was renamed the 

Perforated Tape and Transmission Code for use in EBCD Environments, 

with acronym PTTC/EBCD. Whether the confusion was reduced is moot, 

but the second set of names has remained. 

Reference is made in this book to various American National Standards 
and ISO Recommendations: 

1. The American National Standard Code for Information Interchange, 

X3.4-1968, referred to in this book as ASCII. 

2. ISO Recommendation, 6 and 7-Bit Coded Character Sets for Infor- 

mation Processing Interchange, ISO/R646-1967, referred to in this 
book as the ISO 7-Bit code. 

3. The American National Standard Bit Sequencing of the American 

National Standard Code for Information Interchange in Serial-by-Bit 
Data Transmission, X3.15-1966. 

4. The American National Standard Hollerith Punched Card Code 

X3.26-1970, referred to in this book as the Hollerith Card Code.
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5. ISO Recommendation, ISO 7-Bit Coded Character Set on 12-Row 

Punched Cards, ISO/R1679-1970, referred to in this book as the 

ISO 12-Row Card code. 

6. ISO Recommendation, Representation of 8-Bit Patterns on 12-Row 
Punched cards, ISO/R2021-1971, referred to in this book as the ISO 

12-Row Card Code. 

Copies of these American National Standards and ISO Recommendations 
are available from the American National Standards Institute, 1430 

Broadway, New York, New York 10018. 

The 7-bit bit codes of items (1) and (2) above are similar. When 

there is no need to distinguish between them, they are referred to 
generically as the 7-Bit Code in this book. When distinction is necessary, 
one is referred to as ASCII, the other as the ISO 7-Bit Code. 

The 256-character card codes of items (2) and (5) above are equival- 

ent. When it is necessary to distinguish between them, one is referred to 
as the Hollerith Card Code, the other as the ISO 12-Row Card Code.





Terms 
and 

Concepts 

There are some basic terms which should be understood at the onset of 
reading this book. These are grouped in this chapter for convenience. (A 
lengthy set of terms and definitions is found in the Glossary.) 

A fundamental concept involved in data processing products is the 
binary, or two-state, nature of many mechanisms, devices, and processes: 

A relay is transferred or normal. 

A switch is on or off. 

A condenser is charged or discharged. 

A light is on or off. 

A diode is, or is not, conducting current. 

A vacuum tube is, or is not, conducting current. 

A magnetic pole is North or South. 

A punching position on a paper card or on paper tape is punched or 

unpunched; which is to say, in a punching position, a hole is present 
or absent. 

At a point in an electrical circuit, the voltage is positive or negative, 

or is zero or negative, or is zero or positive, or is high or low, and so 

on. 

The decimal number system has the familiar ten digits 0, 1, 2, 3, 4, 5, 

6, 7, 8, 9. The binary number system has two digits, 0 and 1. The 

representation of physical, electrical, or magnetic two-state situations 
such as those above by binary digits is the analytic process of representing 

11
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a physical situation by a mathematical model. In the literature, the term 
“binary digit’? soon came to be contracted to “bit.” 

2.1 BIT 

A bit is a binary digit, either 0 or 1. 

2.2 BIT PATTERN 

A bit pattern is an ordered set of bits, usually of a fixed length. 

Example 1 101011, a bit pattern of 6 bits 

Example 2 1100011, a bit pattern of 7 bits 

Example 3 10011100, a bit pattern of 8 bits 

A bit pattern of n bits is called an n-bit bit pattern. Thus we speak of 
6-bit bit patterns, 7-bit bit patterns, 8-bit bit patterns, and so on. 

2.3 BYTE 

A byte is a bit pattern of fixed length. Thus we speak of 8-bit bytes, 6-bit 
bytes, and so on. 

2.4 BINARY VARIABLE 

A binary variable is a variable which can take two possible values or 
represent two possible states. 

Three major conventions for representing bit patterns of binary 
variables have developed. 

= The first convention is the obvious one, a string of Os and 1s; thus 

10100, 1001111, 10010101, and so on. 

=" The second convention is based on the realization that, for a binary 
variable, call it A, we have either A or the inverse of A; we have 

either A or “not A.” The convention is to represent “not A’”’ (or the 

inverse of A) as A (A overlined). Thus for a set of three binary 

variables, A, B, C, we may have eight possible states: 

Example 4



2.4 

ABC 

ABC 
ABC 
ABC 
ABC 
ABC 

Binary Variable 13 

" The third convention is based on a presence/absence concept and the 

naming of the specific bit positions within a bit pattern. 

Example 5 

The four bit positions of a 4-bit bit pattern are named 8, 4, 2, 1; these are 
the decimal equivalents of 23, 27, 2', 2°, respectively. Then the sixteen 
4-bit bit patterns are represented as in Fig. 2.1, sometimes in a columnar 
form as at the left and sometimes in a compact form as at the right. 

W
N
 

Re 
©
 

N
I
N
A
N
A
 HS 

8 
9 

10 
11 

12 

13 

14 

15 

Fig. 2.1 8421 notation 

  

  

  

    

8 |/4 [2/1 

No bits 

1 1 

2 2 

2/11 21 

4 4 

4 1 41 

4/2 42 

4;2; 1 421 

8 8 

8 1 81 

8 2 82 

8 2/1 821 

8 | 4 84 

8 | 4 1 841 

8/4 /2 842 

8|4:1:2)1 8421           
Under the second convention, A and A are equated to 1 and 0, 

respectively. Under the third convention, presence and absence are 
equated to 1 and 0, respectively.
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Example 6 

Figure 2.2 shows the sixteen possible states of a 4-bit bit pattern rep- 

resented under the three conventions, using A, B, C, D as variables for 

the second convention. 

Convention 1 Convention 2 Convention 3 
  

  

  

  

0000 ABCD No bits 
0001 ABCD 1 
0010 ABCD 2 
0011 ABCD 21 

0100 ABCD 4 
0101 ABCD 41 
0110 ABCD 42 
0111 ABCD 421 

1000 ABCD 8 
1001 ABCD 81 
1010 ABCD 82 
1011 ABCD 821 

1100 ABCD 84 
1101 ABCD 841 
1110 ABCD 842 
1111 ABCD 8421       

Fig. 2.2 Conventions for binary notation 

The first and second conventions lead to a uniform, fixed-length represen- 

tation. The third convention leads to a compact, variable-length represen- 

tation. 

2.5 BIT NUMBERING AND BIT NAMING 

For purposes of reference, the bit positions of the bit patterns of a code 

are numbered, or named: 

=" For a 7-bit code (Fig. 2.26) the seven bits are numbered b7, b6, b5, 

b4, b3, b2, b1, from high- to low-order significance. 

=" For an 8-bit representation based on that 7-bit code (Fig. 2.27) the 
eight bits are numbered a8, a7, a6, a5, a4, a3, a2, al, from high- to 

low-order significance. 

=" For the code table of Fig. 2.28, which is an 8-bit code (structured 

differently from the 8-bit representation in Fig. 2.27), the eight bits
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are numbered 0, 1, 2, 3, 4, 5, 6, 7, from high- to low-order 

significance. 

« For 6-bit codes (Fig. 2.29), the six bits are named B, A, 8, 4, 2, 1, 

from high- to low-order significance. This bit-naming convention for 
the four low-order bits is based on the 8421 convention previously 
described. 

2.6 BIT STRING 

A bit string is a contiguous sequence of bits, usually not a fixed length. In 
data processing applications, bit patterns of variable length are generally 

called bit strings. 

2.7 CARD HOLE PATTERNS 

The twelve vertical punching rows of a punched card are called the 
12-row, the 11-row, the 0-row, the 1l-row,..., the 9-row (see Fig. 2.3). 

The vertical punching rows of a card give their names to hole punches in 
those rows. Thus a hole punch in the 12-row is called a 12-punch, a hole 

punch in the 11-row is called an 11-punch, a hole punch in the 0-row is 
called a O0-punch, and so on. (The numeric designators may also be 

spelled out, twelve-row, eleven-row, twelve-punch, eleven-punch, etc.) 

  

Lo ews Card) rows (horizontal) —_—__- 

12-row “] 

11-row 

0-row 

j-row 

2-row 

3-row , Card columns (vertical) 
4-row 

5-row 

6-row 

7-TOW 

8-row 

9-row J   O
o
O
M
m
m
A
m
n
o
O
n
o
A
n
o
o
o
o
 

    
Fig. 2.3. Punched card 

2.7.1 Hole Pattern 

A hole pattern is a set of punched holes within a single vertical punching 

column of a card. 
In documents, a hole pattern is given as the punches separated by 

hyphens. Thus 12-8-2, 12-11-3, 12-11-0-8-7 and so on.
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2.8 ZONE ROW, ZONE PUNCH 

The 12-row and 11-row are called zone rows. The 12-punch and 11- 
punch are called zone punches. The 9-row and O-row are sometimes 

called zone rows, sometimes digit rows (Section 2.9 below). The 9-punch 
and Q-punch are sometimes called zone punches, sometimes digit punches 

(Section 2.9 below). 

2.9 DIGIT ROW, DIGIT PUNCH 

The 1-row, 2-row, 3-row, 4-row, 5-row, 6-row, 7-row, 8-row are called 

digit rows. The 1-punch, 2-punch, 3-punch, 4-punch, 5-punch, 6-punch, 

7-punch, 8-punch are called digit punches. The 9-row and 0-row are 

sometimes called digit rows, sometimes zone rows (Section 2.8 above). 

The 9-punch and 0-punch are sometimes called digit punches, sometimes 
row punches (Section 2.8 above). 

2.10 GRAPHIC 

A graphic is a particular shape, printed, typed, or displayed, that repre- 

sents an alphabetic, numeric, or special symbol. 

In documents, books, magazines, newspapers, for example, we find 

three kinds of symbols; letters, numbers, and special symbols used for 

punctuation, mathematical operations, editorial inserts, and the like. 

These symbols are called graphic symbols; more commonly, simply 

graphics. 

2.10.1 Alphabetic 

An alphabetic is a letter in the alphabet of a country. Generally taken to 
mean a letter of the Latin alphabet but sometimes particularized as, for 
example, Latin alphabetic, Cyrillic alphabetic, Greek alphabetic, Hebraic 

alphabetic. 

2.10.2 Numeric 

A numeric is one of the ten decimal digits 0, 1, 2, 3, 4, 5, 6, 7, 8, 9. 

2.10.3 Special 

A special is a graphic symbol indicating a specific purpose. 
Special symbols are frequently multi-purpose. Thus ‘.” may be a 

period or a decimal point; ‘“‘-” may be a hyphen or a minus sign, or a 

dash.
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Example 7 

some specials commonly found on data processing products are 

53217 ()< >4+-/* 

=|"—-@#%&S$Et{}T] 

2.11 CONTROL MEANING 

Control meaning refers to a particular function or operation that controls 
hardware or software products of systems. Control functions come in 
many categories. Some of the categories are as follows: 

Format effectors. Functions to control the formatting of data on a printed 

page, or on a display. 

Information separators. Functions to separate and block data. 

Device controls. Functions to control a device (as “On” or “Off’’) or to 

control actions within a device. 

Transmission controls. Functions to control intercommunications on data 

transmission lines. 

Mode change. Functions to set or change some particular mode of 

operation. 

Miscellaneous. Functions which do not fall into the above categories. 

2.12 CHARACTER 

A character is a specific bit pattern and an assigned meaning. 

2.12.1 Graphic Character 

A graphic character is a specific bit pattern and an assigned graphic 

meaning. 

In order that data processing equipment may process graphic infor- 

mation, specific bit patterns must be assigned to specific graphic mean- 
ings. Thus if 100 0001 is assigned to graphic meaning of the alphabetic A, 
for example, the electrical circuits of a printer will analyze bit patterns, and 

when it detects 100 0001, the letter A will be printed. 

2.12.2 Control Character 

A control character is a specific bit pattern and an assigned control 
meaning.
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Data processing products perform certain control functions. For 
example, a typewriter performs the operations of spacing, backspacing, 

up shifting, down shifting, tabulation, carriage return. If the typewriter is 

to operate as a printer, certain bit patterns must be assigned the meaning 

of control functions. 

2.13 DATA STREAM 

A data stream is a variable-length string of bit patterns, representing the 

data of a data processing application. 

2.14 CODED CHARACTER SET—CODE 

A coded character set is a specific set of bit patterns or hole patterns to 
which both specific graphic and control meanings have been assigned. 

2.14.1 Bit Code 

A bit code is a set of bit patterns to which either graphic or control 

meanings have been assigned. 
A code byte in general can be of variable length. The Morse code, 

for example, has variable-length code bytes. However, codes used in data 

processing systems invariably have fixed-length bytes. 

The code byte prescribes the number of different possible bit pat- 
terns in a code—the code byte is generally used to characterize a code. 

Thus we speak of a 5-bit code, or a 6-bit code, or a 7-bit code, and so on. 

A n-bit code has 2" possible different bit patterns. A 4-bit code has 
2*=16 possible different bit patterns. A 5-bit code has 2° = 32 possible 
different bit patterns. A 6-bit code has 2°=64 possible different bit 
patterns. And so on. 

Generally, the number of different possible bit patterns of a code 
prescribes also the number of possible characters in a code. Thus, a 6-bit 
code has 64 characters, and an 8-bit code has 256 characters. A 6-bit 

code used in the early days of data processing is shown in Fig. 2.4. It is to 
be noted that graphic meanings only are assigned and that not all bit 

patterns have an assigned meaning. This early 6-bit code consisted of 48 

characters (64 would be possible)—the Space character, 10 numerics, 26 

alphabetics, and 11 specials. 

Three concepts (to be explained)—duals, character sequences, and 

shifted codes—allow the assignment of more meanings to a code than the 

total possible number of different bit patterns. 

2.14.22 Card Code 

A card code is a set of hole patterns to which graphic or control meanings 
have been assigned.
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Bit pattern Graphic Bit pattern Graphic 

No bits Space B - Hyphen, minus 

1 1 Bl J 
2 2 B2 K 
21 3 B21 L 

4 4 B4 M 
Al 5 B41 N 
42 6 B42 O 
421 7 B421 P 

8 8 B8 Q 
81 9 B81 R 
82 0 B82 
821 ## Number sign B821 $ Dollar sign 

84 @ At sign B84 * Asterisk 
841 B841 
842 B842 
8421 B8421 

A BA & Ampersand 

Al / Slash BAI A 

A2 S BA2 B 
A21 T BA21 Cc 

A4 U BA4 D 
A41 Vv BA41 E 
A42 WwW BA42 F 
A421 x BA421 F 

A8 Y BA8& H 
A81 Z BA81 I 
A82 BA82 
A821 , Comma BA821 . Period 

A84 % Percent sign BA84 H Lozenge 
A841 BA841 
A842 BA842 
A8421 BA8421     

Fig. 2.4 Early code
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2.15 REPRESENTATION 

Representation refers to the form or manner in which the characters of a 

coded character set are recorded or transmitted on some medium, such as 

magnetic tape, magnetic disk, magnetic card, magnetic tape 

cassette/cartridge, magnetic core, paper tape, punched cards, data trans- 

mission lines, etc. 

For such media representations, it is necessary to specify a precise 

relationship between the format characteristics of the medium (rows, 

columns, tracks, etc.) and the bits of the bit pattern of a character. 

Characters may also be represented by graphic shapes either printed 

on paper or displayed on cathode ray tubes. Such graphic shapes may 

have a conventional font for human reading or a stylized font for machine 

reading (optical character recognition, OCR, or magnetic ink character 

recognition, MICR). 

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

Pattern A B BA 

SP - & 

1 1 / J A 

2 2 s K B 

21 3 T L Cc 

4 4 U M D 

41 5 Vv N E 

42 6 W 0 F 

421 7 x P G 

8 8 x Q i 

8 1 9 Zz R I 

8 2 0 

8 21 # ; g 

84 @ x * mt 

84 14 

842 

8421                 
Fig. 2.5 6-bit code table, 8421 convention
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A more subtle form of representation is where a sequence of 
characters is used, as an entity, to represent some single graphic or 
control meaning (see, for example, Chapter 26, Code Extension). 

2.16 CODE TABLE 

A code table is a compact matrix form of rows and columns for exhibiting 
the bit patterns and assigned meanings of a code. The 6-bit code, 
previously listed in Fig. 2.4, is exhibited in a code table using the 8421 
convention (Fig. 2.5). It is also exhibited using the binary convention for 

representing bit patterns (Fig. 2.6). 
The rule for reading these code tables is that the two high-order bits 

of the 6-bit bit pattern are shown as column headings, and the four 
low-order bits are shown as row sidings. 

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

Pattern > 65 00 01 10 11 

4321 

0000 SP -~ & 

0001 1 / J A 

0010 2 s K B 

0011 3 T L c 

0100 4 U M D 

0101 5 Vv N E 

0110 6 W 0 F 

0111 7 x p G 

1000 8 Y Q H 

1001 9 z R I 

1010 0 

1011 # > $ 

1100 @ x x xn 

1101 

1110 

1411                 
Fig. 2.6 6-bit code table, binary convention
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Example 8 

From the code tables of Figs. 2.5 and 2.6 we derive the following: 

Graphic Bit pattern Bit pattern 
meaning Fig. 2.5 Fig. 2.6 

7 421 000111 

R B81 10 1001 

E BA41 110101 

Space No bits 00 0000 

It is common practice to represent codes in code tables of 16 rows. Thus, 
a 6-bit code has a code table of 4 columns and 16 rows, a 7-bit code has a 

code table of 8 columns and 16 rows, an 8-bit code has a code table of 16 

columns and 16 rows, and so on. 

It is common practice to exhibit control meanings in code tables by 

either abbreviations or acronyms of the name of the control meaning. 

  

Example 9 

Control meaning Abbreviation or acronym 

Space SP 

Segment mark SM 

Record mark RM 

End of Transmission EOT 

Acknowledge ACK 
Negative Acknowledge NAK 

Null NUL 

Bell BEL 

A card code may be exhibited in a code table in the same way that a 
bit code is exhibited in a code table. The conventions for bit-code code 
tables are also used for card-code code tables. Zone punch hole patterns 
are shown as column headings. Digit punch hole patterns are shown as 

row sidings. The hole pattern for a particular character is made up of the 
column heading and row siding. A 64-character card code is shown in Fig. 
2.7. The Hollerith Card Code is shown in Fig. 2.8. 

Example 10 

From Fig. 2.7 we derive the following: 

Graphic Hole pattern 
  

Space No holes 

Z 0-9 

< 12-8-6
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Note. In card-code code tables, there may be exceptions to the general 

rule of column headings and row siding. These will be designated with 
small footnote numbers, with the actual hole patterns for such code 
positions (shown below) appearing in the table. 

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

                
  

Hole 

Pattern—* 0 11 12 

1 
SP SB L] - & 

1 1 / J A 

2 2 s K B 

3 3 T L Cc 

4 4 U M D 

5 5 V N E 

6 6 W 0 F 

7 7 x P G 

8 8 Y Q H 

8 9 Zz R I 

0 0 RM 2 ! 2 

8-3 # ; $ 

8-4 @ % * XH 

es : Ws ] C 

8-6 > \ : < 

8-7 ™ SM MC GM 

Hole Patterns: Control Characters 

[7] 8-2 SP - Space 
{2] 0-8~2 IM - Tape Mark 

SB - Substitute Blank 

RM - Record Mark 

WS - Word Separator 

SM - Segment Mark 

MC ~ Mode Change 

GM - Group Mark 

Fig. 2.7. Card-code code table 

It is possible to exhibit, in one code table, both bit patterns and hole 
patterns, with zone bits and zone punches as column headings and digit 
bits and digit punches as row sidings. See, for example, Fig. 2.9. In more 
complex code tables, such as Figs. 2.8 and 2.10, zone punches for
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Fig. 2.8 Hollerith Card Code 

LF 

BS ETB 

ESC } EOT 

pC4 

ENQ| NAK 

ACK 

BEL | SUB   
  

  

  

  

  

  

          

Block | Hole Patterns at: 

1 Top and Left 

2 Bottom and Left 

3 Top and Right 

4 Bottom and Right     
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Paetern A B BA 

Hole 

Pattern—> 0 WW 12 

SP SB * - & 

1 1 1 / J A 

2 2 2 s K B 

21 3 3 T L Cc 

4 4 4 U M D 

41 5 5 Vv N E 

42 6 6 Ww 0 F 

421 7 7 X Pp G 

8 8 8 x Q H 

8 1 9 9 Z R 1 

8 2 0 0 BM L2| \ 2 

8 21 8-3 # 3 § 

84 8-4 @ % * X 

84 1 8-5 ws ] c 

842 8-6 > \ ; < 

8421 8-7 T™ SM MC GM 

Hole Patterns: 

[7] 8-2 

[2] 0-8-2 

Fig. 2.9 Code table, bit patterns and hole patterns 

characters in the top rows of the table are different than they are for 

characters in the bottom rows of the table, and digit punches for charac- 

ters in the left columns of the table are different than they are for 

characters in the right columns of the table. In such a case, zone punches 

are shown as column headings and column footings and digit punches are 

shown as left and right row sidings. 

A rule for reading hole patterns for such a table must be stated. The 

table of Fig. 2.10, is blocked into four blocks, as shown below, with the 

rule for reading as follows: 
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Column 9 

00 

12 

Hole 

Pat.   
Hole Patterns: 

  

  

  
  

  

  

[4] 9-12~0-8-1 11 [13] 0-1 

[2] 9-12-11-8-1 12-11-0 9-11-0-1 Block | Hole Patterns at: 

[3] 9-11-0-8-1 = [a] 12-0 12-11 l 3 1 | Top and Lett 

{4] 9-12~-11-0-8-1 11-0 2 | Bottom and Left 
[5] No Pch [ii] 0-8-2 2 4 3 | Top and Right 
[e] 12 {iz] 9 4 | Bottom and Right               

Fig. 2.10 256-character code table 

Block 1: Zone punches at top of table, digit punches at left. 

Block 2: Zone punches at bottom of table, digit punches at left. 

Block 3: Zone punches at top of table, digit punches at right. 

Block 4: Zone punches at bottom of table, digit punches at right.
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2.16.1 Column Number, Row Number 

For purposes of easy reference, the columns and rows of a code table are 

numbered and named. For the code table of Fig. 2.26, the 8 columns are 

numbered 0, 1, 2, 3, 4, 5, 6, 7, and the 16 rows are numbered 0, 1, 2, 

3,..., 14, 15. 
For the code table of Fig. 2.10, both the 16 columns and 16 rows are 

numbered (or named) 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F. This 

notation is called the hexadecimal notation. 

2.16.2 Code Table Character Position, 

Code Table Characters Location 

The position or location of a character in a code table is stated according 

to its column and row number. For the tables of Figs. 2.26 and 2.27, the 

convention is to give the position as x/y, where x is the code table column 

number and y is the code table row number. For the code table of Fig. 

2.10, the hexadecimal convention mn is used, where m is the hexadeci- 

mal column number and n is the hexadecimal row number. 

Example 11 

In the code table of Fig. 2.26, the letter R is in position 5/2. 

Example 12 

In the code table of Fig. 2.10, the letter R is in position D9. 

2.17, CODE NAMES 

The following codes, to be discussed in detail later in this book, are used 

in this chapter to illustrate certain basic characteristics of codes. Their 

names, the derivation of which will be described later in this book, are 

used in this chapter. (The term shifted, used below, is explained later in 

this chapter.) 

a) CCITT #2 A 58-character, shifted 5-bit code. 

b) FIELDATA A 128-character, 7-bit code. 

c) ASCII A 128-character, 7-bit code. 

d) PTTC A 111-character, shifted 6-bit code. 

e) BCDIC A 64-character, 6-bit code and 12-row card code. 

f) EBCDIC A 256-character, 8-bit code and 12-row card code. 

g) Hollerith A 256-character, 12-row card code.
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BASIC CHARACTERISTICS 

There are some basic characteristics of coded character sets. Not all of 

these characteristics will be exhibited by any particular code. 

2.18 SHIFTED CODE 

Recall that the total number of possible different bit patterns of a code is 

prescribed by the number of bits in the code byte: a code byte of 5 bits 

gives rise to 2° = 32 different bit patterns; a code byte of 6 bits gives rise 

to 2° = 64 different bit patterns; a code byte of 7 bits gives rise to 2’ = 128 

different bit patterns; etc. 

Ordinarily, the number of possible different characters (a character is 

a bit pattern with an assigned meaning) in a code equals the number of 

possible different bit patterns. But, by the use of a technique called 

shifting, the number of characters in a code may be increased beyond the 

number of bit patterns. Under this technique, the meaning of a bit pattern 

depends not only on the bit pattern itself, but also on the fact that it has 

been preceded in the data stream by some other particular bit pattern, 

which is called a precedence character or a shift character. 

In CCITT #2 (Fig. 2.11), for example, there are two characters, 

Figure Shift (11011) and Letter Shift (11111). The meaning of a bit 

pattern in a data stream is determined not only by the bit pattern itself 

but also by which of the two precedence bit patterns has preceded it. By 

preceded, we do not necessarily mean “immediately” preceded. For exam- 

ple, if the bit pattern 01010 has been preceded by the bit pattern 11011 

(Figure Shift), it would mean ‘4’’, but if it had been preceded by the bit 

pattern 11111 (Letter Shift), it would mean “‘R’’. A precedence character, 

when detected in the data stream, establishes a mode which remains in 

effect until another precedence character is detected, which then disestab- 

lishes the previous mode and establishes its own mode, which in its turn 

remains in effect until the subsequent detection of another precedence 

character. 

The precedence characters are generally called shift characters be- 

cause they are associated with the mechanism in a serial printer such as a 

typewriter which shifts from one case to the other. 

In the serial printers that implement CCITT #2, the shift keys ‘lock 

in’ the shift mode of the printing mechanism. Thus when the key or keys 

are depressed to generate the Figure Shift character, the Figure Shift 

Case is set for the printing mechanism and it remains set until the key or 

keys are depressed to generate the Letter Shift character. At that time, 

the Letter Shift case of the printing mechanism is set and it remains set 

until the key or keys are depressed to generate the Figure Shift character.
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Bit Letter Figure Bit Letter Figure 

pattern case case pattern case case 

00000 Not used Not used 10000 E 3 

00001 T 5 10001 Zz +or” 

00010 CR CR 10010 D (2) 

00011 0 9 10011 B ? 

00100 SP SP 10100 S ° 

00101 H (1) 10101 Y 6 

00110 N , 10110 F (1) 

OO111 M 10111 xX / 

01000 LF LF 11000 A - 

01001 L ) 11001 WwW 2 

01010 R 4 11010 J Bell 

01011 G (1) 11014 FS FS 

01100 I 8 11100 U 7 

01101 P 0 11101 Q 1 

01111 C 11110 K ( 
O1111 V = Or; 11111 (3)LS LS             

(1) For National Use 

(2) Used for Answer Back 

(3) Also used for Delete 

Fig. 2.11 CCITT #2 

CR Carriage Return 
SP Space 
LF Line Feed 
FS Figure Shift 
LS Letter Shift 

In precedence codes, certain bit patterns, usually those associated 
with control meanings, are independent of shift. That is to say, the bit 
pattern of a shift-independent character has the same meaning, regardless 
of which precedence bit pattern has preceded it in the data stream. In 

CCITT #2, the control characters Carriage Return, Space, Line Feed, 

Figure Shift, and Letter Shift are shift-independent. There is a human- 
factors reason for this. Assume the following: 

a) The Space bit pattern operates only in Letter Shift, not in Figure 
Shift. 

b) An operator is transmitting data using a keyboard.
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c) The data consists of blocks of numerics, the blocks separated by a 
Space. 

Each time the operator comes to the end of a numeric block and wishes 

to key the Space, he would first have to depress the Letter Shift key, then 

the Space key, then the Figure Shift key (to reestablish the Figure Shift 

mode for the next block of numerics). In short, to generate the Space 

character he would have to have depressed three keys. Similarly, if we had 
assumed that the Space bit pattern operated only in Figure Shift (not in 
Letter Shift) and if the operator was transmitting text (alphabet blocks, 
separated by a Space), he would have to depress three keys in order to 
generate the Space character. 

In both instances, if the Space key operated in both Letter Shift and 

Figure Shift, he would have had to depress only one key, the Space key. 

In short, making the Space character shift-independent increases operator 

productivity by decreasing the number of key strokes needed. Analysis 
shows that the other control characters—Carriage Return, Form Feed, 

Letter Shift, and Figure Shift—should be shift-independent for similar 
reasons. 

If the number of bits in a code byte is x and if the number of 

shift-independent characters in a code is Y, then 

"number of shift-dependent characters = 2*''-2Y; 

«= total number of different characters shift-dependent and 

shift-independent = 2**'— Y. 

CCITT #2 is a 5-bit shifted code, with 6 shift-independent charac- 

ters. The number of shift-dependent characters is 52, and the total 

number of different characters is 58. PTTC (Fig. 2.30) is a 6-bit shifted 

code and has 17 shift-independent characters. The number of shift- 

dependent characters is 84; the total number of different characters is 111. 

2.19 BINARY CODED DECIMAL (BCD) 

The binary bit patterns for the ten decimal digits, shown in Fig. 2.12 
under both the 8421 convention and the binary convention, are called 

Binary Coded Decimal bit patterns, with acronym BCD. 

2.19.1 BCD for Numerics 

For a code to have the characteristic of BCD bit patterns for numerics, 

the low-order four bits of the bit patterns for the numerics must be as 

shown in Fig. 2.12, and the high-order bits must be the same for all 

numerics. Figure 2.13 shows excerpts from two codes, ASCII and EBC- 

DIC, with BCD for the numerics.
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Binary Coded Decimal bit patterns 
Decimal 

digits 8421 convention Binary convention 

0 0000 

1 1 0001 

2 2 0010 

3 21 0011 

4 4 0100 

5 4 1 0101 

6 42 0110 

7 421 0111 

8 8 1000 

9 8 1 1001       
Fig. 2.12 BCD bit patterns 

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

                                

cum) o[+[2{[e«]l«lelel7] |. || Telelel= 
Bit. WW 2 

Row Pay 000} 001] 010] 011] 100 101 | 140) 191 oo | 01 1o {14 

0 |0000 0 P 0 

1 |o001 1 A Q A J 1 

2 |0010 2 B R B K s 2 

3 |0011 3 c 5 Cc L T 3 | 

4 |0100 4 D T D M U 4 

5 10701 5 E U E N Vv 5 

6 {0110 6 F Vv F 0 W 6 

7 10111 7 G W G P xX 7 

8 j 1000 8 HY] Xx H}| Q]/ ¥ 8 

9 11001 9 I Y I R Z 9 

10 11010 J Z 

ww 140114 K 

12 [1100 L 

13 +1104 M | 

1411110 N | 

15 44111 0 . 

ASCII . EBCDIC             

Fig. 2.13 BCD for numerics and alphabetics
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2.19.2 BCD for Alphabetics 

For some codes, the alphabetics have bit patterns where the low-order 

four bits for A to I, for J to R, and for S to Z have BCD bit patterns. In 

Fig. 2.13 EBCDIC exhibits this characteristic while ASCII does not. 

2.20 SEQUENCES OF BIT PATTERNS 

2.20.1 Numerics in Numeric Sequence 

The natural sequence of numerics is 0, 1, 2, 3, 4, 5, 6, 7, 8, 9. The binary 

bit patterns of the numerics may be in numeric sequence for a code. In 

Fig. 2.14, ASCII and EBCDIC exhibit this characteristic, CCITT #2 and 

BCDIC do not. (BCDIC almost does, since its numerics are in the 

sequence 1, 2, 3, 4, 5, 6, 7, 8, 9, 0.) 

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

                              

coum] eo [1[2]ef | lll telelel- 
Br | 11 

Pat. 
Row 000/001] 010|0114% oo | 01 to | 11 oo | 01 10 | 11 f oo | 01 10] 11 

0 |ooo00 0 3 0 

1 |ooo1 1 5 1 t 

2 |0010 2 2 2 

3 |oo11 3 9 3 3 

4 |o100 4 4 4 

5 |0101 5 6 5 3 

6 |o110 6 6 6 

7 |o111 7 7 7 

8 |1000 8 8 8 

9 {1001 9 2 9 9 

10 11010 0 

4 1041 

12 |1100 8 7 

13. 11104 0 1 

14 f1110 

16 [1414 

ASCIT CCITT#2 BCDIC EBCDIC               
Fig. 2.14 Numerics, numeric sequence, contiguous sequence
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2.20.2 Numerics in Contiguous Sequence 

For some codes, the binary bit patterns of the numerics are in contiguous 
sequence, that is, the sequence of bit patterns is continuous and uninter- 

rupted. In Fig. 2.14, ASCII, BCDIC, and EBCDIC exhibit this charac- 

teristic; CCITT #2 does not. 

2.20.3 Alphabetics in Alphabetic Sequence 

The natural sequence of alphabetics is A, B, C,...,X, Y, Z. For some 

codes, the binary bit patterns of the alphabetics are in the same relative 
sequence as the alphabetics. Figure 2.15 shows the alphabetics of ASCII, 
FIELDATA, BCDIC, and EBCDIC. Figure 2.16 shows that the alphabe- 
tics of EBCDIC, although not contiguous in the sequence of bit patterns, 
are nevertheless in relative sequence. By contrast, Fig. 2.17 shows that 

the alphabetics of BCDIC are not in relative sequence. Figure 2.18 shows 
that the alphabetics of ASCII are in relative sequence and in contiguous 

sequence. The alphabetics of FIELDATA can be seen from Fig. 2.15 to 

be in relative sequence and in contiguous sequence. 

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

                              

cum] «Te lel7.felelel7)e]’1lz]e]el°l«|-= 
Bit. "1 

Row Pat 100/107] 110/117 $100] 101/110]111 4% 00 | 01 10 | 11 J oo | 01 10 | 14 

0 |o000 P K 

y foootk aA Q L J A A J 

2 joo1o; 8B R M 8 K B B K s 

3 jo0TT) ¢ S N T L c c L T 

4 10100 D T 0 U M D D M U 

5 {0101 E U P Vv N E E N Vv 

6 |0110F F Vv A Q W 0 F F 0 W 

7 10121 G W B R xX P G G P xX 

8 | 1000 H xX Cc 8 Y Q H H Q Y 

9 )1001 L Y D T Z R I I R Z 

10 71010 J Z E U 
— 

11 1011 K F Vv 

12 {1100} x G W 

13 |11017 H X 

14 11110 N I XY 

16 j11117 Oo J Zz 

ASCII FIELDATA BCDIC EBCDIC               
Fig. 2.15 Contiguous and noncontiguous alphabetics



  

  

  

  

        

1100 0000 01 0000 100 0000 
0001 A 0001 0001 =A 
ooO10 =—-:B 0010 —=—sS 0010 +B 
ooll = C 0011. «iT 0011 #C 
0100 =D 0100 =U 0100 D 
0101. £E 0101 Vv 0101 +E 
0110 F 0110 Ww 0110 F 

0111 G 0111 xX 0111 G 

11001000 «=H 011000 =Y 1001000 4H 
1001 =I 1001 Z 1001s 
1010 1010 1010 J 
1011 1011 1011. Ko 
1100 1100 1100 =L 
1101 1101 1101 M 
1110 1110 1110 N 
1111 1111 1111 O 

1101 0000 10 0000 1010000 P 
0001 J 0001s J 0001 Q4 
0010 XK 0010 K 0010 =R 
0011. =L 0011 L 0011 =S 
0100 M 0100 M 0100 «=T 
0101 N 0101 N 0101 U 
0110 O 0110 O 0110 V 
0111 P 0111 P 0111 WwW 

11011000 OQ 101000 Q 1011000 Xx 
1001 R 1001 R 1001 =Y 
1010 1010 1010 -Z 
1011 1011 1011 
1100 1100 1100 
1101 1101 1101 
1110 1110 1110 
1111 1111 1111 

1110 0000 11 0000 110 0000 
0001 0001 A 0001 
0010 =§ 0010 +B 0010 
0011. «iT 0011 C 0011 
0100 U 0100 D 0100 
0101 Vv 0101 #-£E 0101 
0110 W 0110 =F 0110 
0111 =X 0111 G 0111 

11101000 Y 111000 H 110 1000 
1001 Z 1001 «I 1001 
1010 1010 1010 
1011 1011 1011 
1100 1100 1100 
1101 1101 1101 
1110 1110 1110 
1111 1111 1111 

Fig. 2.16 EBCDIC Fig. 2.17. BCDIC Fig. 2.18 ASCII 
alphabetics in relative alphabetics not in alphabetics in relative 
sequence and in non- _ relative sequence and sequence and in 

contiguous sequence —_ in noncontiguous contiguous sequence 

sequence
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2.20.4 Alphabetics in Contiguous Sequence 

For some codes, the bit patterns of the alphabetics are in contiguous 
sequence. In Fig. 2.15, ASCH and FIELDATA exhibit this characteristic 
(ASCII is also shown in Fig. 2.18). BCDIC and EBCDIC do not, as can 

be seen in Figs. 2.17 and 2.16. 

2.20.5 Alphabetics in Noncontiguous Sequence 

For some codes, the bit patterns of the alphabetics are not in contiguous 

sequence. In Figs. 2.17 and 2.16, BCDIC and EBCDIC exhibit this 

characteristic. ASCII (Fig. 2.18) and FIELDATA (Fig. 2.15) do not. 

Note 1. Characteristics described in Sections 2.20.4 and 2.20.5 are, of 

course, opposite. A full discussion of the significance of contiguity and 

noncontiguity of the alphabetics is given later in this book. 

Note 2. Some codes (for example, that of the IBM 7030 (Stretch) 

computer) exhibit the characteristic of “interleaved alphabets;” that is, 
the upper- and lower-case alphabetics are interleaved. This is discussed 
more fully in Chapter 3. 

2.21 SIGNED NUMERICS 

It is a common practice in punched card applications to punch the 

11-punch in the same card column as a numeric to indicate a negative 
numeric. Thus 11-0, 11-1,...,11-9 represent —0, —1,..., —9, respec- 

tively. It is a recognized though little-used practice to punch the 12-punch 

in the same card column as a numeric to indicate a positive numeric. Thus 
12-0, 12-1,...., 12-9 represent +0, +1,..., +9, respectively. And, of 

course, 0, 1,...,9 punches are used to represent absolute numerics 0, 

1,...,9, respectively. This is shown in Sections 1 and 2 of Fig. 2.19. 
In the Hollerith card code, the hole patterns 12-0, 12-1, 12- 

2,..., 12-9 are assigned to {, A, B,...,1; the hole patterns 11-0, 11-1, 

11-2,...,11-9 are assigned to }, J, K,...,R; the hole patterns 0-2, 0- 

3,...,0-9 are assigned to S, T,...,Z; and the hole patterns 0, 1, 

2,...,9 are assigned to 0, 1, 2,...,9 as shown in Section 1 of Fig. 2.20. 

For ASCII and EBCDIC, the graphics { and }, the alphabetics A through 

Z, and numerics O through 9 have bit patterns as shown in Sections 2 and 3 

of Fig. 2.20. 

It is to be noted, therefore, that such over-punched numerics in the 
card code have a duality of meaning. For example, the hole pattern 12-1 
might mean A, or it might mean +1. There is nothing intrinsic to the hole 

pattern itself that determines which meaning is to be applied. The actual 

meaning would be determined within the context of a data processing 
application.
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cum) | 1 |) Lele le lel? lele lil 
Bit 

11 

hom Pon 014) 100|101|110,1179 oo | 01 | 10 | 44 

o |0000]12~0:11-0) 0 +0 | -0 0 -7 +0) -0 0 

1 ;0001712-1/ 11-1) 1 +1] +1 1 1}] +1] -8 +1] -1 1 

2 jo010)12~2/11-2| 2 +2 | -2 2) +2 | -9 +2 | 2 2 

3 |o0011) 12-3) 11-3) 3 +3) =3 3 | +3 +3 | -3 3 

a jo1o0}22-4) 11-4) 4 +4 | -4 4 4 | +4 +4) -4 4 

5 (0107912-5/11-5; 5 +5 | -5 5 5 {| +5 +5 4 -5 5 

6 |01710712-6/11-6) 6 +6) -6 6 | +6 +6} ~6 6 

7 $0111912-7)11-7) 7 +7 «| +7 7 | +7 +7 | -7 7 

8 |1000/12~8/11-8] 8 +8 | -8 8 8 | +8 +8 | -8 8 

9 |1001/12-9}11-9] 9 +9) -9 9 9 | +9 +9 | -9 9 

10 |1010 -1 

14 11011 ~2 +0 

12 11100 ~3 

13, 11701 ~4 -0 

1441110 =5 

15 [1117 ~6 

Hole Equivalent ASCIT EBCDIC 

Patterns Signed Signed Signed 

Numerics Numerics Numerics 

Section 1 Section 2 Section 3 Section 4 
  

Fig. 2.19 Signed numerics 

In consequence of the relationship between positive, negative, and 

absolute numerics and hole patterns (Sections 1 and 2, Fig. 2.19) and in 

consequence of the relationship between hole patterns and ASCII and 

EBCDIC bit patterns (Sections 1, 2, and 3, Fig. 2.20), the positive, 

negative, and absolute numerics take bit patterns for ASCII and EBC- 

DIC as shown in Sections 3 and 4 of Fig. 2.19. 

The signed and absolute numerics for EBCDIC (Section 4, Fig. 2.19) 

exhibit the following characteristics: 

a) For all numerics, signed or absolute, the numerics 0 to 9 have the 

low-order four bits as BCD bit patterns. 

b) For all positive numerics 0 through 9, the four high-order bits are 

the same. 
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HOLLERITH ASCII EBCDIC 
HOLE PATTERNS BIT PATTERNS BIT PATTERNS 

SECTION 1 SECTION 2 SECTION 3   
Fig. 2.20 Alphabetics and numerics 

c) For all negative numerics 0 through 9, the four high-order bits are 
the same. 

d) For all absolute numerics 0 through 9, the four high-order bits are 
the same. 

Note. In characteristics (b), (c), and (d) above, the actual four high-order 
bits are not important. What is important is that for each category—(b), 
(c), (d)—the four high-order bits are the same. 

It is clear that when the arithmetic circuits of a CPU are built around 
the EBCDIC signed and absolute numerics advantage can be taken of 
characteristics (a), (b), (c), and (d). It is equally clear, that for ASCII, 
arithmetic circuits would have to be more complex, since characteristics 
(a), (b), and (c) are not present. A full discussion of this is given later.
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2.22 SPACE CHARACTER HAS “NO PUNCHES” CARD CODE 

It is an established card practice for the Space character to generate a 
“no punches,” or “blank column,” card code. This characteristic is essen- 

tial in data processing card applications where fields are left blank on 
punched cards in the initial keypunching operation—blank fields to be 
filled with punched data in subsequent card operations. 

The Hollerith Card Code, also called the Twelve-Row Card Code, 

and the EBCDIC Card Code (see Chapters 11, 16, and 17) have this 

characteristic. The 96-Column Card (see Chapter 27) has this characteris- 

tic. During the technical debates in standards committees on binary card 
codes and on the Decimal ASCII Card Code (Chapter 16, Decimal 

ASCII), there was a technical controversy as to whether the “no punches”’ 

card hole pattern should be assigned to the Space character or to the Null 
character. This controversy was finally resolved with respect to Decimal 
ASCII by assigning the “‘no punches” to the Space character, in accord 

with de facto practice. It was not resolved for binary card codes, because 
the standards committee ceased to study binary card codes. 

2.23 DUALS 

The practice of mapping more than one graphic meaning to a single bit 
pattern or hole pattern is quite common. The different graphics with the 
same bit pattern or hole pattern are called duals. Sometimes, more than 

two graphics are mapped to a single bit pattern or hole pattern. 

The duals of BCDIC are shown in Fig. 2.21. 

  

      

Graphics | Hole pattern | Bit pattern 

@ or’ 8-4 84 
# or = 8-3 8 21 

& or + 12 BA 

% or ( 0-8-4 A84 

Hor ) 12-8-4 BA84 

Fig. 2.21 BCDIC duals 

Some European languages require 29 letters, three more than the 26 

letters of the English language. The additional three letters, which occur 
in both lower- and upper-case alphabetics, are called diacritics. Some 
codes, EBCDIC and the ISO 7-Bit Code, for example, accommodate this 

aspect by assigning six code positions for alphabetic extenders (or Na- 
tional Use graphics, as they are sometimes called). The EBCDIC scheme 
is shown in Fig. 2.22, followed by the ISO scheme in Fig. 2.23.
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GRAPHICS 

Hex Bit Norway/ Sweden/ 

position pattern ULS.A. Germany Denmark Finland 

7B 0111 1011 # A ns) A 
7C 0111 1100 @ O © O 
5B 0101 1011 $ U A A 

7F 01111111 " a # a 
4A 0100 1010 ¢ 6 B 6 
5A 0101 1010 ! u a a             

Fig. 2.22 EBCDIC alphabetic extender graphics 

  

  

  

GRAPHICS 

Column Bit Norway/ Sweden/ 

row pattern U.S.A. Germany Denmark Finland 

5/11 101 1011 [ A B A 
5/12 101 1100 / O O O 
5/13 101 1101 | U A A 

7/11 111 1011 { a #e a 
7/12 111 1100 0 g 6 
7/13 111 1101 } u a a             

Fig. 2.23 ISO National Use graphics 

It is to be noted that the five BCDIC duals (Fig. 2.21) create duals 
within a country (U.S.A.), while the alphabetic extender duals create 

duals between countries. The former situation can be very troublesome (if 
all ten graphics are needed in the same data processing application, for 

example), while the latter situation does not cause trouble (for example, 

systems problems) as far as is known today. Duals are not good or bad, 
per se. Each situation must be examined individually. 

There are, theoretically, two kinds of duals. 

2.23.1 Many-to-one 

Many-to-one refers to different meanings mapped into the same code 

position. This is the type described above.
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2.23.2 One-to-many 

One-to-many refers to a single meaning mapped into different code 
positions. Generally, this is a situation that will arise not within a code but 
rather between two different codes. For example, the 7-Bit Code has two 

different control characters, Line Feed and Carriage Return. These two 
functions are conbined into one EBCDIC Control Character, New Line. 

There is an obvious problem in trying to determine the translation 

relationship between these codes with respect to these three characters. 

2.24 COLLATING SEQUENCE MATCHES BIT SEQUENCE 

The bit sequence of a code is from low (all zero-bits) to high (all one- 
bits). Thus for EBCDIC, the bit sequence is 00000000, 00000001, 

00000010,...,11111101, 11111110, 11111111. In a code, graphic 
meanings are assigned to some of the bit patterns. For reasons outside the 

code, there may be an established sequence, from low to high, for these 

graphics. Such a sequence is called a collating sequence. The collating 

sequence of the graphics may, or may not, match the bit sequence of the 

graphics. 

In the 64-character, 6-bit BCDIC, for example, the collating se- 

quence does not match the bit sequence. Figure 2.9 shows the 64 characters 

in bit sequence. Each of the 64 BCDIC characters was assigned a 

collating number, from 0, low, to 63, high. The 64-characters of Fig. 2.9 

are shown reordered into correct collating sequence in Fig. 2.24, with the 

collating numbers shown in each code table position. Figure 2.25 shows 

some of the BCDIC characters in column (1). Column (2) shows the 

collating number, and column (3) shows the bit patterns from Fig. 2.9. 
The sorting or collating operation in a computer involves putting 

items in an ordered sequence, the collating sequence. Visualize a sort on 

a one-character field. Then, for two items, X1 or X2, the following 

question is asked: 

Is X1 greater than, equal to, or less than X2? 

When this question is answered, the two items X1 and X2 can then be 
arranged in correct sequence. Actually, the comparison instruction, which 
asks the question above, performs a binary subtraction, X1—X2, and 

examines the sign and magnitude of the result. 

First a binary subtraction is performed: 

X1—-X2=Y.
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> Ly ee 
Glee 

r UI » 1 ar) 

a ee, 
2 
poe, ey, 
Le Eel el Te 

> lal al 
Ste? ee 
7 VL 2 sy oO Pe Era 

; ES a las] p bea 4 Lal 

Sy el > 
Ee ey > o> 
et ee 
ey le] 

% us pF LY 7 BY 9 Leal                 
Fig. 2.24 BCDIC collating numbers 

Then, If Y is minus, X1<X2; 
or If Y is zero, X1=X2; 
or 

If Y is positive, X1>X2. 

Performing this binary comparison on the bit patterns of column (3) will 
not yield the desired result. But if the binary comparison were performed 
on the pseudo bit patterns of column (4), the desired result would be 

yielded. In short, if the bit patterns of column (3) are converted into the 
pseudo bit patterns of column (4) before comparison, the graphics of 
BCDIC can be sorted according to the prescribed collating sequence. 

In some BCDIC computers, this conversion before comparison was 
achieved with a software routine; in other BCDIC computers it was 

achieved with a hardware comparator. In one instance there was a 

performance penalty, and in the other instance there was additional 
hardware cost.
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1 2 3 4 

Collating Bit Pseudo 
Graphic | number | pattern bit pattern 

Space 0 00 0000 00 0000 

$ 7 10 1011 00 0111 

* 8 10 1100 00 1000 

? 25 11 1010 01 1001 

A 26 11 0001 01 1010 

B 27 11 0010 01 1011 

H 33 11 1000 10 0001 

I 34 11 1001 10 0010 

J 36 10 0001 10 0100 

K 37 10 0010 10 0101 

Q 43 10 1000 10 1011 
R 44 10 1001 10 1100 

S 46 01 0010 10 1110 

T 47 01 0011 10 1111 

Y 52 01 1000 11 0100 

Z 53 01 1001 110101 

0 54 00 1010 11 0110 

1 55 00 0001 11 0111 

2 56 00 0010 11 1000 

8 62 00 1000 11 1110 

9 63 00 1001 11 1111     
    
Fig. 2.25 BCDIC collating sequence
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In developing EBCDIC, a primary design factor was collating se- 
quence (see Chapter 8, the Sequence of EBCDIC). The 88 graphics of 
EBCDIC were assigned 8-bit bit patterns such that the collating sequence 
matched the bit sequence, thus saving software or hardware costs for 
customers. 

2.25 SUMMARY OF CODE CHARACTERISTICS 

Seven codes or representations are given as follows: 

  

Code Figure 

ASCII 2.26 

An 8-bit representation 2.27 

EBCDIC 2.28 

BCDIC 2.29 

PTTC 2.30 

CCITT #2 2.31 

FIELDATA 2.32 

These are analyzed below as they do, or do not, exhibit the previous 

characteristics. 

Figure | 2.26 | 2.27 2.28 2.29 2.30 2.31 2.32 
  

    

  

  

  

  

Characteristics 8-Bit CCITT | FIEL 
1 Code | ASCII | Rep. | EBCDIC|BCDIC | PTTC #2 |DATA 

Shifted code - No No No No Yes Yes No 

BCD for numerics Yes Yes Yes No No Yes Yes 

BCD for alphabetics : No No Yes | Yes Yes No No 

Numerics in numeric ; 

sequence Yes Yes Yes No No No Yes 

Numerics in contiguous 
sequence Yes Yes Yes Yes Yes No Yes 

Alphabetics in 
alphabetic sequence Yes Yes Yes No No No Yes 

Alphabetics in 

contiguous sequence Yes Yes No No No No Yes 

Alphabetics in 

noncontiguous sequence] No No Yes Yes Yes Yes No 

Signed numerics No No Yes Yes Yes No No 

Collating sequence 

matches bit sequence Yes Yes Yes No No No Yes                
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b7f 0 0 1 
b6 0 0 1 1 1 
b5 

Co! | 
0 1 2 3 7 

b4b3b2b1 | Row 

NUL DLE SP 0 Pp 
0000 0 

SOH DC1 ! 1 q 
0001 1 

STX pe2 " 2 xr 
0010 2 

ETX DC3 ff 3 8 
0011 3 

EOT DC4 $ 4 t 
0100 4 

ENQ NAK % 5 u 
0101 5 

ACK SYN & 6 v 
0110 6 

BEL ETB ' 7 w 
0111 7 

BS CAN ¢ 8 x 
1000 8 

HT EM ) 9 y 
1001 9 

LF SUB * : z 
10101 10 

VT ESC + 3 { 
1077] 11 

FF FS > < { 
1100] 12 

CR GS - = } 
171014] 13 

11 
so RS . > ~ 

11101] 14 

SI us / 2 DEL 
1144 | 15 

0-1                       

Fig. 2.26 ASCII 
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_ Column of 1] 2] 3 | s|e6| 7 e | 9 | wo [ou 2 | 13 | 14 | 5 

  

00 01 10 711 00 01 10 11 00 01 10 11 00 01 10 11 
Row 

o {0000} NUL | DLE| SP 0 @ P * Pp 

  

  

1 |0001] soH| pc1| ! 1}al{lQqQqiatld 
  

2 |0010) sTx} pc2} " 2 B R b r 
  

3 |0011f ETX| Dc3| # 3 Cc Ss c s 
  

4 {0100] for] DCc4 $ 4 D T d t 
  

5 |0101] ENQ| NAK ae
 

wn
 

ca
} 

a
 ) c 

  

6 |0110f ACK| SYN & 6 F Vv £ Vv 
  

7 |0111] BEL| ETB ' 7 G. W g w 
  

8 |1000f BS CAN ( 8 H xX h x 
  

9 1001] AT EM ) 9 I Y L y 
  

10 {10107 LF | SUB] * : J Z 3 Zz 
  

a of{to1f yr | Esc] + 3 K C k { 
  

12 11100] FF | FS > < L \ 1 { 
  

  

                                          13 1117017 CR | GS - = M ] m } 

14 11110] so | RS . > N Q) n ~ 41 EC 

15 41171717 ST US / 2 0 _ ° DEL | BC EO 

@ May be "I" 

@ May be """ 

Fig. 2.27 An 8-bit representation
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Column 0 1 2 

oo 

00 01 10 

Hots 

Pat.   
Hole Patterns: 

[1] 9-12-0-8-1 11 [13] 0-1 
  

  

  
  

  

  

[2] 9-12~11-8-1 12-11-0 9-11-0-1 Block | Hole Patterns at: 

[3] 9-11-0-8-1 12-0 12-11 L 3 1 | Top and Left 

[4] 9-12-11-0-8-1 11-0 2 | Bottom and Left 

[6] No Pch [11] 0-8-2 2 4 3 | Top and Right 

[e] 12 {r2] 0 4 | Bottom and Right               
Fig. 2.28 EBCDIC



2.25 Summary of Code Characteristics 47 

  

  

    
  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

Pattern A B BA 

Hole 
Pattern—> 0 11 12 

SP 6 Ly - & or + 

1 1 1 / J A 

2 2 2 s K B 

21 3 3 T L Cc 

4 4 4 U M D 

4 1 5 5 Vv N E 

42 6 6 W 0 F 

421 7 7 x P G 

8 8 8 Y Q H 

8 1 9 9 Z R I 

8 2 0 0 + 4 ! 2 

8 21 8-3 # or = > $ 

84 | B-4 @or ' % or ( * Yor ) 

84 1 8-5 : v J C 

842 8-6 > \ 3 < 

8421 8-7 Y A $                 
Hole Patterns: 

[7] 8~2 
[2] 0-8-2 

Fig. 2.29 BCDIC
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Lower Case Upper Case 

Bit A B BA A B BA 
Pattern 

Hole 

Pattern —> 0 11 12 11-0 12-11 120 
y 

1 hy 18 (21) 
SP @ - & SP = _ ee 

bd hs] 
1 i 1 / 4 a = ? J A 

2 2 2 s k b nts K B 

24 3 3 t 1 c ; tt L C 

4 4 4 u m d : Ls U M D 

7 
4 1 5 5 v n e % Vv N E 

8 
42 6 6 Ww ° f ' W 0 F 

3 
421 7 7 x P g " X P G 

10 
8 8 8 y q h * bo Y Q H 

ey 
8 1 9 9 z r i ( ba Zz R I 

2 12 16 193 22 

8 2 0 0 »; A. > ) wy, Bs y bey 122] 

13 17 20 23 

8 21 8-3 # ’ $ + by ; by \ ol : Be 

84 4 PN BYP RES PF PN BYP RES PF 

84 1 5 RS LF NL HT RS LF NL HT 

842 6 uc EOB BS LC uC EOB BS LC 

8421 9 EOT PRE TL DEL EOT PRE IL DEL 

Hote» 9 9-0 9-11 9-12 9 9-0 9~11 9-12 
Pattern 

Hale Patterns: 

8-4 8-5 {15} 12-8-2 [22] 8-7 

(2) 0-8-2 [2] 8-1 12-8-7 [23] 12-8-1 Block | Hote Patterns at: 

[3] 8-6 11-8-4 0-8-1 

(4] 12-8-4 [i] 12-8-5 0-8-6 

[5s] 11-8-6 fiz] 11-8-5 0-8-5 

[6] 8-2 [13] 0~8-7 11-8-2 

0-8-4 11-8-7 [21] 12-8-6 

Fig. 2.30 PTTC 

  

  

  

      

3 1 Top And Left 

Bottom and Left 

4 Top and Left 
      F

l
w
i
n
 

  Bottom and Left 
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Bit Letter Figure Bit Letter Figure 

pattern case case pattern case case 

00000 Not used Not used 10000 E 3 

00001 T 5 10001 Z + or” 

00010 CR CR 10010 D (2) 

00011 0 9 10011 B ? 

00100 SP SP 10100 S ’ 

00101 H (1) 10101 Y 6 

00110 N 10110 F (1) 
00111 M 10111 x / 

01000 LF LF 11000 A - 
01001 L ) 11001 WwW 2 

01010 R 4 11010 J Bell 

01011 G (1) 11011 FS FS 

01100 I 8 11100 U 7 

01101 P 0 11101 Q 1 

01110 Cc : 11110 K ( 

01111 Vv = or; 11111 (3) LS LS             

(1) For National Use 
(1) Used for Answer Back 
(3) Also used for Delete 

Fig. 2.31 CCITT #2 

CR Carriage Return 
SP Space 
LF Line Feed 
FS Figure Shift 
LS Letter Shift
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Column 0 1 2 3 4 5 6 7 

Bit b7/0 0 0 0 1 1 1 1 
Pattern b6 0 i) 1 1 0 0 1 1 

b5 0 1 0 1 0 1 0 1 

Row b4 b3 b2 bi 

0 0000 K ) 0 

1 0001 L - 1 

2 0010 M + 2 

3 0011 N < 3 

4 0100 0 = 4 

5 0101 P > 5 

6 0110 Q 6 

7 0111 B R $ 7 
2 CONTROL e 

=) (NOT DEFINED) | 
8 1000 a pe Cc Ss * 8 

9 1001 ee oS D T ( 9 

10 1o180 See E U " ' 

TF 1011 hee | oF Vv : 3 

12 1100 G W ? / 

13 1101 H xX ! 

14 1110 I Y : SPEC 

15 1117 J Z STOP | IDLE 
                            

  

            

Fig. 2.32 FIELDATA 

2.26 COMPATABILITY 

Compatability between two different codes is not a single, simple aspect. 

It is a number of aspects: 

= Structural Similarity. The code table is a compact way to exhibit the 
relationship between the graphic and control meanings and the 

associated bit patterns or hole patterns of a coded character set. As
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can be seen in Figs. 2.28 and 2.29, the 26 alphabetics of EBCDIC and 
BCDIC are positioned similarly in three contiguous columns of the 

code tables (although not in the same order of columns). From this 
columnar positioning is revealed the fact that the low-order four bits 
of alphabetics are the same in both codes. Equally significant, the 
noncontiguous alphabetics are noncontiguous in precisely the same 

way in both codes. Further, the specials in both codes are positioned 

(mostly) in a 5 by 4 block of the code table. These two codes are said 
to be structurally similar. By contrast, the alphabetics of ASCII (Fig. 

2.26) are positioned in 26 contiguous bit-pattern positions in two 

columns. EBCDIC and the 7-Bit Code are said to be structurally 

dissimilar. 

® Collating Sequence. The collating sequence of the two codes should 
match. If the codes are of different size, the collating sequence of the 
smaller code should be embedded in the collating sequence of the 
larger code (see Chapter 8, The Sequence of EBCDIC, for a full 
discussion of this embedment). . 

=" Functional Equivalence. The codes should be functionally equiva- 

lent; that is, they should have the same set of control and graphic 

meanings, although not necessarily with the same set of bit patterns. 
A smaller code is said to be functionally equivalent upward to a 

larger code if the smaller code’s set of graphics and control] meanings 

is contained in the set of the larger code. EBCDIC and the Hollerith 
Card Code are functionally equivalent. ASCII is functionally equiva- 

lent upward to EBCDIC. 

" Translation Relationship. Translation relationships between two 
codes should be as simple as possible. The translation simplicity is 
directly related to the structural similarity. 

In debates on code compatibility, it often happens that one debater 

views two codes as incompatible because not all of the four aspects above 
are present, while the other debater views the two codes as compatible 

because at least one of the aspects above is present. Certainly, two codes 

are compatible if all four aspects are present, incompatible if none of the 
four are present. For codes where some aspects are present and others are 

not, to determine and agree on which are present and which are not is prefer- 

able to arguing about the then indeterminate question of ‘‘compatibility.”’ 

2.27. GRAPHICS FOR CONTROLS 
In some codes, graphic representations are assigned to the control charac- 

ters. The virtue of this is that when data are listed, particularly in debug- 

ging operations, control as well as graphic characters are visible.
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In BCDIC for example, graphic representations are assigned to seven 
control characters: 

Substitute Blank 

Mode Change 

Word Separator 

Record Mark 

Group Mark 

Segment Mark 

Tape Mark 

Graphic representations have been developed for the 32 control charac- 
ters, for the Space character, and the Delete character of ASCII. 

In Text/360, an IBM programming product for the application of 
text processing, graphic representations have been assigned to the six 
control operations (see Chapter 26, Code Extension): 

* 

< 
+ 

+ 
+
e
2
e
p
s
 

Single capitilization 

@ Continued capitalization 

$ Underscoring 

— Editing 

+ Altering 

/ Graphic set extension 

2.28 COLLAPSE LOGIC 

Consider a 256-character, 8-bit code feeding into a 64-character printer. 
The 64 printing positions of the printing element may be considered to be 
associated with 64 different 6-bit bit patterns. The hardware logic of the 
printer will strip off the two high-order bits of 8-bit bit patterns, leaving 
6-bit bit patterns. For each different 6-bit bit pattern, there will have 
been four different 8-bit bit patterns. 

Consider Fig. 2.33. The four bit patterns X1, X2, X3, X4 have bit 

patterns 0010 1010, 0110 1010, 1010 1010, 1110 1010. If the two high- 
order bits of these 8-bit bit patterns are stripped off, for each of them the 

same 6-bit bit pattern 101010 will result. Each of these four 8-bit bit 
patterns then would collapse to the same 6-bit bit pattern; that is, each 
would go to the same printing position of the printing element. Advan- 
tage is taken of the collapse aspect of coded character sets in the design of 
printing sets.* 

*Collapse logic varies among printer control units. The examples given here are 
illustrative only, and do not necessarily reflect any actual printer control unit.
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Bits 0,1 00 01 10 11 

2,3 

00 01 | 10111 {00 01] 10111] 0001] 10] 11}; 0001) 10} 11 

4567 | 01); 2] 3] 4 5] 6] 7} 8 9| A} B} CD F 

0 |} 0000 

1 

2 

3 
4 

5 

6 

7 

8 

9 

A | 1010 Xi X2 X3 x4 

B 

C 

D 

E 

F 1111.                       
  

Fig. 2.33 Collapse logic 

In EBCDIC, the bit patterns of the small letters a, b, c,...,z differ 

from the bit patterns of the corresponding capital letters only in the two 

high-order bits. On a 64-character printer, therefore, regardless of 
whether the bit patterns of the small letters or the bit patterns of the 

capital letters are fed into the hardware logic of the printer control unit, 
the same alphabetic printing positions on the printing element are 
reached without any change in logic. 

Collapse logic is used. in the printing of alphabets other than Latin 
alphabets. Consider, for example, Fig. 2.34 that shows the assignment in 

the EBCDIC code table of 31 Cyrillic alphabetics, 10 numerics, and the 
following 7 specials: 

+ SX



  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

                                

  

  

  

  

  
  

    
  

  

  

  

  

  

  

  

  

  

  

    

    

cum] oe [+te[e[«le*le|7].e°[*l«lelelelels 
Bit 00 01 10 14 

Pat. 
Row oo | o1 | 10 | 14 | oo | 01 10 | 11 | 00 | 01 10 | 11 | oo | o7 | 10] 11 

0 |o000 SP - H 0 

1 |0001 / A q 1 

2 |0010 5 M ob 2 

3 |0011 B H Xx 3 

4 |0100 c 0 u 4 

5 |0101 A n 4 5 

6 |0110 P Ww 6 

7 fori HK C UW 7 

8 11000 3 T bl 8 

9 11001 u ¥ b 9 

A |1010 

B |1011 n , 0] 

© |1700 * Y 3 A 

D {1101 

E |1110 + 

Fo f14141 

Fig. 2.34 Collapse logic, Cyrillic-48 

cum) ofl atelelelele]7)*lelal[elel°l«]-* 
Bit oo 01 10 11 

Row Pat oo | 01 | 10] 11 | OO} 01 10 | 17 | oo | o1 10 | 11 | oo | o1 | 10] 11 

0 |0000 SP & - 0 

1 {0001 / A J 1 

2 |0010 B K s 2 

3 |0011 Cc L T 3 

4 |0100 D M U 4 

5 {0101 E N Vv 5 

6 |0110 F oO W 6 

7 $0111 G P x 7 

8 |1000 H Q Y 8 

9 |1001 I R Z 9 

A ]1010 

B |1011 Hn > # 

c |1 00 < * % @ 

D |1101 

E |1110 + 

Fo111114                                     
  

Fig. 2.35 Collapse logic, Latin-48 
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Consider also Fig. 2.35 which exhibits a 48-character printing set consist- 
ing of 26 Latin alphabetics, 10 numerics, and the following 12 specials:* 

+ & — / . 

< * % @ 3 # 

An examination of Figs. 2.34 and 2.35 will show the collapse logic for the 

48 printing positions of a 48-character printer as shown in Fig. 2.36. 
With the same printer control unit, the collapse logic will automati- 

cally provide for a 48-graphic Cyrillic set, or a 48-graphic Latin set, 
depending on which printing element is mounted by the user. 

  

  

  

  

  

    

Cyrillic, 48 graphics Latin, 48 graphics 

Fig. 2.34 Fig. 2.35 

Hex Hex 

position Graphic position Graphic 

FO to F9 |10 numerics | FO to F9 {10 numerics 

81 to 89 26 Cyrillic | Cl to C9 | 26 Latin 

91 to 99 | alphabetics | D1 to D9 |alphabetics 

A2 to AY E2 to E9 

5 Cyrillic 5 specials 

8C alphabetics | 4C < 
90 50 & 
AC 6C % 
BB 7B # 
CB 7C @ 

7 specials 7 specials 

4B ’ 4B . 
4E + 4E + 
5B xX 5B » 
5C * 5C * 
60 - 60 — 
61 / 61 / 
6B , 6B , 

TOTAL 48 graphics | 48 graphics       
Fig. 2.36 Cyrillic/Latin collapse 

*The special symbol XY, shown both above and in hex position 5B of Figs. 2.34 
and 2.35, is the international “Currency Symbol.”
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2.29 BOOLEAN EQUATIONS 

In some of the cases that are given in this book, the question of the 
simplicity or complexity of translation relationships from one code to 
another, or from one representation to another, comes up. Generally, the 

question is not of absolute simplicity or complexity but of comparative 

simplicity or complexity. Hardware translation is accomplished by logic 

circuits. The complete analysis of such circuits and the calculation of 
hardware costs, estimated or actual, is beyond the scope of this book. 

However, by making three simplifying assumptions, a reasonably simple 

procedure can be used that is sufficiently accurate to answer the following 

question: 

Given two sets of translation relationships, which set would be more 
complex to implement in circuitry? 

Assumption 1. The circuit complexity is equal to implement each of four 

Boolean operators (to be explained below), AND, Inclusive OR, Exclu- 

sive OR, and IDENTITY. 

Assumption 2. The circuitry that generates a bit also generates the 
inverse of the bit with no additional complexity. 

Assumption 3. Given two sets of Boolean equations representing two 

sets of translation relationships, the relative circuit complexity of imple- 
menting the relationships is proportional to the number of Boolean 
operators in the equations. 

Example 13 

Set 1: Y1I=A&Y one operator, & (to be explained below). 

Set2: Y2=(A&Y)|Z two operators, &, | (to be explained below). 

Set 2 is more complex than Set 1. 

Absolute costs are not determined but relative complexities are; this 
information is sufficient for making a decision between two sets. The 
procedure, then, is to derive the Boolean equations, and then count the 
operators. 

There are different notations and conventions used in Boolean 
Algebra. Some examples are shown below: 

S=AB+CD 

S=A-B+C:D 

S =(A&B)|("C&D) 

S=(A”AB)v(CD)
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The binary, or two-state, nature of many mechanisms found in computing 

systems was noted at the beginning of this chapter. For such two-state 
situations, we might say we have A or we do not have A. Alternatively, 

we might say we have A or the inverse of A. In Boolean logic, we would 
say we have “A,” or we have “not A.’ A convention for representing 

these two possible states is A and A; that is, A represents “not A,” or 
“the inverse of A” or ‘‘the negation of A,” etc. If we consider A as a 

binary variable, it can have two values, 0 or 1. By convention, when the 

variable A has the value of 1, we will represent it by A, and when it has 

the value of 0, we will represent it by A. 

Example 14 

We may represent the three bit positions of a 3-bit register by the 
Boolean variables A, B, and C. Then the 8 possible states of the 3-bit 

register can be represented as follows: 

  

  

State Representation 

000 A BC 
001 A BC 
010 A BC 
O11 A BC 

100 A BC 
101 A BC 
110 A BC 
111 A BC 
  

Example 15 

Another convention is to represent a variable when its value is 1 by the 

presence of the variable and when its value is 0 by the absence of the 

variable. This convention is used in a notation based on the decimal 

equivalents of the powers of 2: 

2°=1 
2'=2 
27=4 
2°=8 

The bit positions of a 4-bit register are represented, from high-order bit 

position to low-order bit position, by the variables 8, 4, 2, 1. Under the
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convention of Example 14, 1001 would have been represented as 8 4 21, 

but under the presence/absence convention, 1001 is represented simply as 

8 1. Under this convention, the 16 states of a 4-bit register are rep- 

resented as shown below: 

State Representation 
  

  

  

  

0000 No bits 

0001 1 

0010 2 

0011 21 

0100 4 

0101 41 

0110 42 

0111 421 

1000 8 

1001 8 1 

1010 8 2 

1011 8 21 

1100 8 4 

1101 841 

1110 8 4 2 

1111 8421 
  

Example 16 

The 8 states of a 3-bit register, Example 14 under the presence/absence 

convention, would be represented as shown below: 

  

  

  

State Representation 

000 No bits 

001 C 
101 B 
011 BC 

100 A 
101 AC 
110 AB 
111 ABC 
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Comment. The convention of Example 14 yields a uniform’ notation, 
while the convention of Examples 15 and 16 yields a compact notation. 

In this book, Boolean equations are used to represent translation 
relationships. Five Boolean operators (frequently called logical operators) 
and their representative symbols are shown below: 

Operator Symbol 
  

AND 

Inclusive OR 

Exclusive OR 

IDENTITY 

NOT V
R
E
 
N
E
 

ll 
¢
<
 > 

In order to define these operators, we consider two binary input variables, 

A and B, and one binary output variable, Y, as illustrated below. There 

are two kinds of operators: (1) dyadic operators; that is, operating on two 
terms or expressions (parts (1-4) above), and (2) monadic operators; that 
is, operating on one term or expression (part (5) above). 

  

  

  

A=——<—P )  Dyadi , 
operator Y Be p 

Monadic - 

A ’ operator >y       
There are two possible states for one variable and four possible states 

for two variables taken together: 

Variable State 

A 1 
A 0 

AB. 00 
AB 01 
AB . 10 

AB 11
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The operators are defined in the following table: 

  

  

  

NOT | AND | Inclusive OR | Exclusive OR | IDENTITY 

A|BIA!Bl|AAB AvB AvB A=B 

Oo|o!l1]1 0 0 0 1 
Oo; 1/110 0 1 1 0 

1/0/10] 1 0 1 1 0 
1; 1;0]{0 1 1 0 1                 

Conceptually, we say 

a) AND means both A and B are 1. 

b) Inclusive OR means either A or B is 1, including the case when both 
are 1. 

c) Exclusive OR means either A or B is 1, excluding the case when 
both are 1. 

d) IDENTITY means A and B are identical; that is, both are 0, or both 
are 1.



3 
Early Codes 

During the early days of data processing and telecommunications, a 
number of codes were in use or proposed for use: 

a) CCITT #2, a 58-character, shifted 6-bit code, used nationally and 

internationally on telegraph lines. 

b) FIELDATA [3.1, 3.2, 3.3]: a 7-bit code developed by the United 

States Army for military communications systems. 

c) BCDIC [3.4]: a 48-character, 12-row code (initially unnamed) used 

on computing systems. This code was eventually expanded to be a 
64-character, 6-bit code and 12-row card code. 

d) The Stretch code: a 120-character, 8-bit code used on the Stretch 

computer (the IBM 7030) [3.5, 3.6]. 

e) IPC, Information Processing Code [3.7]: a 128-character, 8-bit code 

developed by the United States Air Force proposed to be used for 
information processing and information interchange. 

f) A 64-character, 6-bit code proposed by H. S. Bright in 1959 [3.8]. 

g) A 256-character card code proposed by R. W. Bemer in 1959 [3.9]. 

h) 4-out-of-8 code: a 70-character, 8-bit data transmission code. 

These early codes manifested some of the characteristics of coded charac- 

ter sets described in Chapter 2. Some of these characteristics would be 
carried forward and incorporated into modern codes. It should not be 

supposed that these early codes have disappeared from the data proces- 
sing scene. Products and systems implementing these codes (with the 

61
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exception of IPC) are still in common use. Figure 3.1 shows the codes and 
their characteristics. 

CCITT 
#2 

Fiel- 

data BCDIC Stretch IPC 

Bright 

Proposal 

Bemer . 

Proposal 

4-out- 

of-8 

  

Shifted code yes 
  

BCD for 

numerics yes yes yes yes yes yes 
  

Numerics in 

numeric 

sequence yes yes yes yes 
  

Numerics in 

contiguous 

sequence yes yes yes yes 
  

Signed 

numerics yes yes 
  

BCD for 

alphabetics yes yes yes yes 
  

Alphabetics in 

alphabetic 

sequence yes yes yes yes yes 
  

Alphabetics in 

contiguous 

sequence yes yes yes 
  

Alphabetics in 

noncontiguous 

sequence yes yes yes yes yes 
  

Alphabetics in 

interleaved 

sequence yes yes 
  

Space equals 

no punches yes yes yes 
  

Collapse logic       yes   yes   yes         

Fig. 3.1 Characteristics of early codes 

3.1 CCITT #2 

CCITT #2 was, and is, a 58-character, shifted 6-bit code, standardized as 

an international telegraph code in 1931 by the Comité Consultatif Inter- 
national Telegraphique et Telephonique (see Fig. 3.2).
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Bit Letter Figure Bit | Letter Figure 
pattern case case pattern ~ case case 

00000 Not used Not used 10000 E 3 
00001 T 5 10001 Z + or” 

00010 Cr Cr 10010 D (2) 
00011 O 9 10011 ~B- ? 

00100 SP. SP 10100 S ' 
00101 H (1) 10101 Y 6 

00110 N , 10110 F (1) 
00111 M . 10111 x / 

01000 LF LF 11000 A _ 
01001 L ) 11001 WwW 2 

01010 R 4 11010 J Bell 
01011 G (1) 11011 FS FS 

01100 I 8 11100 U 7 
01101 P O 11101 Q 1 

01110 C 11110 K ( 
01111 Vv =Or; 11111 (3) LS LS             

(1) For National Use CR Carriage Return 
(2) Used for Answer Back 
(3) Also used for Delete 

Fig. 3.2 CCITT #2 

SP Space 
LF Line Feed 

FS Figure Shift 
LS Letter Shift 

Figure 3.1 reveals that CCITT #2 manifests few of the characteris- 

tics of the other codes, characteristics deemed desirable for data proces- 

sing codes. The numerics are not BCD, nor contiguous, nor in numeric 

sequence; the alphabetics are not in alphabetic sequence, and so on. But 

it should be realized that CCITT #2 was developed as a telegraph code, 

and characteristics desirable for a data processing code have little impor- 

tance for a telegraph code. 

CCITT #2 did manifest a characteristic that is quite necessary for 
data processing codes and for telecommunication codes. Three code 

positions were reserved for “national use.” This recognizes a characteris-
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tic of certain European languages (German, Danish, Swedish, Finnish, 

Norwegian, for example) which is that such languages have three letters 
in addition to the 26 alphabetics of English-speaking languages (see Table 
3.1). Such letters are called diacritical letters, or diacritics. 

TABLE 3.1 Diacritical Letters 
  

German AOU 

Danish/Norwegian £@ A 
Swedish/Finnish AOU 
  

Clearly, telegraph devices operating within national boundaries of 

countries whose languages require 29 alphabetics would have to have the 

capability of sending and receiving all 29 letters. The telegraph code, 
then, must have code positions available for 29 letters and CCITT #2 

does. 
In English-speaking countries, such code positions could be used to 

represent other symbols. In the U.S.A., on Western Union telegraph 

devices, for example, the symbols # $ and & were provided in these three 

code positions. 

3.2 FIELDATA 

FIELDATA was a 7-bit plus parity code developed by the United States 
Army for use on military data communications lines. It became a U.S. 

Military Standard in 1960 (see Fig. 3.3). 
It is to be noted that although there are 128 code positions in the 

7-bit code, only 64 were defined, consisting of 9 control functions and 55 

graphic characters. The controls are of the kind required by rather simple, 

typewriter-like devices—Space, Upper Case, Lower Case, Line Feed, Car- 

riage Return, and so on. The 64 undefined code positions were intended to 

be assigned to the more complex kinds of functions necessary for inter- 
connection and control of data transmission networks. 

As it turned out, three different communications systems were de- 
veloped implementing FIELDATA, and each of these three systems used 

different control functions in the “not defined’? portion of the code 
table—different in the sense of technical definition and different in the 

sense of the number of control functions. It was found that because of 

these different control functions interconnection of these three communi- 

cation systems, and intercommunication between them, was difficult or 

impossible.



  

  

            

  

  

  

  

  

  

  

  

  

  

  

  

  

  

        

  

  

  
  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

            

3.2 FIELDATA 65 

Column 3 4 5 6 7 

Bit b7 0 1 1 1 1 

Pattern b6 1 0 0 1 1 

b5 0 1 0 0 1 

Row b4 b3 b2 b1 

0 0000 K ) 0 

1 0001 L _ 1 

2 0010 M + 2 

3 0011 N < 3 

4 0100 0 =a 4 

5 0101 P > 5 

6 0110 Q 6 

7 o111 R 5 7 

8 16.00 s * 8 

9 1001 tr ( 9 

10 1010 U " t 

1 1011 Vv : ; 

12 1100 W 2 / 

13 1101 x \ . 

14 1110 Y ; SPEC 

15 1111 Zz STOP | IDLE 

MS - Master Space SP =~ Space 

UC - Upper Case STOP - Stop 

LC - Lower Case SPEC - Special 

LF - Line Feed IDLE - Idle 

CR ~ Carriage Return 

Fig. 3.3 FIELDATA 

A valuable lesson was learned here. For various reasons, it may be 

desirable not to complete the assignment of meanings to all code posi- 

tions of a code table initially. For example, the American National 
Standard Code for Information Interchange (ASCII), when first standar-
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dized in 1963, left some 28 code positions without assigned meanings. 
And when the extended BCD Interchange Code (EBCDIC) was adopted 
as an internal standard by IBM in 1964, of the 256 available code 
positions, only 108 code positions had assigned meanings. Indeed, at this 
time (almost a decade later) there are still many code positions in 

EBCDIC with unassigned meanings. However, in the administration of 
these standards, ASCII and EBCDIC, implementors were advised to 
provide implementations which did not assign meanings to those code 
positions without already assigned meaning. These code positions were 

reserved for future standardization. For FIELDATA, implementors pro- 

vided implementations with their own local meanings for those code 
positions not initially assigned. The result was inter-implementation con- 
fusion. The disciplined administration of ASCII and EBCDIC prevented 
such confusion. This point of administrative discipline will be discussed 
below with IPC, Information Processing Code. 

3.3 BCDIC 

With modern codes, such as ASCII and EBCDIC, it is common practice 

to provide implementations which use not the full repertoires of the codes 

but subsets, subsetted by graphics, or by controls, or by both. By contrast, 
the code that came to be called the BCD Interchange Code (BCDIC) 

evolved from a smaller repertoire to a code with a complete repertoire. 

(The evolution of BCDIC is described in detail in the next two chapters.) 

The punched card code devised by Dr. Herman Hollerith at the end 
of the nineteenth century was a 12-character code consisting of the 10 
numerics, 0 through 9, and two control characters in what are now the 

12-row and the 11-row of the card. In the statistical applications of the 
United States Census—for which Dr. Hollerith devised the punched 
card—these control punches served many purposes. When punched cards 
came to be used in accounting applications, the 11-punch came to be used 
to represent a credit balance (mathematicians would call it a negative 
number). 

Somewhere around 1932, the punched card code was expanded to 

include 26 alphabetics and three special symbols—minus sign, asterisk, 
and ampersand. The minus sign had replaced the credit symbol, asterisk 
was used for check protection, and ampersand was used in name-and- 

address applications (Mr. & Mrs. J. L. Smith, for example). The punched 
card code for these 39 graphics and space is shown in Fig. 3.4. 

During the 1950s, the advent of computers such as the IBM 702, 

705, and 1401 saw the expansion of BCDIC into 47 graphics, and also 

the development of a 6-bit code to represent these graphics. With one
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Patern ed 

Hole : 

Pattern—> 0 Wo . 12 

‘ 

SP - & 

1 i J A 

2 2 s K B 

3 3 T L Cc 

4 4 U M D 

5 5 Vv N E 

6 6 W 0 F 

7 7 x P G 

8 8 Y Q H 

9 9 z R T 

0 0 

8-4 * 
  

  

                  
Fig. 3.4 BCDIC, 40-character card code 

exception, the 11 special symbols served an obvious purpose in one or 
another commercial application: 

'$,#%-&*/ x 

The exception was the special symbol, 1. (lozenge). Because the lozenge 
appeared on printer chains, it was put to various uses; for example, to 

indicate, in the margin of a tabulation, final totals as contrasted to 

subtotals. 

The 48-character BCDIC is shown in Fig. 3.5. 

3.4 THE STRETCH CODE 

In 1961, the IBM 7030 was delivered to the Los Alamos Scientific 

Laboratory. This computer was developed under “‘Project Stretch,” and 

this name was popularly used to describe this computer.
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Bit 
Pattern A 8 BA 

Hole 

Pattern—¥ 0 41 12 

¥ 

SP - & 

1 1 1 / J A 

2 2 2 8 K B 

21 3 3 T L Cc 

4 4 4 U M D 

44 5 5 Vv N E 

42 6 6 W 0 F 

421 7 7 x P G 

8 1 9 9 z R I 

8 2 0 0 

8 21 8-3 # , $ 

84 8-4 @ x * ty 
  

  

                  
Fig. 3.5 BCDIC, 48-character code 

There were many technological innovations in Stretch. Architectur- 
ally, its main innovation was that it had an 8-bit architecture, as con- 
trasted with the 6-bit, or 6-bit oriented, architectures of other computers 

of the time. With an 8-bit architecture, a 256-character code is possible. 
In fact, the designers of Stretch chose to provide a 120-character set that, 
apart from its size (most computer character sets of that day were 

48-character sets), had some interesting innovations. 
The codes for contemporary computers of that time had evolved 

from earlier beginnings and compatibility was the primary design criter- 

ion. The designers of the Stretch code, E. G. Law, H. J. Smith, Jr., F. A. 

Williams, W. Buchholz, and R. W. Bemer, did not perceive compatibility 
with contemporary codes to be a primary criterion. Instead, they them- 

selves set some criteria that they felt were reasonable for a code. The 

criteria were in regard to the size and structure of the set. The criteria are 
first stated, and then some of them are discussed.
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3.4.1 Size 

Criterion 1. The set should contain the contemporary 48-graphic set 

ound on IBM computers: 

 =Space 

! 26 alphabetics (upper case) 

8 10 numerics 

© 11specias .°’ &%(-/,$#u 

Criterion 2. The set should contain the following graphics: 

# 26 lower case alphabetics 

= The more important punctuation symbols found on_ office 

typewriters yb hb 

® Enough mathematical and logical symbols to satisfy the needs of such 
programming languages as ALGOL. (The total ALGOL set was well 

over 100 symbols.) 

3.4.2 Structure 

Criterion 3. Certain subsets, such as the contemporary 48-character set 
tor high-speed chain printer printing and an 88-graphic set for a typewri- 
ter, should be simply derivable. 

Criterion 4. The graphics should be blocked contiguously by function; 
viz., the specials should be in a contiguous block, the alphabetics should 
be in a contiguous block, the numerics should be in a contiguous block, 
and so on. 

Criterion 5. The binary sequence of the bit patterns representing the 

graphics should match whatever collating sequence was prescribed for the 
graphics. 

Criterion 6. The 48 graphics of contemporary IBM computer codes 
should have, in the Stretch code, the same collating sequence, or should 
be embedded in the same relative collating sequence, as the contempor- 

ary collating sequence, namely, Space, then the specials. H& $* —/, 

% # @then the alphabetics, then the numerics. 

Criterion 7, The upper and lower case alphabetics should be inter- 

leaved. 

Criterion 8. There should be unique bit patterns for each unique 

graphic; that is, duals would not be permitted.
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As well as these criteria, there was a constraint on the size of the set. The 

theoretical constraint was a maximum of 256 characters, since the byte 
size of Stretch was to be 8 bits. But there was a more pragmatic constraint 
due to the printer to be used with Stretch, the chain printer. The chain 
printer, due to its design geometry, had 240 printing positions; so this was 
clearly the maximum possible set size. However, as a practical considera- 
tion, the larger the set size, the lower is the printing speed of the chain 
printer. The actual choice was 120 charaeters. This was a matter of 
judgment; it was decided that this increment over existing sets would be 
sufficiently large to justify a departure from contemporary codes and 
would not include many characters of only marginal value. Also, the set 

size of 120, in terms of the 240 printing positions of the chain printer, 
meant that each symbol could appear twice on the chain, yielding a not 
unreasonable printing speed. 

The actual character set and the coded representation is shown in 
Fig. 3.6. It is evident from inspection of the code that not all criteria were 
met. In fact, the criteria were somewhat mutually conflicting, and some 

trade-offs were necessary. 

  

  

Column 0 | 1 | 2 | 3 4 [ 5 | e | 7 8 | 9 | A | B c | D | E F 

  

00 01 10 11 oo o1 10 17 00 01 10 11 00 01 10 71 
Row 
  

0 |o000] sp [ & c k 8 0 8 
  

1 0001 > + Cc K s 0 8 4
 

  

2 ;o010} + 7 $ d 1 t 1 9 
  

  

  

  

  

  

  

  

3 [0011 z ° a D L T 1 9 

4 [01007 a + * e ma u 2 

BS joint f = ( E M U 2 

6 jo110] + 7 / f n v 3 - 

7? |o1aad } v ) F N Vv 3 2 

8 |1000f y % ; g ° Ww 4 

© j1001) y \ ; G 0 W 4 

A ji010} + | © ' h Pp x 5 
  

a |to17] Il I " H P x 5 
  

c |11007 5 # a i qd y 6 
  

  

  

D j17101 > ! A I Q Y 6 

E ]19707 © @ b 5 r Zz 7 

Fojatip og | ~ Bi rc} R/| zl] 7                                         

Fig. 3.6 Stretch, 120-character set
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Comment on Criterion 6 

The contemporary collating sequence for the 47 graphics provided on 
contemporary computers was not achieved. In order to provide an 
89-graphic subset and a 49-graphic subset derivable by simple logic 
(Criterion 3), the specials had to be positioned somewhat arbitrarily 

(see Figs. 3.7 and 3.8), and this was deemed more advisable than the 

collating-sequence criterion. Nine of the contemporary specials did col- 
late low to alphabetics and numerics, although even these were not, 
within themselves, in the contemporary collating sequence. It was felt that 
the new sequence would be quite usable and that it would be necessary 
only rarely to resort a file in the transition to the Stretch code. And it is 
always possible to translate codes to obtain any desired sequence. 

Comment on Criterion 3. 

As can be seen in Figs. 3.7 and 3.8, both the 49-graphic subset and 
89-graphic subset were simply derivable from the 120-graphic code. 

  

  

  

  

  

  

    
  

  

  

  

  

  

  

  

  

  

  

                                

Column of af 2] 3 a{s|s6 [7 e[oef[ale c | ole | fF 

Bit 00 91 10 11 

Pat. "| 
00 01 10 11 oo | 01 10 11 00 | 01 10 11 oo | 01 10 11 

Row 

0 |o000] SP & 0 8 

1 {0001 Cc K S 

2 |oote $ 1 9 

| 3 }0011 D L T 
b— 

4 |0100 * 2 

6 {07101 E M U 

6 ;0110 / 3 - 

7 ]o114 F N Vv 

a [1000 % ; 4 

9 1001 G 0 W 

A |1010 > ' 5 

B {1011 H P xX 

c 11100 # 6 

p |1101 A I Q Y 

E [1110 @ 7 

F 11117 B J R Z         
‘ig. 3.7. Stretch, 49-character set
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Column 0 | 1 | 2 | 3 4 iz [ 6 7 & 9 a | 8 c D E F 

Bit | a0 a1 10 11 

Pat. "| 
  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

Row oo | 01 10 11 oo | o1 yo | a1 oo } 071 10 | 11 oo | 01 10 11 

@ j00007 gp & ¢ k 8 0 8 

1 ooo1 + Cc K s 0 8 

2 0010 $ d 1 t l 9 

3 [0071 = D L T 1 9 

4 [0100 * e m u 2 

5 {0101 ¢ E M U 2 

6 |0110 / £ n v 3 ~ 

7 {0111 } F N Vv 3 ? 

8 10006 > g ° wW 4 

9 [1001 ; G 0 W 4 

A |1010 ‘ h P x 5 

B 11011 " H P xX 5 

c 11700 a L q y 6 

D {1101 A I Q Y 6 

—e [tite b 3 r z 7 

Fo [1111 B J R Z 7                                         
Fig. 3.8 Stretch, 89-character set 

Note that the 49-graphic set included the contemporary 48-graphic 
set (see Criterion 1) and additionally had the graphic apostrophe or 

single quote. The provision of a 48-graphic-plus-Space set fitted neatly 

into the geometry of the 240-printing-position chain printer: 5 x 48 = 240, 
Each graphic was provided in 5 printing positions, yielding very respecta- 
ble printing speeds. 

Note that the 49-graphic set is not entirely a subset of the 89-graphic 
set. Note also that it was found not practical to retain the upper- and 
lower-case relationships of punctuation and other special symbols com- 
monly found on typewriter keyboards. (There was no single convention 

anyway, and typists were accustomed to finding differences in this area.) 

Comment of Criterion 7 

The benefit of interleaving upper- and lower-case alphabetics is dubious. 

(For a fuller discussion of this point, see Chapter 25, Contiguous, Non- 
contiguous, and Interleaved Alphabets.) However, once it is decided to 
interleave the alphabets, as was done in the Stretch code, a further
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decision is necessary: Which alphabetic should precede within the pair, 
the upper-case or the lower-case? The designers of this code had ob- 
served that no real precedent existed for the relative position within the 
code. But the choice had to be made. They chose that lower case should 
precede upper case within the pair, for reasons not known to the author. 

It is interesting to note that had they made the other choice, so that 
“A” had bit pattern 0010 1100 and “a” had bit pattern 0010 1101, for 
example, the derivation of the 49-character subset (Fig. 3.7) from the 

120-character set (Fig. 3.6) would have been logically simpler. Observe 
that in Fig. 3.7 the specials chosen alternate in code position with those 

not chosen and the same is true for the alphabetics and the numerics. 
However, two code positions intervene between the last special and the 
first alphabetic, and no code position intervenes between the last alphabe- 
tic and the first numeric. The logical equations to describe the choice of 
code positions are somewhat complex because of the double gap and the 
null gap. Had the opposite choice been made in assigning upper- and 
lower-case alphabetics, both anomalies would disapppear, and the logical 
equations would have been quite simple. It should also be noted that this 
latter choice would not have affected the derivability of the 89-character 
subset, since the 52 alphabetics would still occupy the same contiguous 52 
code positions. 

It is interesting that in the design of IPC, Information Processing 
Code, described below, where the designers also chose to interleave the 
upper- and lower-case alphabetics, the decision was that upper-case 
should precede lower-case alphabetics within the pair. 

In conjunction with the Stretch bit code, there was a punched card 
code. The bits of the code were named BO, Bl, B2,...,B7, from 

high-order to low-order significance within the byte. A parity bit, odd 

parity, named Bp was also punched. The card code (see Fig. 3.9) was a 

binary card code, specified by the following algorithm: 

Card Row Code Bit 
  

12 — 
11 — 

0 — 

1 Bp 

2 BO 
3 Bl 
4 B2 
5 B3 
6 B4 
7 BS 
8 B6 
9 B7
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EXT CHAR SET 1 
i ECS Card ' oust 
i Identification i 

Bit] o000 08 CODD DO ONDDNOOHDDTODDDDDNDNODOCDDODDODDD DONNA DODO DDONND DOOD ggonncoogegan 
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Fig. 3.9 Cards punched with extended character code 
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In order to distinguish cards with this binary punching from cards 

punched with the conventional Hollerith card code, binary punched cards 
had 12-holes and 11-holes punched in column 1. Within an application, 

conventional Hollerith card code punching could be used in the right end 
of such cards, as shown in Fig. 3.9. The Space character, having no bits in 
the code, would nevertheless have a parity bit punched in row 1. 

However, skipped fields would have no punches, as can be seen in the 
lower card in Fig. 3.9.
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As in discussed in Chapter 16, “Decimal ASCII,” the structural 

strength of a card punched in binary came under serious question 

particularly if most of the data was numeric (which would lead to one or 
more rows being laced because of the zone bits in the representation of 
the numerics). It should be noted that the question of binary card coding 
in the Decimal ASCII debate was considered in the environment of an 
individual card, mailed to a human, carried by the human in a pocket in 
varying conditions of humidity, temperature, and abuse, and subsequently 

required to be further processed in card equipment. By contrast, the 
normal environment for a Stretch card was much more protective— 

generally a deck of cards, handled with reasonable care in a machine 
room environment. The binary card discussed in Chapter 16 was expected 
to be subjected to structural stress, the Stretch card was not. 

3.5 IPC 

IPC, Information Processing Code, was developed by Edward Morenoff, 
John B. McLean, and Lt. Lawrence Odell in 1964. It was intended as an 

information manipulation-oriented character set with associated binary 

code representation. The author does not know if it was actually im- 
plemented, but it has some interesting aspects. The design criteria were 
somewhat similar to those of the Stretch code. 

Criterion 1. The set should contain the following graphics: 

= = Upper- and lower-case alphabetics 

= =€6©=Numerics 

= §=6The more important punctuation symbols found on office typewriters 

2?" 3 

= Special symbols peculiar to user operations. 

Criterion 2. Certain subsets, 7-bit, 6-bit, 5-bit, 4-bit, should be easily 

derivable. 

Criterion 3. Code positions should be provided that would be dedicated 
to local interpretation. 

IPC was an 8-bit code. However, only 128 characters were specified, 

and the use of the 8th bit was deliberately left undefined for specification 

in local environments on the basis of particular applications. For example, 

the 8th bit might be used as a parity bit to increase the reliability of data 

transmission. Or it might be used to indicate that some special signifi- 
cance should be attached to a particular character, such as being part of a 
“keyword,” or a part of a highly sensitive piece of information. Since the
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Column 0 1 2 3 4 5 6 7 

Bit b7 | 0 0 0 0 1 1 1 1 
ramen as 0 0 1 1 0 0 1 1 

bB 0 1 0 i 0 1 0 1 

Row b4 b3 b2 b1 

0 0000 0 c K s ( a r 3 

1 0001 1 ce k 8 \ x % 2 

2 0010 2 D L T ? B < ® 

3 0011 3 d 1 t # ly ) 

4 0100 4 E M U ° = > Bk, 

5 0101 5 e mn u / - % Bk, 

6 0110 6 F N v v o | Bk, 

7 0111 7 £ n v f + Bk, 

8 1000 8 G 0 W * 8 . 

9 1001 9 g ° Ww ) ; 4 Cy 

10 1410 SP H P X . @ o Cy 

11 1011 RES h P x > x > C3 

12 1100 A I Q Y Tt " K C, 

13 1101 a t q y _ ' “ Ce 

14 1110 B J R Zz w $ C Ce 

15 1111 b 4 x z + ¢ J Cy                         
Fig. 3.10 IPC, 7-bit subset 

8th bit is undefined, the code is shown in a 7-bit representation (see Fig. 

3.10). The names of the graphics and control characters are given in 

Table 3.2. 

As with the Stretch code, IPC has the upper- and lower-case 

alphabetics interleaved. And as with the Stretch code, a decision had to
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TABLE 3.2. IPC, special graphics and controls 
  

( Left parenthesis "Quotes 
! Exclamation > Apostrophe 

? Question $ Dollars 
# Numbers ¢ Cents 
° Degrees >» Summation 
/ Slash 1/4 One quarter 

* — Asterisk <= Equal or less 
) Right parenthesis 1/2 One half 

Period = Equal or greater 
, Comma 3/4 Three fourths 

a Pi «© Infinite 

— Minus ) Arrow (down) 
w Omega @ Theta 

+ Plus t Arrow (up) 
a Alpha ob Phi 
xX Multiply — Arrow (right) 
B Beta kK Kappa 
+ Divide <— Arrow (left) 

= Equals ] Right bracket 
- Dash { Left bracket 

V¥ Square root > Cubed 
§ Integral ? Squared 
: Colon Escape code #2 
; Semicolon (E] Escape code #1 

@ At Bk; Blank key #i 
X Box —x * Center dot 

CG, Control #i 
  

be made on which should precede within the pair. The IPC designers 
chose that upper case should precede lower case, so that proper nouns 

would collate ahead of common nouns. For example, Jack 

0011110, 0001101, 0010001, 0100001 

collates ahead of jack 

0011111, 0001101, 0010001, 0100001. 

The most interesting aspect of IPC is the design philosphy of Criter- 
ion 3—local interpretation. In the design of ASCII, described in later 

chapters, a set of control characters was defined to include several types 
of input/output equipments, thus forming a general set, which must of 

necessity have more characters than the set contained in IPC that is 
interpreted differently for different equipments.
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Example 

The seven control characters could be locally interpreted as follows: 

Cl backspace C5 Stop underline 

C2 Unformatted tab C6 Carriage return 
C3 Formatted tab C7 End of message 

C4 Start underline 

  

  

    
  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

Cofumn 0 1 2 3 4 5 6 7 

Bit b7 40 0 Q 0 1 1 1 1 
Paseo b6 0 0 1 1 0 0 1 1 

b5 0 1 0 1 0 1 0 1 

Row b4 b3 b2 b1 

0 6000 0 Cc K s 

1 0001 1 c k s 

2 00310 2 D L T 

3 0011 3 d 1 t 

4 0100 4 E M U 

5 0101 5 e m u 

6 017110 6 F N Vv 

7 011471 7 £ n Vv 

8 1000 8 G oO W 

9 1001 9 g ° w 

10 1010 SP H P xX 

11 1011 RES h P x 

12 1100 A t Q Y 

13 1101 a 1 q y 

14 1110 B J R Z 

15 11141 b j r Zz                         
Fig. 3.11 IPC, 6-bit subset
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Contained within the set were four positions with unassigned meaning 
and corresponding to two “blank keys’? on a keyboard. Thus there are 

two upper-case and two lower-case characters available for local interpre- 

tation. 
As stated under Criterion 3, subsets should be simply derivable. By 

dropping the high-order bit, a 6-bit subset is derived (Fig. 3.11). It 
contains numerics, upper- and lower-case alphabetics, Space, and the 

reserved code for local use. 
  

  

    
  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

Column 0 1 2 3 4 5 6 7 

Bit b7| 0 0 0 0 1 1 1 1 

Pacer b6 0 0 1 1 0 0 1 1 

b5 0 1 0 1 0 1 0 1 

Row | _b4 b3 b2 b1 

0 0000 UN c K S 

1 0001 

2 0010 UN D L T 

3 0011 

4 0100 UN E M U 

5 017101 

6 0110 UN F N Vv 

7 01171 

8 1000 UN G 0 W 

9 1001 

10 1010 SP H P x 

11 10771 

12 1100 A I Q Y 

13 117101 

14 1110 B J R Z 

15 71177                         

UN - Unassigned 

Fig. 3.12 IPC, 5-bit subset
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Column 0 

Bit b7 
Pattern b6 0 

b5 

Row b4 b3 b2 b1 

0 0000 0 

1 0001 I 

2 0010 2 

3 0011 3 

4 0100 4 

5 0101 5 

6 0110 6 

7 0111 7 

8 1000 8 

9 4001 9 

10 1010 UN 

11 1011 UN 

12 1100 UN 

13 1101 UN 

14 11710 UN 

15 11141 UN 

. . UN - Unassigned 

Fig. 3.13 IPC, 4-bit subset 

By dropping the highest- and lowest-order bits, a 5-bit subset is 
derived (Fig. 3.12). It contains upper-case alphabetics, Space and five 
“unassigned” characters. One of these unassigned characters could be 
used to indicate either upper- or lower-case representation. 

By dropping the three highest-order bits, a 4-bit subset is derived 
(Fig. 3.13). It contains the numerics and 6 “unassigned” characters for 
local interpretation. 
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Pater oo 01 10 114 

y 

0000 0 + _ b 

0001 1 A J / 

0010 2 B K S 

0011 3 C L T 

0100 4 D M U 

0101 5 E N Vv 

0110 6 F 0 W 

0111 7 G P x 

1000 8 tl Q Y 

i001 9 I R Z 

1010 wu e Y d 

1011 = $ : 

1100 > ) * ( 

1101 = + < > 

1110 n j [ = 

1111 ; u : n 

“ — OR u - Up Shift 

m - AND b - Space 

e - End of line, end of card, d - Down Shift 

or carriage return n - Null 

Fig. 3.14 Early 64-character proposal 

3.6 AN EARLY 64-CHARACTER CODE PROPOSAL 

In a Letter to the Editor, Communications of the ACM, 1959 May, H. S. 

Bright proposed a 64-character, 6-bit code. At that time, most printing 

and keypunching equipment was limited to 47 or 48 characters. The 
proposed code is shown in Fig. 3.14. 

It is structurally compatible with BCDIC (Fig. 3.5). The sequence of 
the code table columns containing the alphabetics has been reversed from 
BCDIC, so that the alphabetics are in relative collating sequence. Oddly 
enough, Space, which traditionally collates low to numerics, alphabetics, 

and specials, was not assigned to the bit pattern 000000. This was 

undoubtedly done so that zero could be given bit pattern 000000, so that 

the numerics would be in relative collating sequence.
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3.7 AN EARLY 256-CHARACTER CARD CODE PROPOSAL 

In 1959 September, R. W. Bemer proposed a “Generalized Card Code 
for 256 Characters.” At that time, as stated previously, character 

sets provided on printers and keypunches were mainly limited to 48. 

As described earlier in this chapter, Project Stretch was started in 
IBM in 1954. It was a project to develop a bigger and faster computer‘ 

than any then in the field. One decision made was that Stretch would 
have an 8-bit architecture, in contrast with most computers of that time 
which had a 6-bit, or 6-bit oriented, architecture. 

R. W. Bemer, therefore, foresaw the need for a 256-character card 

code. The card code he proposed was not, in fact, adopted by Stretch, but 

it has many ingenious aspects. The card code set had criteria for design. 

Criterion 1. The new set must contain the existing 48-character set as a 
subset, with exactly the same graphic—to—hole-pattern relationship. 

Criterion 2. The new set should contain at least 256 combinations and 

be expansible beyond this number. 

Criterion 3. Meanings need not initially be assigned to all hole patterns. 

Criterion 4. The hole patterns should be structured, if possible, on 
existing zone punch/digit punch hole patterns. 

Criterion 5. Hole patterns should be constructible and reproducible on 
existing keypunches (for example, the 024 or 026). 

Criterion 6. There should be no duals. 

Criterion 7. ALGOL characters should be included. 

Criterion 8. Characters not in the current IBM set or ALGOL set, but 

used by other manufacturers, should be included. 

Criterion 9. There should be a simple relationship between upper- and 
lower-case alphabetic hole patterns. 

There are 322 possible combinations of no more than four punches 
per card column, when no more than two may be zones (12, 11, 0) and no 

more than two may be digits (1 through 9). Figure 3.15 shows the 256 of 
these that remain when all combinations with two-digit punches contain- 
ing a 1-punch and ten other combinations are excluded. The figure also 

shows assignment of both old and new graphics to hole patterns. 

An ingenious aspect of this proposal is that each of the hole patterns 

may be constructed in a card column by superimposing the hole patterns 
for two of the alphameric characters in current use. These two characters 

are chosen for their mnemonic content. Thus [ is represented mnemoni- 
cally by LB (for Left Bracket) and is constructed of the hole pattern 11-3,
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Fig. 3.15 A 256-character card code proposal M Mnemonic 

Zone 

Punches 12 11 0 12-11 11-0 0-12 

Digit 

Punches] G | M/ G M G M |G M G M G M |G M 

SP + le |—- |-|o 0 | & —~+/6 | o-Jo +0 
1 1 T/A A J J / / a —A | j OJ 

2 2)}2/8 B K K 1S S b —B |k OK | s +S 

3 3 |} 3/C Cc L L | T T c —C {I OL |t +T 

4 4);4]D D M MIU U d —Dim OM | u +U 

5 5|}5/E E N N | Vv Vv e —-Eln ON | v +V 

6 6 | 6 ]F F 0 o};}w wi] ft —F lo 00 | w +W 

7 7|71/G G P P Xx x g —Gip OP | x +X 

8 8 |8]H H Q Q|yY Y h —-H{q oo ly +Y 

9 9}9]4 | R R |Z Z i —I lr OR | z +Z 

2-3 \ [ LB = LS | ; sc 

24 RX _ US 
2-5 

2-6 N switch | SW] bool BO 

2-7 Nii BG stop | SP | O BX 

2-8 SX + SY JV sa 

2-9 S ] RB | = RS 

3-4 QO A LM comm | CM ~ TD 

3.5 MM ¢ | CE < LE |10 | TN 
3-6 QQ V LO co |< LW 
3-7 ( LP proc | PC complex | CX 

3-8 # | #]. . $ $ > ’ 

3-9 oO cl | < LR cr CR |A TR 

4-5 } ND | # UN 

4-6 t UW] do DO 1 DW 

4-7 ° DG| + PM dbl pr | DP 

A8 @;} @| x ma] xX * % % " ba |’ Qu 

4-9 = ID \ RD 

5-6 “7 NO ¥ EO 

5-7 2 GE EP 

5-8 € EH = EQ 

5-9 ifei | IE return | RE | | VR 

6-7 goto | GO 

6-8 Ye HF 

6-9 ? IF orif | OR for FR | > RW 

7-8 

7-9 ) RP > GR 

8-9 % QR array| RY | :% IY 

G Graphic 

83 

for L, and 12-2, for B. Therefore, the hole pattern chosen to represent 

Left Bracket is 12-11-2-3. Fig. 3.16 shows the derivation of the 
mnemonics chosen for new graphics. 

Some ALGOL words were arbitrarily assigned to single graphics: 

If is assigned to ? 

BEGIN is assigned to { 

END is assigned to } 

INTEGER is assigned to #
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Mne- Mne- 

Graphic monic Symbolizing Graphic monic Symbolizing 

+ + ’ ’ 

Xx * : Sc SemiColon 

/ / : co COlon 

\ RD Reverse Divide ! EP Exclamation Point 

+ PM Plus or Minus ‘ Qu QUote 

J sa SQuare root " Da Double Quote 

= EQ EQuals = LS Left Substitution 

# UN UNequals =: RS Right Substitution 

> GR GreateR 10 TN base TeN 

= GE Greater or Equal ] RB Right Bracket 

< LE Lesser or Equal ( LP Left Parenthesis 

< LR LesseR ) RP Right Parenthesis 

~ TD TilDe [ LB Left Bracket 

| NO Not t UW Up arroW 

Vv LO Logical Or 4 DW Down arroW 

A LM Logical Multiply < LW Left arroW 

Vv EO Exclusive Or > RW Right arrow 

= ID IDentical to { BG BeGin 

} ND eND 

¢ CE CEnts [ VR VeRtical 

Ye OR one QuarteR A TR TRiangle 

Ye HF one HaLf oO BX BoX 

cr CR CRedit oO Cl Circle 

° DG DeGree _ US UnderScore 

oo lY InfinitY procedure PC ProCedure 

go to GO GO to switch SW SWitch 

do DO DO array RY aRraY 

return RE REturn comment CM CoMment 

stop SP StoP integer # 

for FR FoR boolean BO BOolean 

or if OR OR if complex CX CompleX 

if either IE If Either double pr DP Double Precision             

Fig. 3.16 Minemonic derivations for characters 

Other words could be assigned to single graphics: 

Record Mark + and Group Mark + were assigned to existing hole 
patterns 0-8-2 and 12-8-5, respectively. The mnemonics chosen, SY and 

EH, are not of course mnemonics for Record Mark and Group Mark, but 

COMMENT could be assigned to ” 

STOP could be assigned to ! 

RETURN could be assigned to <— 

are mnemonics for the appropriate hole patterns for keypunching: 

S, 0-2 

E, 12-5 

Y, 0-8 

H, 12-8 

SY, 0-8-2 

EH, 12-8-5 
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Column o | 1 | 2 | 3 4 L 5 6 | 7 8 | 9 | A | B c | o | E | F 

Bit 00 01 10 11 

Pat. 
00 01 10 11 oo | 01 10 11 oo | 01 10 11 00} 01 10 11 

Row ' 

0 j|0000 SP 

1 }0001 A / J l 

2 10010 B Ss K 2 

4 {o100 D U M 4 

ae TL CL E 5 v N 

6 10110 < [ F 6 W 0 

7 [0111 7 xX P G 

8 |1000 H Y Q 8 

INQ 9 |1001 IDLE ErR| | 9 Zz R 

A |1010 \ a ? 0 $ ! 

8B {1011 # ; s 

c |1100 $ 7 u @ 4 * 

pb [1101 v # A £ 

E |1110 > 6 - & 

Fo ot4a114 

TL = Transmit Leader INQ ~ Inquiry 

cL ~ Control Leader ERR - Error 

SOR1 ~ Start of Record Odd IDLE - Idle 
ACKI ~ Acknowledge Odd *TEL - Telephone 

SOR2 ~ Start of Record Even *EOT - End of Transmission/Message 

ACK2 Acknowledge Even 

. * May be sent as valid 
Fig. 3.17 4-out-of-8 code data characters 

3.8 4-OUT-OF-8 CODE 

Another code of the early 1960s had an interesting characteristic. It was 
used solely for data transmission; it was an 8-bit code. The interesting 

characteristic was that, of the 8 possible bit positions for any bit pattern 
of the code, exactly four of the bits would be one-bits. Hence the name, 
4-out-of-8 code (see Fig. 3.17). Any single “hit” (the accidental change of 
a zero-bit to a one-bit, or of a one-bit to a zero-bit) on a bit of a 

transmitted bit pattern would create an other than 4-out-of-8 bit pattern, 
and such erroneous bit patterns could be checked by very simple circuitry. 
Each bit pattern, as received, was fed through a counter. If the count was 

4, the bit pattern was accepted as valid, otherwise a data check was 

raised. Of course, compensating hits (that is to say, hits on a single bit 
pattern that changed some one-bit to a zero-bit and some zero-bit to a 
one-bit) would not be detected, but occurrence of such hits was statisti- 

cally very much less than occurrence of single bit hits.
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Mathematically, the code allows exactly 70 valid 4-out-of-8 bit 
patterns. As can be seen by examination of Fig. 3.17, 64 of these were 

graphic characters (called “data characters” at that time) and 6 were 
control characters. Thus this code fittted BCDIC nicely with its 64 
characters. As will be described in Chapter 5, 7 of the 64 characters of 
BCDIC were control characters between various BCDIC CPU’s and 
magnetic tape drives. However, these 7 BCDIC control characters were 

not 4-out-of-8 control characters; that is to say, they would be transmit- 

ted, end to end, without effecting any control actions on the data 
transmission units. 

Some of the 4-out-of-8 control characters did double duty, depend- 

ing on the data transmission situation. Thus a data transmission unit, 
sending a data record, would precede it with SOR1, Start of Record Odd. 
When the transmission unit at the other end received this record, it would 

send back to the original transmission unit ACK], Acknowledge Odd 
(providing no data check had been detected by the receiving unit). 

Note from Fig. 3.17 that although the numerics and alphabetics are 
not contiguous within columns, they are nevertheless BCD, under the 

definitions in Chapter 2. 
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The Duals 
of 

BCDIC 

The code described in the previous chapter as ‘‘early BCDIC”’ will be 
called BCDIC, Version 1 in this chapter. This coded character set was 
extended; first by the addition of duals, to BCDIC, Version 2, and then by 
an expansion to 64 characters, to BCDIC, Version 3. 

4.1 BCDIC, VERSION 1 

In the late 1950s, the chain printers provided by IBM had a printing 
repertoire of 48 graphic characters, as follows: 

Space 1 

Alphabetics: A to Z 26 

Numerics: 0 to 9 10 

Specials: 

Dollar sign 

Slash 

Lozenge 

Asterisk 
Percent sign 

At sign 

Ampersand 
Minus, Hyphen 

Number sign 

Period . 

Comma J 

11 

+ 
1 
e
F
@
x
X
 
F
H
F
 

  wy 
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Hole 

Pattern» 0 1 12 

SP - & 

1 1 / J A 

2 2 s K B 

3 3 T L Cc 

4 4 U M D 

5 5 Vv N E 

6 6 W 0 F 

7 7 X P G 

8 8 Y Q H 

9 9 Zz R I 

0 0 

8-3 # $ 

8-4 @ % * i 
  

  

                
  

Fig. 4.1 BCDIC, Version 1 

These 48 graphic characters were also keypunchable, interpretable, and 

verifiable by a single keystroke on the IBM keypunches and verifiers of 

the day. These 48 characters, which constituted BCDIC, Version 1, are 

shown in Fig. 4.1 

4.2 BCDIC, VERSION 2 

Two data processing requirements, European languages and FORTRAN, 

led to the development of what came to be called “duals.” 

4.2.1 European Languages Requirements 

The languages of some European countries (Germany, Sweden, Den- 

mark, Norway, Finland) require 29 letters—the usual 26 alphabetics of 

English-speaking countries plus three letters called diacritics. Spanish and 

Portuguese alphabets have 27 letters. It would be clearly advantageous, 

from a marketing point of view, to be able to provide these extra 

alphabetics on printers, keypunches, and verifiers. But how could this be
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done? The solution that was examined first was to increase the character 

capability of printers, keypunches, and verifiers from 48 to 51. 

In the case of chain printers, this was entirely feasible, since the chain 

has a possible graphic capability of 240. In fact, on 48-character chains, 

each of the 48 graphics appears five times on the 240-graphic chain. If 

there are more than 48 graphics, 51, for example, some of these graphics 

will not appear five times on the chain; in consequence, the printing speed 

(lines per minute) would be reduced. Since printing speed was (and is) a 

primary competitive factor for printers, the solution of providing 51 

graphics on a chain, with consequent slower printing speeds, was unat- 

tractive. 

In the case of the keypunch (and verifier), two approaches were 

examined. Under the first approach, card hole patterns beyond the 48 

could be assigned and keypunched by the technique known as multi- 

punching. Under this technique, while a “‘multipunch”’ key is held down, 
other keys may be struck, but the punched card does not advance to the 

next card column. Accordingly, a number of holes may be punched in a 

single card column. Clearly, when any of the three diacritic letters is 

encountered on a data sheet by a keypunch operator, the keypunching 

mode would have to depart from touch-keying while the operator pays 

special attention to holding down the multipunch key and to keying such 

other keys as necessary to generate the appropriate hole pattern. In this, 

approach, then, the keypunching speed would be reduced. As with the 

line-printer solution discussed above, this approach to keypunching was 

unattractive. 
Under the second approach, either existing keypunches and verifiers 

could be modified, or new keypunches and verifiers could be designed 

with additional keys to generate each of the three diacritics with a single 

keystroke. Presumably (after some training) keypunch operators would be 

able to touch-key the additional keys, so keypunching speed would be 

maintained. This approach would result in a relatively costly design and 

development project, with a product that would have only a small market. 

The projected additional price for European keypunches and verifiers was 

unattractive. 

A different kind of solution was then proposed. It was observed that 

three special graphics @ # $ were peculiar in origin and use to English- 

speaking countries. They were neither needed nor used at that time in 

continental European countries. The suggestion was to substitute the three 
diacritics for these three specials, wherever they appeared on the chain. 

The consequence was that printing speed would not be reduced. Simi- 

larly, they could be substituted on the keytops and printing plates of 

keypunches.
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Under this substitution approach, only minor costs would be in- 

volved. The solution, then, had the following characteristics: 

No reduction in printing speeds. 

No reduction in keypunching/verifying speeds. 

Small cost. 

This approach had the advantages above, and no (known) disadvantages. 

It was adopted. The approach is still used in current products. 

It should be noted, in respect to this approach, that there results a 

number of graphics—multiple graphics, that is—for three card hole 

patterns, as shown in Fig. 4.2. However, within a country, the graphic set 

is unique, without duals. 

Hole pattern | U.S.A. | Germany | Sweden | Finland | Norway | Denmark 
  

      
8-3 Fa A A A A A 

8-4 @ é 6 6 @ g 
11-8-3 $ U A A A A       

Fig. 4.2 Diacritic letters 

4.2.2 FORTRAN Requirements 

The FORTRAN programming language had, among its other objectives, 

the objective of a printed listing that would resemble as much as possible 

the formulae found in mathematical text books. Many of the mathemati- 

cal symbols found in text books were deemed to be unnecessary for 

FORTRAN. Some mathematical symbols / — . , were already provided 

on IBM printers. It was decided that the asterisk * could be used to 

represent multiplication. But five symbols ( ) + = ‘' (not provided on 

IBM printers) were deemed to be absolutely necessary for FORTRAN. 

How to provide them? 

It was decided that the most economical and efficient solution was to 

provide them by substitution, as with the European diacritics. The only 

remaining problem was to choose which five of the specials provided on 

IBM 48-character printers, keypunches, and verifiers should be replaced 

by the five mathematical symbols. It was decided to replace % 1 & # @ 

by () + = ’ (respectively). This solution resulted in duals within a 

country. The addition of these five duals led to BCDIC, Version 2, shown 

in Fig. 4.3.
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Povtorn— 9 11 12 

SP a - & or + 

1 1 / J A 

2 2 S K B 

3 3 T L Cc 

4 4 U M D 

5 5 Vv N E 

6 6 W 0 F 

7 7 Xx P G 

8 8 Y Q H 

9 9 Z R L 

0 0 “ 

8-3 # or = ’ $ 

8-4 @ or ' Zor ¢ * Wor ) 

8-5 

8-6 

8-7                 
Hole Patterns: 

[7] 8-2 
[2] 0-8-2 

Fig. 4.3. BCDIC, Version 2 

Initially, this solution was ideal. With very few exceptions, computing 

installations in those days were either of a commercial orientation or of a 

scientific/engineering orientation. In ‘‘commercial’’ installations, such 

commercial applications as payroll, inventory, premium billing, and utility 

billing were processed; in such installations, neither scientific nor en- 

gineering applications were processed. Similarly, in “‘scientific’’ installa- 

tions, scientific or engineering calculations were processed, and commer- 
cial applications were not. (I repeat, there were few exceptions.) 

The exceptions that began to be noted were those users who had 

installations that were commercially oriented, although the company itself 

was of an engineering or scientific nature. In such companies, there were 

people who wanted to use the computer for scientific or engineering 

calculations. It is to be noted that the processes of compiling, debugging,
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and executing FORTRAN programs could be performed regardless of 

whether the printers, keypunches, and verifiers had the scientific or 

commercial graphic sets. However, if the installation had the commercial 

graphic set, program listings were somewhat bizarre. For example, a 

FORTRAN statement such as 

xX = (A+ B)*(C— D)/(E + F * G) 

would show in the program listing as 

X#% A&Bu*% C-DxH/% E&F*G 

Such program listings, though bizarre, were unambiguous. To FOR- 

TRAN programmers who suffered in the commercial installations of the 

day, the mental translation of 

% to ( 
mw to ) 
& to + 

#~ to = 

@ to ' 

became an automatic act. 
It should be reemphasized that the scientific symbols seldom (if ever) 

were needed or used in the listings that were the final results of the 

executed programs. It was only in the listings of the original FORTRAN 

programs that programmers had to put up with the graphic substitutions. 

Programmers were (and, incidentally, still are) notably vocal. If there 

were something to complain about, they complained vociferously. These 

complaints gave rise to the question, Could this situation, admittedly 

infrequent but nonetheless aggravating, be ameliorated? 

4.3. BCDIC, VERSION 3 

A solution to the “duals problem”? was attempted with the IBM 1410. 

(Another attempt was made in the System/360. See Chapter 9, The Duals 

of EBCDIC.) The 1410 was to have as its console, a typewriter. The 

typewriter could provide up to 88 graphics. It was decided it would 

provide 63, and Space. (The reasons for a character set size of 64 are 
detailed in the following chapter, The Size of BCDIC.) The 47 graphics 

and Space provided on 48-character chain printers are shown in Fig. 4.3. 

The 63 graphics and space proposed to be provided on the 1410 console 

typewriter are shown in Fig. 4.4; it is called BCDIC, Version 3. 

It is to be observed in Fig. 4.4 that four of the five ‘“‘scientific” 
graphics () = ' were to be given unique card hole patterns. Curiously, the
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Hole 

Pattern —> 0 11 12 

SP ¢ LA - & 

1 1 / J A 

2 2 8 K B 

3 3 T L Cc 

4 4 U M D 

5 5 v N E 

6 6 W 0 F 

7 7 x P G 

8 8 Y Q H 

9 9 Zz R Tr 

0 0 + EL : 
8-3 # ’ $ 

8-4 @ % x < 

8-5 = ) ¢ 

8-6 > ' 3 > 

8-7 v " A $ 

Hole Patterns: 

[1] 8-2 
[2] 0-8-2 

Fig. 4.4 BCDIC, Version 3 

fifth scientific graphic + was not to be provided. The author does not 

know the reason for this curious anomaly. 

Beyond the four scientific graphics, 12 new graphics had been added. 

These were of two kinds: 

Kind 1 2? 235" < > 

Kind 2 + J A # 

The graphics of Kind 1 were added as a result of market studies for 

“‘most-needed graphics’ in data processing applications. The graphics of 

Kind 2 were chosen to meet a criterion which will be described in the 

next chapter. 

This coded character set was announced for the IBM 1410. How- 

ever, as will be discussed in the next chapter, a review of coded character 

sets was then undertaken, and this led to the BCD Interchange Code, 

BCDIC.





The Size 
of 

BCDIC 

5.1 SIZE OF CHARACTER SET 

What limits the size of a character set? Is it the number of characters in a 

character set? The limitation is mathematical, and comes from the binary 

characteristic of the code that represents the character set. Recall that the 

binary aspect comes from the nature of the physical medium or hardware 

that handles the character code. Once the binary aspect of the physical 

medium is perceived, the binary capacity must next be determined. Some 
examples follow. 

Magnetic tape, seven tracks. One track is for parity, leaving six tracks 

for storage of characters. The character set size is 2° = 64 characters. 

Magnetic tape, nine tracks. One track is for parity, leaving eight tracks 

for characters. Set size = 28 = 256 characters. 

Paper tape, eight rows. One track is for parity, leaving seven tracks for 

characters. Set size = 2? = 128 characters. 

Punched cards, twelve rows. Set size = 2'* = 4096 characters. Most 
punched card character sets have a set size less than the maximum 
capacity. For the System/360, for example, the punched card character 

set size is restricted to 256, in order to match the Nine Track Magnetic 

Tape character set size of 256 characters. 

As described in the previous chapter, IBM character set sizes before 

the introduction of the 1410 were 48 characters, a limitation imposed by 

the chain printers and keypunches of the day. The chain-printer limitation 
of 48 characters was based not on the number of possible different 

95
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graphic characters on the chain but on marketing considerations having to 

do with printing speeds. 

With the introduction of the 1410, its console typewriter provided a 

possible character set size of 88 characters. The limitation of printing 

speed held the chain printer set size to 48 characters, but it was decided to 

expand the console typewriter set size beyond 48 characters. What should 

this character set size be? 
There were two hardware aspects which limited the set size, happily 

to the same number. The 1410 architecture was 6 bits, hence maximum 

set size was 64 characters. Magnetic tape for the 1410 was seven tracks. 

One track was for parity leaving six tracks for characters. So the magnetic 

tape also restricted the set size to a maximum of 64. 

It was decided to expand the 1410 character set size to 64 characters. 

Before this time, the 48-character set, BCDIC, Version 2, was as shown in 

Fig. 5.1. 

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

Pattern A 8 BA 

Hole 

Pattern~-> 0 "1 12 

sp - & or + 

1 1 1 / J A 

2 2 2 s K B 

2) 3 3 t L C 

4 4 4 U M D 
4] 5 5 V E 

42 6 6 W 0 F 

421 7 7 X P G 

8 8 8 Y Q H 

8 1 9 9 Z R I 

8 2 ft) 0 

8 21 8-3 # or = , $ 

84 8-4 @ or ' % or ( * Yor ) 
  

  

                  
Fig. 5.1 BCDIC, Version 2
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5.2 BCDIC, VERSION 3 

The binary coded decimal (BCD) nature of the card-code-to—bit-code 

relationship pointed to the obvious card-code expansion, to include 8-2, 

8-5, 8-6, 8-7 digit punches in conjunction with the zone punches, as 

shown in Fig. 5.2. 

There were two problems to be solved in determining the 64 hole 

patterns. Since the numeric ‘0’ would clearly retain its card hole pattern 

0, what hole patterns would be assigned to code positions in Fig. 5.2 
indicated by ' and *? Both of these code positions (following the table 

column and table row indications) would have the card hole pattern of 0, 

but three code table positions with the same hole pattern, 0, would be 

unacceptable. 

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

Pattern —_ A 8 BA 

Hole 
Pattern >} 0 11 12 

SP UN. LD - & or + 

1 1 l / J A 

2 2 2 S K B 

21 3 3 T L Cc 

4 4 4 U M D 

4 1 5 5 Vv N E 

42 6 6 W oO F 

421 7 7 x P G 

8 8 8 XY Q H 

8 1 9 9 Z R I 

8 2 0 0 Ls UN L] UN. cs UN. ts 

8 21 8-3 # or = , § 

84 8-4 @ or '' % or ¢ * M or ) 

84 1 8-5 UN. UN. UN. UN. 

842 8-6 UN. UN. UN. UN. 

8421 8-7 UN. UN. UN. UN.                 
Hole Patterns: UN. - Unassigned graphic 

[1] 8-2 

{2] 0-8-2 

Fig. 5.2 Expansion of BCDIC card code to 64
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Pattern A B BA 

Hole 
Pattern-—* 0 11 12 

SP ¢ Q - & 

' ' 1 / J A 

2 2 2 s K B 

21 3 3 T 7 c 

4 4 4 U M D 

4 1 6 5 V N 5 

42 6 6 W 0 F 

421 7 7 x P G 

8 8 8 Y¥ Q H 

8 1 9 9 Zz R I 

8 2 0 0 f 12] { 2 

8 21 8-3 # ; $ 

84 8-4 a x x 7 

84 1 8-5 : = ) ( 

842 8-6 > ’ ; < 

8421 8-7 yo n , & » 

Hole Patterns: SP - Space 

[7] 8-2 

[2] 0-8-2 

Fig. 5.3. BCDIC, Version 3 

Note that the bit pattern for code table position * is 82. From the 

BCD relationship, therefore, a card hole pattern of 8-2 would generate 

the proper bit pattern. Combining the digit punches 8-2 with a zone 

punch 0 would therefore generate the correct bit pattern, A82, for code 

table position 7. This hole pattern therefore was chosen for this code 

position. 
But what about code table position '? Although the numeric ‘‘0” 

occupies code table position * and has the hole pattern 0, a proper hole 

pattern from a BCD relationship point of view would be 8-2. 

It should be pointed out that the objective was to determine a set of 

64 hole patterns with a BCD relationship. One such set would be the 16 

digit combinations, ‘“‘no-digits’’, 1, 2, 3, 4, 5, 6, 7, 8, 9, 8-2, 8-3, 8-4, 8-5, 
8-6, 8-7 taken with the four zone punches, “‘no-zone’’, 0, 12, and 11.
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However, this set does not include the hole patterns 12-0 and 11-0, which 
were widely used in card processing applications. In order to include 
these in the BCDIC set, two would have to be dropped out of the set of 
64 above. The two chosen to be dropped out were 12-8-2 and 11-8-2. 
(Note: As described in Chapter 10, these were included in the 64- 
character subset for EBCDIC, and 12-0 and 11-0 were not included.) 

The hole patterns 11-0 and 12-0 fall logically, for the code table of 
Fig. 5.2, in code positions * and *. The only remaining hole pattern from 
the set of 64 above that has no logical position is 8-2, and the single code 
table position without an assigned hole pattern is position ', so that by a 
process of elimination, the hole pattern 8-2 was assigned to code table 
position |. 

As described in the previous chapter, 16 graphics had been chosen 
for the IBM 1410 to expand the character set from 48 to 64. The result, 
BCDIC, Version 3, is shown in Fig. 5.3. 

5.3 BCDIC, VERSION 4 

Of these 16 graphics, four had been chosen to eliminate duals and 
provide ()’ = as unique graphics. Eight had been chosen as a result of 
market studies for most-wanted additional graphics: 

1? : 3; " << > ¢ 

Four had been chosen to meet an interesting criterion: 

+ + / 0A 

These four graphics occupied code positions 7, *, +, and >, whose bit 
patterns had a control function with respect to magnetic-tape devices on 

one or another of the IBM computing systems. 

There is an aspect of human nature which surfaces in data proces- 

sing. Experience has shown that if graphics are provided on a computing 
system, they will be used in one way or another by customers, even if they 

have no intrinsic meaning. The lozenge is an example. It has no intrinsic 

meaning but customers came to use it to signify things peculiar to their 

applications—within applications, customers gave the lozenge a meaning. 

For example, in banking installations, the lozenge was frequently used on 
tabulation listings to indicate (to the customer) second level totals. 

But it would be very undesirable if customers, within an application, 

used the graphics for code positions 7, *, +, and > so that they would be 
required to print out on listings. The actual printing of such graphics
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would not present any hazard, but the data containing the bit patterns 

representing these graphics, if written on or read from magnetic tape, 
might cause strange and unwanted results. These bit patterns had a 

common and interesting characteristic. They were generated or removed 

automatically by the magnetic-tape hardware. The customer did not have 

to enter them with his input data. 

The obvious criterion for graphics to be assigned to these code 

positions was that they should cause customers to be disinclined to use 
them in applications. They should, therefore, be abstract shapes without 

intrinsic meaning. The graphic shapes finally chosen to meet the criterion 

are as follows: 

234 5 

+ VJ A # 

How well the graphics meet the criterion the reader can judge. 

As stated in the previous chapter, a reconsideration of BCDIC, 

Version 3 was undertaken. There were a number of reasons: 

1. The plus sign was not provided. 

2. The characters 

Fee teehee ee 
112-8-5 | 11-8-5 | 0-8-5 

would require multipunching on a keypunch. The speed of 

keypunching FORTRAN source language programs would be re- 

duced. 

3. FORTRAN program decks, keypunched according to the 1410 pro- 

posal, BCDIC, Version 3, could not be compiled on any non-1410 

computer, because the card hole patterns (and hence the bit patterns) 

for () = ‘had been changed. Similarly, the FORTRAN compiler for 

the 1410 could not compile any FORTRAN program decks from 

non-1410 computers. 

4. If a 1410 FORTRAN program deck were entered into a 1410, it 

would not list properly on the chain printer of the 1410. () = ' 

would not list as () = ’ nor indeed even list as % H # @ (the dual 

graphics). Such a program deck could be listed properly on the 1410 

console typewriter, but this mode of listing would be excessively slow 

as compared with listing on a chain printer.
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Reason 3 above was crucial. The ability to enter, list, compile, and 

execute a FORTRAN deck on any IBM computing system was a very 

strong sales point. Therefore, the 1410 coding proposal was changed to 

remedy the four problems above. 

The result of this change became the BCD Interchange Code, 

BCDIC. The criteria set for BCDIC were as follows: 

1. The 48-character code would be extended to 64 characters—63 

graphics and Space. 

2. Compatibility with the 48 characters of the day—Space, 10 numerics, 

26 alphabetics, and 11 specials (including the 5 duals)—would be 

maintained. That is to say, BCDIC, Version 2 (Fig. 5.1) would be the 

point of departure. 

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

                  

Pattern A B BA 
Hole 
Pattern —> 0 1 12 

SP ¢ Ly - & or + 

1 1 1 / J A 

2 2 2 S K B 

21 3 3 T L Cc 

4 4 4 U M D 

4 1 5 5 v N E 

42 6 6 W 0 F 

421 7 7 x P G 

8 8 8 YX Q H 

8 1 9 9 Z R I 

8 2 0 0 $ L2| ! 2 

8 21 8-3 # or = , $ 

84 8-4 @ or ' 4 or )+) * Yor ) 

84 1 8-5 Ls] Ls] Ls] 

842 8-6 > Le ; < 

8421 8-7 ¥ L7 wn C8 A Ls $ 10 

Hole Patterns: SP = Space 

[1] 8-2 
[2] 0-8-2 

Fig. 5.4 BCDIC, Version 4
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3. As much as possible, compatibility with the announced 1410 set, 

BCDIC, Version 3 (Fig. 5.3), would be maintained. 

4. Graphics for control characters should have no intrinsic meaning. 

Initially, these criteria led to the code table of Fig. 5.4. 

5.4 BCDIC, FINAL VERSION 

Code positions °, °, 7, * that had held () = ‘ in the 1410 proposal were 
left blank, with four new graphics to be chosen. 

Code positions 7, 7, °, '° with graphics + V A + were deemed to 
satisfy Criterion 4. But code positions ' and * had bit patterns that 
functioned as control characters on one or another IBM computer. 

Graphics ¢ " were clearly a violation of Criterion 4; they were rejected. 

This left code positions ', *, and ® to be assigned graphics satisfying 

Criterion 4, and code positions ° and ° to be assigned new graphics. 

Code positions ®, °, and * had held ( ) ’ under the 1410 proposal. 
When new graphics [ | / were suggested to fill these code positions, the 

suggestion was adopted. 

After much debate, 6 y ++ were chosen for code positions ', 7, and ® 
to satisfy Criterion 4. To satisfy Criterion 4, then, eight graphics had 

been chosen: 

6 y + £ nw A V # 

How well these graphics satisfy the criterion, the reader may judge. 

The final result was BCDIC, shown in Fig. 5.5. It was approved as an 

IBM Corporate Systems Standard in 1962. 

Two factors were primary in the development of BCDIC from early 

BCDIC, Version 1: equipment limitations and compatibility. Equipment 

limitations led to the introduction of duals both for alphabetic extension 

and for programming language symbols. Compatibility led to the reten- 

tion of the duals, even when the 1410 console typewriter removed one 

equipment limitation. (It may be remarked that the chain of the chain 

printer, with its capability of 240 graphic positions, did not limit the 

printing set to 48. Another aspect of the chain printer, printing speed, 

was responsible for limiting the printing set to 48 graphics.) 

Compatibility with existing practice is an important factor in deci- 

sions on coded character sets. In summary, the four objections to the 

1410 proposal were as follows: 

1. Absence of plus sign.
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BCDIC, Final Version 
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Pattern > A B BA 

Hole 

Pattern» 0 11 12 

SP b y - & or + 

' 1 1 / J A 

2 2 2 5 K B 

21 3 3 L c 

4 4 4 U M D 

4 1 5 5 V N E 

42 6 6 W 0 F 

421 7 7 x P G 

8 8 8 Y Q H 

8 4 9 9 Z R I 

B 2 0 0 # ! 2 

8 21 8-3 # or ; 3 

84 8-4 @ or % or ( * Wor ) 

84 1 8-5 Y ] L 

842 8-6 > \ ; < 

8421 8-7 v co A # 

Hole Patterns: SP - Space 

[1] 8-2 
[2] 0-8-2 

Fig. 5.5 BCDIC, Final version 

Multipunching required for keypunching, 

that is, for keypunching FORTRAN program decks. 
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FORTRAN incompatibility—1410 versus other computing systems. 

1410 FORTRAN Programs not listable on 1410 chain printer. 

All of these problems were in fact solvable at the time, admittedly at 

some cost. The incompatibility that would have resulted pre- and post- 

1410 was unacceptable. The problems were not solved. Duals were 

assigned into BCDIC.





The Size 
and Structure 

of PTTC 

6.1. INITIAL CONSIDERATIONS 

In 1959, engineers had started to design and develop a new communica- 
tions terminal which came to be the IBM 1050. The keyboard and 

printing functions were to be provided by an electric typewriter. The 
typewriter provides a capability of 88 graphics. The question to be 
decided was what the transmission code should be. Since perforated tape 
was also envisaged for this terminal, the code came to be named the 
Perforated Tape and Transmission Code (PTTC). 

In today’s technology, where hundreds and thousands of electronic 
circuits can be placed on a small chip, the cost of a bit is negligible. But in 
the technology of the early 1960s, the cost of a bit was appreciable—6-bit 

registers cost appreciably more than 5-bit registers, 7-bit registers cost 
appreciably more than 6-bit registers, and so on. 

Another cost factor was implicit in the byte size. On serial data 

transmission lines, a fixed factor was the number of bits transmittable per 
second. To transmit, for example, a thousand characters of seven bits per 
character would take appreciably more time than to transmit a thousand 
characters of six bits per character. The length of time the data transmis- 

sion line was in use was a direct factor in determining the amount of 

money that had to be paid for the use of the data transmission line. In 
short, data transmission line costs were dependent on the byte size of the 

transmission code. 
These two cost factors, hardware cost and transmission cost, both 

pointed to the necessity of keeping the byte size of a transmission code as 
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small as possible. In those days, a design engineer built his reputation on 
his ability to ‘‘squeeze the bits.” 

Before the introduction of the IBM 1050, printing terminals had 
been limited to single case capability. But the use of an electric typewriter 
on the 1050 would give the capability of duocase printing—capital letters 

and small letters. This duocase capability was held to be a very significant 

marketing factor. 

6.2 SIZE OF CHARACTER SET 

Recall that the byte size of a code prescribes the number of characters 
that can be incorporated into the code, by virtue of a simple binary 

relationship. If the byte size if 5 bits, then 2° = 32, and there are 32 

different bit patterns available; that is, a 5-bit code can have 32 charac- 

ters. If the byte size is 6 bits, then 2° = 64, and there can be 64 characters. 

Similarly, 7 bits leads to 128 characters, 8 bits leads to 256 characters, 
and so on. 

In designing a coded character set, the first determination must be 

the number of characters needed to meet the requirements of the 
applications in which the code will be used. This done, the code size may 
then be determined by applying the analysis of the preceding paragraph 
in reverse. For example, if 48 characters are needed, the 32 character 

positions of a 5-bit code are insufficient, but the 64 character positions of 
a 6-bit code are (more than) sufficient. A 6-bit code is needed if 48 

characters must be provided. 

In the case of the 1050, the determination of the number of charac- 

ters proceeded as follows: 

Alphabetics: 26 lower case and upper case 

Numerics: 10 

Specials: At this time, the character set for most IBM products was 47 

and Space. For the console typewriter of the 1410, the set was 63 

and Space. From this, it was rationalized that from 11 to 27 specials 

should be provided. Assume at least 11 would be needed. 

Space: 1 

Controls: The number of control characters needed was not known in the 

initial design phase of the 1050. Clearly, characters would be needed 

to control the typewriter, to control the perforated-tape facility, and 

to control the data transmission lines. Initially, let the number of 

control characters be x.
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The above tabulates as follaws: 

Lower case alphabetics 26 
Upper case alphabetics 26 

Numerics 10 73 graphic characters* 
Specials 11 at least 

Space 1 
Controls x 

744+ x 

Therefore, initial analysis showed that (at least) 73 graphic characters, the 
Space character, and an as yet undetermined number of control charac- 

ters would be needed for PTTC. This apparently showed that a 6-bit, 

64-character set was insufficient; a 7-bit, 128-character set was appar- 

ently indicated. But it was pointed out that a particular technique of 

coding, which involved the use of shift characters, could reduce the size 

requirement to 6 bits. (A full discussion of this coding technique is found 
in Chapter 2.) 

6.3 PTTC, VERSION 1 

Recall from Chapter 2 the formula 2**' — y (where x is the number of 

bits in the code byte and y is the number of characters wanted to be 

independent of preceding shift characters). For PTTC it was decided that 

the Space character and all control characters should be independent of 

preceding shift characters. At a first analysis, x was taken to be 6. 

Qty = 21 _ y 

=128—-—y 

Thus it was seen that with a byte size of 6 bits, and using the technique of 

shift characters, 128 - y characters could be realized. Also, if y = 

number of control characters, including Space, then the number of 

graphic characters is 128 — 2y. The following possibilities were reviewed. 

* It is to be noted that the number of graphic characters needed would be more 
than 73. This would certainly be realizable on the 88 graphic capability of the 
electric typewriter. Also, the figure 88 would clearly dictate that the maximum 
number of specials would be 88— 62 = 26.
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Number of Number of Number of 

control graphic different 
characters characters characters 

(y) (128 — 2y) (128 — y) 

17 94 111 

18 92 110 

19 90 109 

20 88 108       

At first it was argued that, since the typewriter provides 88 graphics 
only, the choice should be 20 control characters (including Space) and 88 
graphics. 

It was counter-argued that extensive analysis of applications suitable 
for the 1050 showed that 16 control characters and the Space character 

would be sufficient. Consequently, the choice should be 17 control 

characters (including Space) and 94 graphic characters. While it was 
admitted that the typewriter could print 88 graphics only, it was also true 
that paper tape, punched cards, data transmission lines, and serial printers 

could certainly implement 94 graphic characters. 

At this point, a completely different factor emerged. At this time, 
standards committees, nationally and internationally, were developing a 
standard interchange code. All details of this code were not yet decided, 
but some details were decided: 

a) The code would be 7 bits. 

b) There would be 32 control characters, the Space character, the 
Delete character, and 94 graphic characters. 

It was now proposed that the 1050 should implement the 7-Bit Code, so 

that it would be compatible with the emerging national and international 
standards. On the question of 7-bit size for the 1050, two counter- 
arguments were voiced: 

a) A 7-bit 1050 would cost much more than a shifted 6-bit 1050, and 

low cost was a primary design objective of the 1050. 

b) The 1050 development schedule was such that it would certainly be 
developed and announced before the slowly developing national and 
international standards were approved. Details of the standards, such 

as number and choice of control characters and graphic characters, 

changed from one committee meeting to the next. It was a reason- 

able certainty, then, that the 1050 character set would disagree, in 
greater or lesser detail, with the finally approved character set of the 

standards.
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These two factors, particularly the cost factor, were decisive. The earlier 

decision, to design and develop a shifted 6-bit 1050, was upheld. 
However, out of this debate emerged another factor, which was 

decisive on the earlier question of graphics and controls. A communica- 
tions system was postulated which would have terminals implementing 
the 7-bit code, communicating via a computer, with 1050s implementing 

the shifted 6-bit code. The significant aspect here was that a message, 
consisting of graphic characters and the Space character, would go from 
one kind of terminal, through a computer, to the other kind of terminal. 

If these different kinds of terminals needed different control charac- 
ters to send or receive messages, the computer program could accommo- 

date such differences, removing or injecting control characters into the 

data stream as necessary. But if the terminals had different graphic sets, 
no computer program could compensate. The number of graphics, and 
the actual graphics must match. 

From this analysis, it was decided that the number of graphics in 
PTTC and the 7-bit code should be the same, 94. At this stage, the actual 
graphics could not be matched, since the 7-bit code was not yet finalized. 

However, after the 7-bit code was finalized, a later model of the 1050 could 

match the graphics. So the decision was made for the 94 graphic charac- 
ters. As a consequence, Space and 16 control characters would be 
independent of shift. The initial code chart for the 1050 looked like Fig. 
6.1. 

The 16 control characters to be independent of shift were: 

PN Punch On 

BYP Bypass 
RES Restore 

PF Punch Off 

RS Reader Stop 
LF Line Feed 

NL New Line 

HT Horizontal Tab 

Uc Upper Case 
EOB End of Block 

BS Back Space 
LC Lower Case 

EOT End of Transmission 

PRE Prefix 

IL Idle 

DEL Delete 

Upper Case and Lower Case would be the two required shift characters.
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4 

4 1 
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42 
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8 21 

84 
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8421 

Hole-_»| 

Pattern     
    

Block }| Hole Patterns at: 
  

I 3 1 Top And Left 
  

Bottom and Left 
    

                
2 

2 4 3. | Top and Left 

4 Bottom and Left 
    

Fig. 6.1 PTTC, Version 1 

6.4 PTTC, VERSION 2 

Since there was to be a card reader/punch attached to the 1050, a 

translation would be needed for the bit code of PPTC to/from the card 

code. In order to minimize the cost of such a translator, it was decided to 

structure the code, with respect to alphabetics and numerics, so that it
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8 2 0 Li U4 LA L2 | 2 L2 

8 21 

84 PN BYP RES PF PN BYP RES PF 

84 1 RS LF NL HT RS LF NL HT 

842 UC EOB BS LC uc EOB BS LC 

8421 EOT PRE IL DEL EOT PRE IL DEL 

Hole»! 

Pattern 

Hole Patterns: 

J 
Block | Hole Patterns at: 

1 3 1 Top And Left 

2 Bottom and Left 

2 4 3 Top and Left 

4 Bottom and Left                 

Fig. 6.2 PTTC, Version 2 

resembled BCDIC; that is, the alphabetics would be distributed into three 
columns of the code table. Clearly, a corresponding upper- and lower- 
case alphabetic would be on the same 1050 keytop. In order to minimize 

the logic circuitry between keytops and the generation of the bit patterns 
of PTTC, lower-case and upper-case alphabetics should occupy corres-
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ponding (same bit pattern) locations in the code table. The numerics 
should be in the lower-case side of the code table, since they are 
commonly on the lower-case shift of a typewriter. Finally, with these 
decisions made with respect to numerics, upper-case alphabetics and 
lower-case alphabetics, it seemed intuitively right that the controls occupy 
the block of four rows at the bottom of the table. This led to the code 

table of Fig. 6.2. 

6.5 PTTC, VERSION 3 

There now remained the assignment of 32 specials to code positions. It is 
to be noted that, with 94 total graphic positions and a typewriter printing 
capability of 88 graphics, 6 of these remaining 32 code positions would 
contain graphics not printable on the typewriter. Clearly, because of the 
typewriter concept of upper- and lower-case graphics on a key, it would 
be confusing to an operator if any key had a printable graphic in one 
case but not in the other case. Also, it would complicate the logic circuitry 
to realize such an aspect. These considerations led to the conclusion that 

three of the nonprintable graphics should be in lower case and three in 

upper case. Also, they should be located in corresponding positions in the 
code table (to do otherwise would create the undesirable aspect). It was 
decided that positions ' and 7 (Fig. 6.2) would be assigned to nonprintable 
graphics. 

Before decisions were made on specific assignment of the 32 specials, 
some preliminary. decisions were made with respect to the associated card 
code. The reason behind this sequencing of decisions was as follows. 
Hopefully, card-code assignments could be made on some orderly basis 
that would optimize the card-code to bit-code relationship, and hence 
minimize the cost of the hardware translator. If such an assignment of 

card codes could be worked out, then most of the 32 specials would 

automatically locate themselves in the code table, because of their already 
established BCDIC card codes. 

The first problem to be solved was with respect to alphabetics. 
Hitherto, in data processing equipment and applications, only one set of 

alphabetics was provided. It would be more correct to call these alpha- 

betics ‘‘capital letters,”’ rather than “‘upper-case letters.” To refer to them as 

“upper-case alphabetics” would imply the existence of ‘lower-case 

alphabetics,”’ and these latter were not, in general, provided on data 

processing printers. 
The “capital letters’”’ had well-established card codes. Now, however, 

on the typewriter of the 1050, there were to be both lower- and 
upper-case letters. The question was, should lower- or upper-case letters
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be assumed as corresponding to the previous capital letters and hence be 
assigned their card codes? At first, the answer seems obvious. Upper-case 

letters should be considered equivalent to the previous capital letters. 

After all, they would have the same graphic shapes when printed. 
There was a counter-argument. Three modes of operation were 

visualized for the 1050. In the first mode, a communications network 

would consist of 1050s only, with human operators sending, receiving, 

and routing messages. In the second mode, the network would consist of 
1050s communicating to a computer, and not directly to each other. In 
this mode, a computer program would do the work on routing or 

switching messages. In the third mode, the network would be of the same 
kind as for the second mode, but the 1050s would be considered as data 

entry points, with the computer executing some data processing applica- 
tion on the data received. 

In the first two modes (for which the telegraph network of Western 
Union might be considered an example), it was assumed that the mes- 

sages sent and the messages received would use both lower- and upper- 
case letters. There was a human-factor reason for this decision. Human 

beings are educated to read text in lower- and upper-case letters. Books, 
magazines, newspapers, etc., display text in both lower- and upper-case 

letters. It is interesting to read a page of text, printed only in upper case. 
It is difficult to read; quite possible, of course, but difficult. Interestingly, a 

page of text in lower-case letters poses very little difficulty in reading. The 

reason is clear. In a page of text, very few capital letters appear. First 

word in sentence, people’s names, names of cities, towns, countries, etc., 

are initially capitalized. But all other letters are lower case. A human being 
is more used to reading lower-case letters. On the Telex telegraphic 
network, this human factor was recognized, and text on a Telex printer is 

totally lower-case letters (no capitals). By contrast, a Western Union 
telegram, printed on Teletype printers, all in capital letters, is more 

difficult to read. 
To repeat, it was assumed that in the first two modes, both lower- 

and upper-case capability would be used. But in the third mode, remote 
data entry to a computer, it was assumed that only upper-case letters 

would be used. This was because the printer of the computer had capital 
letters only. There would be less confusion if both terminal and computer 
printers printed letters of the same shape, that is, capital letters. This 

assumption led to a most interesting conclusion. 

The fewer times an operator has to depress the case shift key, the 

higher the operator productivity. The numerics on the typewriter are in 

lower case. On the assumption that capital letters would be used, and not 

small letters, it would be more efficient (in this particular communications
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mode) if the capital letters were actually reached by the lower-case shift 
of the printing element. In fact, recognizing this potential efficiency 
factor, typewriter elements were provided that had capital letters in 
lower-case shift as well as in upper-case shift. 

In the first two communication modes, then, it was assumed that 

small letters would predominate, with occasional occurrence of capital 

  

  

  

      
      
  

  

  

  

  

  

  

  

    

  

          
  

  

   

  

      
      

  

  

        

Lower Case Upper Case 

Bit A B BA A B BA 
Pattarn 

Hole 

Pattern—> 0 11 12 NYA NYA NYA NYA 

1 1 

2 2 

21 3 

4 4 

4 1 5 

42 6 

421 7 

8 8 

8 1 9 

8 2 0 

8 21 NYA 

84 NYA 

84 14 NYA Bees’ 
“« CONTROLS = 

842 NYA ee : 

8421 NYA i oe 
* 

Hole—p} NYA NYA NYA NYA 
Pattern                 

NYA - Not Yet Assigned 

  

  

  

  

            

Block | Hole Patterns at: 

1 3 1 Top And Left 

2 Bottom and Left 

2 4 3 Top and Left 

4 Bottom and Left       
Fig. 6.3. PTTC, Version 3
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letters. In the third communication mode, it was assumed that capital 
letters would be used exclusively. At this point, a principle was evolved, 
as follows: 

In common data processing applications a particular set of card hole 

patterns is associated with the letters. In such data processing appli- 

cations, such letters happen to be capital letters. In 1050 communica- 

tions applications, this same set of card hole patterns should be 

associated with the set of letters predominantly used in the applica- 

tion. In the first two modes of 1050 communication applications, the 

predominant letters will be small letters. In the third mode, the 

predominant (actually, the only) letters will be capital letters. What is 
significant is that, for all three modes, the predominant letters will 

appear in the lower-case shift of the typewriter. Therefore, the card 

hole patterns that have, in data processing applications, been as- 

signed to capital letters, should for PTTC be assigned to the lower- 

case shift of the code, regardless of whether small or capital letters 

are implemented in the lower-case shift. 

After considerable debate, agreement was reached on this principle. The 
card code assignment to PTTC then began to take shape. Compare Fig. 

6.2, where the assignment of the numerics and lower-case letters is 
shown, to the preliminary card code for PTTC as shown in Fig. 6.3. 

6.6 PTTC, VERSION 4 

Some further decisions were now made with respect to card codes: 

1. Upper-case alphabetics would have the same digit punches as lower- 
case alphabetics, but with zones corresponding as shown below: 

Zone punches 
  

Lower-case alphabetics 0 11 12 

Upper-case alphabetics 11-0 } 12-11 12-0         

2. In code positions * and ” in Fig. 6.3, hole patterns of 11-0, and 12-0, 
respectively, would be assigned. 

3. For the sixteen control characters, the digit punches would be 4, 5, 6, 
and 7, to optimize the bit-code to card-code translation relationship. 

4. The control characters would have the zone punches already assigned 

to the table columns for lower-case alphabetics, and also, for all 

control characters, an additional zone punch, 9.
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These decisions deserve some comment. In choosing the zone punches for 
the upper-case alphabetics, the reasoning was as follows: 

a) There would be no more than two zone punches. 

b) Of the two zone punches, one would match that of the corresponding 

lower-case alphabetic. 
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Fig. 6.4 PTTC, Version 4
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In choosing 11-0 and 12-0 for code positions ' and 7 in Fig. 6.3, the 
objective was to provide the algebraic sign capability already provided in 
common practice. That is, the eleven punch over a digit punch in a 
numeric card field should indicate a negative number for all numerics, 0 
through 9. Similarly, the twelve punch over a digit punch in a numeric 

field should indicate a positive numeric for all numerics, 0 through 9. 
The choice of 4, 5, 6, and 7 as digit punches for the bottom four rows 

of the table would optimize their BCD translation to/from the PTTC bit 
code. 

A zone punch of nine would distinguish all control characters from 
all graphic characters. Advantage could be taken in the hardware of this 
distinguishing characteristic. 

With these decisions, the card code assignments shown in Fig. 6.3 
were increased to those shown in Fig. 6.4. 

6.7 PTTC, VERSION 5 

There now remained 32 graphic positions in the PTTC code table with 

unassigned graphics. Of these 32 code positions, 30 had not yet been 
assigned card hole patterns. The numerics, alphabetics, and Space of 
BCDIC had been assigned. There remained 27 BCD graphics and hole 
patterns to be assigned in PTTC. For compatibility reasons, the 27 
BCDIC graphics and hole patterns should match the 27 in PTTC. The 

BCDIC specials were now reviewed: 

@ 8-4; 11-8-6 
/ 0-1 + 8-2 
- 11 %( 0-8-4 
&+ 12 8-5 
#= 8-3. * 11-8-4 
+ 0-8-2 [ 12-8-5 
, 0-8-3] 11-8-5 
$ 11-8-3 + 0-8-7 

12-8-3 + 12-8-7 
A 11-8-7 0-8-5 
\ 0-8-6 Vv 8-7 
< 12-8-6 |! 11-0 
> 8-6 ? 12-0 
= 12-8-4 

The card hole patterns 11-0 and 12-0 had been assigned in locations ' 
and * in Fig. 6.4, so the BCDIC graphics ! and ? would be assigned to 

these PTTC code positions.
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2 4 3 Top and Left 

4 Bottom and Left               Fig. 6.5 PTTC, Version 5   

For translation reasons, the hole pattern 11 should be assigned in 

position *, and the hole pattern 12 in position * of Fig. 6.4, which would 
then dictate the assignment of graphics — and & +. For translation pur- 
poses, hole patterns 8-3, 0-8-3, 11-8-3, and 12-8-3 should be assigned 

in positions °, 7, °, °, respectively, which in turn would dictate the 
location of graphics # = , $ . (respectively). For translation purposes, 

hole pattern 0-1 should be assigned in position °, which would dictate 

the location for /. 

These decisions resulted in Fig. 6.5.
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Fig. 6.6 PTTC, Final Version 

6.8 PTTC, FINAL VERSION 

There are 23 unassigned code positions (shaded) and 18 unassigned 
BCDIC graphics. The remaining card hole patterns and remaining PTTC 

bit patterns were simply not able to be matched to any orderly translation 

relationship. The assignments were made to optimize the translation 
relationship as much as possible, while realizing that the relationship 
could not be very good.
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When the 18 BCDIC graphics and hole patterns were assigned in the 
PTTC code table, there would remain five unassigned code positions. Five 
graphics and five hole patterns were finally chosen as follows: 

Graphic Hole pattern 
. (UC) 12-8-1 
, (UC) 0-8-1 
! (UC) 11-8-2 

? (UC) 12-8-2 
" 8-1 

These five were then assigned into the PTTC table, leading to Fig. 6.6, 

the final version of PTTC. 

These five hole patterns were chosen for the following reason. An 

examination of the table shows that all combinations of digit punches 1, 
2, 3, 4, 5, 6, 7, 8, 9, 8-3, 8-4, 8-5, 8-6, 8-7 with zone punches 

“no-zones”, 0, 11, and 12 (the hole patterns from BCDIC) had been 

assigned in PTTC. Additionally, for the capital letters, the double-zone 

combinations 11-0, 12-11, 12-0 had been introduced as previously de- 

scribed. Additionally, the two BCDIC hole patterns 8-2 and 0-8-2 had 
been assigned. Now five more hole patterns were needed. What should 
they be? 

They could have been some combination of double-zone punches 
with the double-digit punches 8-3, 8-4, 8-5, 8-6, 8-7, but this would have 

resulted in hole patterns of four holes. It was thought preferable to choose 

hole patterns of no more than three holes, and there were six such that 
suggested themselves; 8-1, 0-8-1, 11-8-1, 12-8-1, 11-8-2, 12-8-2. The 

8-1 was first choice, since it was a hole pattern of two holes only. Then 
four of the five remaining possibles were chosen, 0-8-1, 12-8-1, 11-8-2, 

and 12-8-2.



The 
Structure of 

EBCDIC 

7.1 INITIAL CONSIDERATION 

It is supposed by some people that the requirement that led from 

computers with a 6-bit architecture to computers with an 8-bit architec- 

ture was the requirement for a larger set of characters. It was known that 

the then current 64-character set of 6-bit computers, while sufficient for 

most data processing applications, was becoming insufficient for some 

data processing applications. On the one hand, an insufficient number of 

graphic code positions had led to the use of duals (Chapter 4). On the 

other hand, an insufficient number of control] code positions had led to 

the development of PTTC (Chapter 6). The implementation of PTTC on 

the IBM 1050 (which was based on an electric typewriter) had introduced 

lower-case as well as upper-case alphabetics to many people in the data 

processing world. Also, a new data processing application, text proces- 

sing, had led at least one customer to order a special IBM 1403 print 

chain and to have special instructions developed for his 1401 computer to 

allow him to manipulate and process upper- and lower-case alphabetics. 

These situations and applications in the data processing field cer- 

tainly emphasized the needs for a larger coded character set than that of 

BCDIC. But these needs were very far from sufficient to dictate a 

requirement for an 8-bit computer architecture. There were two other 

very fundamental aspects of computer architecture that pointed at the 

requirement for an 8-bit architecture. These aspects led to the develop- 

ment and marketing of the IBM System/360. Once an 8-bit architecture 

was decided on, with a consequent possible 256 character code positions, 

121
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the opportunity to enlarge or extend the character set from that of 

BCDIC was obvious. IBM did indeed take that opportunity; the 8-bit, 

256-character EBCDIC was developed and implemented. 

The first aspect was the efficiency of representation of numerics in a 

coded character set. The requirement for 26 (or 29) code positions to 

represent alphabetics and for 10 code positions to represent numerics 

together set a requirement for at least 36 code positions. In its turn, the 

requirement for at least 36 code positions set a requirement for a code 

byte of at least 6 bits, and BCDIC was (and is) a 6-bit coded character 

set. 

Although 4 bits at most are required to represent the 10 numerics, 

the 10 numerics of BCDIC are represented by 6 bits, 2 bits more than 

needed for numeric representation only. That is to say, numerics in 

BCDIC have an unnecessarily large, and hence inefficient, bit representa- 

tion. 

So numerics are inefficiently represented in BCDIC. Is this signific- 

ant? Indeed it is. It was variously estimated in the early 1960s that 

approximately 75 percent of the data used in data processing applications 

was numeric data. In short, 75 percent of the data was inefficiently 

represented. Was this fact significant? In previous paragraphs, it has been 

stated that requirements for larger character sets, although clearly per- 

ceived, were not deemed sufficient to increase the bit size of computer 

architecture. But the inefficiency of numeric data representation affected 

about 75 percent of the data processed in computers. It hardly needs to 

be said that efficiency of a computing system was (and is) one of the key 

elements of any computer marketing strategy. Could the efficiency of 

numeric representation be improved? 

The ‘packing’ of two numeric digits into one 8-bit byte would 

essentially represent numeric data in 4 bits, the practical minimum. 

Maximum efficiency of numeric representation would be realized. This was 

one of the aspects which led to the IBM decision to develop an 8-bit 

architecture for computers.* 
The other aspect had to do with the binary nature of the System/360. 

In designing the Stretch Computer [7.1], for a number of reasons the 
organization was chosen to be binary rather than decimal. Similar reasons 
led to the decision that System/360 would be binary. Not only, of course, 

* It must be noted that 8 bits, while ideal for representation of packed numerics, 

is not ideal for the representation of all data, such as alphabetics and special 
graphics. To represent all of numerics, alphabetics, and an adequate number of 
special graphics, 6 bits is sufficient. So, to represent alphabetics and special 
graphics by an 8-bit code is for them, inefficient. That is an illustration of a design 
trade-off.
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would arithmetic be binary but so also would addressing be binary. For 
binary addressing of memory words, there is considerable advantage in 
choosing the number of bits in each word to be a power of 2. The three 
possibilities looked at were 

25 = 32 
2°=64 
27 = 128 

The choice of 64 bits gives a good compromise between speed and cost of 
memory, and provides ample space to represent a floating-point number 

in one memory word. 
Since the memory word size of 64 bits was chosen, and since a byte 

must be an integer submultiple, eight 8-bit bytes was the natural choice. 
The decision to go to 8 bits was made, and a coded character set of 

potentially 256 characters resulted. The 6-bit code had been named the 
BCD Interchange Code, with BCDIC as the acronym. Since the number 

of available character positions was to be extended from 64 to 256, the 

new code came naturally enough to be named the Extended BCD 

Interchange Code, with EBCDIC as the acronym. 

7.2 TECHNICAL DECISIONS 

7.2.1. 8-Bit Code Table 

The first technical decision, then, was that the coded character set would 

be 8 bits with a potential of 256 characters, although as narrated above, 

this was more a consequence than a decision. The second decision was 

how to exhibit it in manuscripts, documents, manuals, and so on. At the 

time, 6-bit codes were being exhibited in 4-by-16 code tables; 7-bit code 
tables were being exhibited in 8-by-16 code tables. The natural decision 
was to exhibit EBCDIC in the form of a 16-by-16 code table. 

7.2.2 Bit Numbers 

The next step was to decide how to number or name the bits of an 8-bit 

byte, for reference purposes. The philosophy for BCDIC was bit naming: 

B, A, 8, 4, 2, 1. The philosophy for ASCII was a combination of bit 

naming and bit numbering: b7, b6, b5, b4, b3, b2, b1. A common 

engineering practice was to number from left to right and to associate the 

order of the numbering with high to low significance; for example, 
memory addresses in a computer, columns on a punched card, tab stops 
on a typewriter. It was decided to number the bits of an EBCDIC byte
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according to this same philosophy (0, 1, 2, 3, 4, 5, 6, 7) from the 

high-order to the low-order bit of a byte, as shown: 

  

    
0/1/2/3|4]5|6|7 

              

7.2.3. Hexadecimal Numbers 

The next step was to decide how to reference a particular code position. 

It was decided that the 16 columns (from left to right) and the 16 rows 
(from top to bottom) would be named 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, 

D, E, F, as shown in Fig. 7.1. 

A particular code position would be referenced by giving its column 

name followed by its row name: for example, code position A7 in Fig. 

7.1. This notation came to be called the hexadecimal notation, or hex 

notation. 

The columns and rows could have been named (numbered) 0, 1, 2, 3, 

4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, as was done with another 8-bit 

  

  

Column a | 1 | 2 3 4 | 5 | 6 | 7 8 | 9 | A B c D E | F 

Bit oo 01 10 11 

Pat. 
  

00 01 10 11 00 01 10 11 00 o1 10 11 oo 01 10 11 

  

0 0000 
  

1 0001 

  

2 0010 

  

3 0011 
  

4 0700 
  

5 0101 
  

6 0110 

  

7 [0111 A7 
  

8 1000 
  

9 1001 

  

A 1010 
  

B 1017 

  

c 17100 

  

D 4101 

  

E 47470 

                                        F 1T11 

  

Fig. 7.1 Hexadecimal columns and rows
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code form (to be discussed in Chapter 20). The hex notation is more 

compact, and always requires exactly two “‘typing” spaces for the man- 

uscript representation of a code position; 35, A7, EF, etc. By contrast, 

the numeric notation requires a separating mark (the slash /) to avoid 

confusion; 0/9, 3/15, 1/11, etc. Also, if allowed to be a non-uniform 

notation to gain compactness, as 1/6, 1/11, 11/1, 11/11, the number of 

““‘typing’’ spaces could vary from three to five, while, if uniformity was 

imposed, as 01/06, 01/11, 11/01, 11/11, the number of ‘“‘typing”’ spaces 

required would be exactly five. Either way, the hex notation, with its 

always uniform requirement for exactly two ‘“‘typing” spaces, seems 

superior. 

7.2.4 Quadrants 

The final decision, also for purposes of referencing the code table, was to 

consider the code table to be divided into four equal quadrants, as shown 

in Fig. 7.2. The quadrants would then be referred to as the first quadrant, 

the second quadrant, etc., or as quadrant one, quadrant two, etc. 

  

Column 
  

Bit 
Pat. 

> 
  

                
0 0000 

  

1 0001 

  

2 00710 

  

3 00171 
  

  

  

  

  

  

  

  

  

  

  

4 0100 

5 0101 

6 0110 

7 0111 

8 1000 

9 1001 

A 1070 

B 1011 

Cc 1100 

D 17101 

E 1110 

  

F 1111         
Fig. 7.2 EBCDIC quadrants
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7.2.5 Blocks 

The code table would have to be shown with four unequal blocks in order 

to exhibit the card code (as described in Chapter 2), as shown in Fig. 7.3. 

  

  

  

        

Block 1 

Block 3 

Block 2 

Block 4 

- Figure 7.3 

7.35 SUMMARY 

In summary, then, five decisions were made in order to exhibit and 

reference the EBCDIC Code Table: 

1. The code table would be 8 bits, with a potential of 256 characters. 

2. The bits of an EBCDIC byte would be numbered 0, 1, 2, 3, 4, 5, 6, 

7, from left to right, that is, from high-order bit to low-order bit of a 

byte. 

3. The 16 columns and 16 rows of the code table would be named 

according to a hexadecimal notation: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, 

C, D, E, F. A particular code position would be referenced by giving 

first its column name, then its row name. 

4. For purposes of reference the code table would be considered to be 

divided into four quadrants of four columns each; first quadrant, 

second quadrant, etc. 

5. In order to exhibit the card code, the code table would be shown in 

four (unequal) blocks. 

These decisions having been made (the last four decisions might be 

considered more of an administrative than of a technical nature), atten- 

tion was then directed to the technical aspects of EBCDIC. Ten criteria 

emerged. 

7.4 CRITERIA 

Criterion 1 (Collatability) 

The 64 characters of BCDIC, when embedded in the 256 code positions 

of EBCDIC, should have the same collating sequence, not necessarily 

contiguously, as BCDIC.
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Criterion 2 (Space collatability) . 

The Space character should collate low to all EBCDIC graphic charac- 

ters, those immediately assigned and those to be assigned in the future. 

Criterion 3 (Separability) 

Control characters should be easily distinguishable, by their bit-patterns, 

from graphic characters; that is, graphic and control characters should be 

separable. 

Criterion 4 (Duocase capability) . 

Lower-case alphabetics, as well. as upper-case alphabetics, should be 

assigned. 

Criterion 5 (Duocase relationship) 

Corresponding upper- and lower-case alphabetics should differ only in 

high-order, or zone, bits. The bit patterns for corresponding upper- and 
lower-case alphabetics should have the low-order four bits identical. 

Criterion 6 (Sign capability) 

The concepts of positive, negative, and absolute numerics, zero through 

nine, should be incorporated. 

Criterion 7 (Card-code compatibility) 

The card hole patterns for the 64 BCDIC characters should be the same 

for BCDIC and EBCDIC. 

Criterion 8 (Translation simplicity) 

The translation from the 64 6-bit bit patterns of BCDIC to their equival- 
ent 8-bit EBCDIC bit patterns should be as simple as possible. 

Criterion 9 (Subsetability) 

By dropping the two high-order bits of the 8-bit EBCDIC bit patterns, a 

compact 64 character subset should emerge. This subset should consist of 

the 64 BCDIC characters but need not have the same bit patterns. 

Criterion 10 (No duals) 

The five dual pairs of BCDIC should be eliminated, giving rise to ten 

unique EBCDIC characters. 

It was recognized that Criterion 10 conflicted with Criteria 1, 7, 8, 

and 9. The resolutions of this conflict led to user dissatisfaction, as 

described in Chapter 9, The Duals of EBCDIC. .
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Criteria 1 through 7 are discussed in Chapter 8; Criteria 8 and 9 are 
discussed in Chapter 10; Criteria 7 and 10 are discussed in Chapter 9. 

REFERENCE 

7.1 W. Buchholz, “Planning a Computer System.” New York: McGraw-Hill, 
1962, Chapter 5.



The 
Sequence of 
EBCDIC 

During the late 1950s and early 1960s, the code used on IBM computers 

was a 64-character, 6-bit code, called BCDIC. It met the require- 

ments of the time well enough. The 64 6-bit bit patterns were sufficient to 
represent the following: 

a) Space, alphabetics, and numerics. 

b) The extra diacritic and accent letters needed for the major European 
Latin alphabets. 

c) Special graphics needed for most data processing applications. 

d) Special graphics needed for the major programming languages (As- 

sembler, COBOL, FORTRAN, etc.). 

e) Control characters needed for control of either data processing 
devices (mainly tape drives) or formatting of data. 

It came to suffer from two defects—duals and collating sequence. (For a 
discussion of the duals problem, see Chapter 9.) 

We learned in Chapter 7 of the decision to go to an 8-bit computer 
architecture. This led to the potentiality of a 256-character, 8-bit code set 
and to the establishment of ten criteria. The application of seven of these 

criteria, beginning with Criterion 1 relating to collatability, are discus- 
sed in this chapter. 

8.1 BCDIC COLLATING SEQUENCE 

The 63 graphics, and Space, of the BCD Interchange Code (BCDIC) are 

shown in Fig. 8.1, arranged in sequence of bit patterns from low (00,0000) 
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Pattern 00 4 re ul 

0000 : sp 6 - & or + 

0001 1 / J A 

0010 2 S K B 

0011 3 T L C 

0100 4 U M D 

0101 5 V N E 

0110 6 W 0 F 

0111 7 xX P G 

1000 8 YX Q H 

1001 9 Zz R I 

1010 0 t ! ? 

1011 # or = , $ 

1100 @ or ' % or ( _ * Wor ) 

1101 : v J C 

1110 > \ 3 < 

1111 v # A + 

Fig. 8.1 BCDIC 

to high (11,1111). There was, however, an established collating sequence 

for these 64 characters. Each graphic character, and the Space character, 
was assigned a collating number, from low (0) to high (63). In Fig. 8.2 are 
shown the collating numbers assigned to the 64 characters of Fig. 8.1. As 

can be seen, the bit-pattern sequence of the 64 characters did not 

correspond in any way to the collating sequence of the 64 characters. The 

graphic characters, arranged in collating sequence, are shown in Fig. 8.3, 
with collating numbers running from 0 (low) to 63 (high). 

The basic element in any sorting or collating application is a com- 

parison of the magnitude of two quantities. Essentially, the question is 

asked (by machine instructions in a program): 

Is item A greater than, equal to, or less than item B? 

Depending on the answer, the item is inserted into an ordered list of 

items. This comparison (by executing what was generally called a Com- 

pare instruction) is generally implemented in hardware by subtracting one
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Pattern > 

0 19 12 6 

55 13 36 , 26 

56 46 37 27 

57 47 38 28 

58 48 39 29 

59 . 49 40 30 

60 50 41 31 

61 51 42 32 

62 52 43 33 

63 53 44 34 

54 45 35 25 

20 14 7 1 

21 15 8 2 

22 16 9 3 

23 17 10 4 

24 18 11 5 
  

Fig. 8.2 BCDIC collating numbers 

item from the other and inspecting the sign and magnitude of the result 

(positive, zero, or negative). 

In order that the Compare instruction would function correctly on 
the basis of the established collating sequence, and despite the disordered 
bit-pattern sequence, one of two approaches has been employed. 

8.1.1 Convert/Compare/Reconvert Approach 

On the binary machines (704, 709, 7090, etc.) an instruction was pro- 

vided, generally called a Convert instruction. When executed, this instruc- 
tion would convert the 6-bit bit patterns to another set of bit patterns. 

This other set of bit patterns had the characteristic that the bit pattern 
sequence matched the collating sequence. Thus, when executed, the 
hardware Compare instruction subsequently would function so that the 

data would be arranged into the correct collating sequence. After the 

sorting or collating function was implemented on all the data, that portion
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i a 
Ge ee 

nor ) L4 » Le 7 24 wy LEY 
c LY » LY pS x GY 

a eee 3 ES y 1S 

» Let @or GY x A z (Le 

& or + 4 uBR , 24 9 SH 
Sep eee 
» Le y Ge y EY 2 LE 

eet 
, bo a BY p bal , BY 
a 4 gp EL g FY 5 LE 
eee ed 
ey ae ee 
ee} ee 

% or ) 2S p EL 7 (Me g  (s2 
  

Fig. 8.3. BCDIC graphics in collating sequence 

of the data that had been “‘converted” had to be reconverted back to its 

correct BCD bit patterns. This reconversion was accomplished by another 

instruction. 

8.1.2 Comparator Approach 

On the character machines (1401, 1410, 705, 7080, etc.) special hardware 

called ““comparator” hardware was built in. This hardware, when execut- 

ing a compare instruction, first performed the equivalent of the Convert 

instruction described above, then executed the actual comparison of the 

two items. Thus, the hardware, without actually converting any data (and 
thus eliminating the need for a subsequent reconversion) allowed the data 
to be sorted or collated into the correct sequence.
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An analysis of the two approaches reveals the following: 

# In the Convert/Compare/Reconvert approach, no extra hardware 

was required, but extra CPU time was required to execute the 

conversion and reconversion parts of the program. 

=" In the Comparator approach, no extra CPU time was required, but 

the Comparator hardware itself increased the cost of the computing 
system. 

There was, therefore, either a performance penalty or a hardware cost 
penalty. 

8.2 EMBEDMENT OF BCDIC COLLATING SEQUENCE 

In the design of the new 8-bit CPU code, the Extended BCD Code 

(EBCDIC), it was postulated that the above penalties could be removed, 

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

Column 0 | 1 | 2 | 3 4 | 5 | 6 | 7 8 | 9 | A | 8 c Do | E | F 

Bit | 00 01 10 11 

Pat. 7 
00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11 

Row . 

0 {0000 . I 0 19 12 6 

1 |0001 55 13 36 26 
a 

2 |0010 56 46 37 27 

3 {0011 57 47 38 28 

4 lo1ool. 58 48 39 23 

5 [0101 II] 59 49 oO 30 

6 |0110 60 50 a1 31 

7 {0111 : 61 51 42 32 

8 |1000 62 52 43 33 

9 100% 63 53 Ru 34 

A |1010 TILT} 54 55 35 25 

B |1011 20 1s 7 1 

c |1100 21 15 8 2 

D {11701 IV] 22 16 q 3 

— 41110 23 17 19 & 

Fo |t1t1 24 18 11 5                                         
Fig. 8.4 Blocks in BCDIC
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without any deleterious effects on the user. Let us see what actually 

happened. 

In studying Fig. 8.2, it was observed that the code table could be 

visualized as being in four major blocks, designated I, UH, HI, and IV in 

Fig. 8.4, Then if the blocks were rearranged relative to each other, with a 

view towards coming closer to a correct collating sequence, the result 

would be as shown in Fig. 8.5. Then, if the two high-order bits of each 

column were inverted (zero for one, and one for zero) and the columns 

reordered on the new two high-order bits, the result would be as shown in 

Fig. 8.6. Finally, given the freedom that columns, or if necessary, partial 

columns, could be distributed into the 16 column spaces of an 8-bit code 

table, the results would be as shown in Fig. 8.7. 

In Fig. 8.7, observe that the 64 characters are almost (not quite, see 

character 0 and character 13) in correct collating sequence, albeit not 

contiguously in bit-pattern sequence. The fact that the BCDIC collating 
sequence could be embedded in the EBCDIC collating sequence was the 

primary design factor for EBCDIC. 

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

Column} 0 | 1 | 2 [ 3 4 | 5 | 6 | 7 8 | 9 [ A | B c | Db | E | F 

Bit. 00 01 10 1 

Pat. "4 
Row 00 | 01 10 11 oo | 01 10] 11 oo | o1 10 14 oo | 01 10 1 

a |oo000 20 15 7 1 

1 }0001 21 15 8 2 

2 {0010 IV] 22 16 9 3 

3 [oor 23 17 10 4 

4 0100 24 18 12 5 

5 |0101 I 0 19 12 6 

6 |0110 TIT | sy 45 35 25 

7 |0411 55 13 36 26 

8 1000 56 46 37 27 

9 |1001 57 47 38 28 

A }1010 II } 58 48 39 29 

ae |1011 59 49 40 30 

ce {1100 60 50 41 31 

Dp }1101 61 51 42 32 

e |ii10 62 52 43 33 

ee 63 53 4h 34                                         
Fig. 8.5 BCDIC rearrangement 1



  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

                                

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

                                      

Column 0 [ 1 | 2 | 3 4 | 5 | 6 | 7 8 9 | A B Cc | D | E | F 

Bit oo 01 10 11 ~] 

Pat. 
Row 00 01 10 11 00 o1 10 11 00 01 10 11 00 01 10 11 

0 |0000 z 7 Va 20 

1 0001 2 8 15 bt 

2 0010 IV 3 9 16 22 

3 [0011 4 10 17 2 | 

a 

4 |0100 5 li 18 24 

5 0101 I 6 12 19 9 

6 0170 TIT] 25 35 4S 54 

7 10111 26 36 13 55 

8 |1000 27 37 46 56 | 

9 1001 28 38 47 5 

A |1010 29 39 48 58 

B |1011 IL] 30 40 49 59 

c |1100 31 41 50 50 | 

Oo +1101 32 42 51 61 

—E 11110 33 43 52 62 | 

F141 34 44 53 6 

Fig. 8.6 BCDIC rearrangement 2 

Column| 0 | 1 2 | 3 4 5 | 6 | 7 8 | 9 | A | B c | D | E F 

Bit oo 01 10 11 

Pat. "| 
Row 00 01 10 17 00 01 10 11 00 Ot 10 11 00 o1 10 11 

0 |0000 1 7 14 20 

1 0001 2 8 15 21 

2 |0010 IV 3 9 16 22 

3 [00171 4 10 17 23 

4 10100 5 1 18 24 “| 

5 |0101 I] 6 12 19 @ - 

6 0110 III} 25 35 45 54 

7 |o111 26 | 36 | @3) | 55 

8 $1000 27 37 46 56 

9 1001 28 38 a7 87 

A |1010 29 39 48 se | 

B 1011 IL 30 40 49 59 

c 11100 31 ut 50 60 
—~ 

D |1101 32 42 51 61 

E |11710 33 43 52 62 

F 411114 34 ah 53 63     

Fig. 8.7. BCDIC rearrangement 3 (two collating exceptions) 
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8.3. BCDIC CARD CODE RELATIONSHIP 

It was at this point that several other factors were reviewed as design 
requirements. Following this review, criteria for EBCDIC design were 

established, and the final EBCDIC was designed. Before looking at the 
criteria, let us look at the other design factors. 

First, in BCDIC, there was a reasonably simple relationship between 
BCDIC card hole patterns and BCDIC bit patterns (see Fig. 8.8). This 
relationship, the cornerstone of the binary coded decimal algorithm, 
results in relatively simple and inexpensive hardware translators in card 

reader/punch units serving as input/output units to CPU’s. It was deemed 

desirable to maintain this simple bit-pattern—to—hole-pattern relationship 
in EBCDIC, if possible. The translation relationship, bit patterns to/from 
hole patterns, reveals itself on examination of Fig. 8.8. 

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

              

Pattern nd No Zone A B BA 

No Pch 8-2 Is] 11 12 

i 1 0-1 11-1 12-1 

2 2 0-2 11-2 12-2 

2) 3 0-3 11-3 12-3 

4 4 0-4 11-4 12-4 

41 5 0-5 11-5 12-5 

42 6 0-6 11-6 12-6 

421 7 0-7 11-7 12-7 

8 8 0-8 11-8 12-8 

8 1 9 0-9 11-9 12-9 

8 2 0 0-8-2 uo 4 wo - 

8 21 8-3 0-8-3 11-8-3 12-8-3 

84 8-4 0-8-4 11-8-4 12-8-4 

84 1 8-5 0-8-5 11-8-5 12-8-5 

842 8-6 0-8-6 11-8-6 12-8-6 

8421 8-7 0-8-7 11-8~7 128-7     
Exception translation 

Fig. 8.8 BCDIC-BCD relationship
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Zone punches—no zone, zero zone, eleven-zone, twelve-zone— 

translate to/from the two high-order, or zone, bits—No zone, A, B, 

BA. 

Digit punches 1, 2, 3, 4, 5, 6, 7 translate to/from their binary 

equivalents, 1, 2, 21, 4, 41, 42, 421. 

Eight punch translates to/from its binary equivalent 8. This holds 
whether or not it is in conjunction with digit punches 1, 2, 3,..., 7. 

Nine punch translates to/from its binary equivalent 8 1. 

Zero punch translates a little trickily, depending on whether it is a 
zone punch or a digit punch. It is a zero punch if it is alone, or if it is 
in conjunction with either zone punch 12 or 11 and then translates 

to/from its conventional BCD equivalent 8 2. It is a zone punch if it 

is in conjunction with any other digit punch 1, 2, 3,..., 7, 8, 9, and 

translates to/from the A zone bit. 

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

    

cum of l?zle]ele*lel7lel*l*][*l[el°l=|* 
Bit 00 01 10 11 

Pat. 7 
oo 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11 

Row 

0 |eooe ©[@ |@ {| @| + | as Jas | 
1 0001 26 36 @ 55 

2 }0010 27 37 46 56 

3 [0011 28 38 47 57 

4 10100 29 39 48 58 
4 

5 [0101 30 40 49 59 

6 |0110 31 41 50 60 

7 |o0111 32 42 51 61 

8 )}1000 33 43 52 62 

9 |1001 34 Aa 53 63 

A 1010 

—_ 

B |1011 1 7 14 20 

c |1100 2 8 15 21 

D 11101 3 9 16 22 

— |1110 4 10 17 23 

Fo of14114 5 11 18 24                                       
Fig 8.9 BCDIC rearrangement 4 (five collating exceptions )
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In order to maintain this hole-pattern-to-BCD bit-pattern relationship, it 
is clear that the embedment of the 64 BCDIC characters in the 8-bit code 
table, as shown in Fig. 8.7, would be wrong. Instead, the embedment 

shown in Fig. 8.9 would come closer to preserving both the collating 
sequence and the BCD relationship. 

Block I is a little garbled on the collating sequence, and Block III 

would put the BCD bit patterns 8 2 in the top row. But these are 

peculiarities which we will study later. 

8.4 TECHNICAL DECISIONS 

Decision 1 

The first decision was with respect to control characters and graphic 

characters. It was decided (on a purely intuitive basis) that there would be 
64 control character code positions and 192 graphic character code 

positions. 

Decision 2 

The second decision was with respect to the code table location of the 

control and graphic characters. It was decided that a quadrant would be 
devoted to control characters (i.e., control characters should not overlap 

quadrants) and that the first quadrant would be reserved for control 

characters. Both Decision 1 and Decision 2 were based on Criter- 

ion 3 (see Chapter 7): “Control characters should be easily disting- 

uishable, by their bit patterns, from graphic characters; that is, graphic 

and control characters should be separable.” 
The first structuring of EBCDIC began to emerge (Fig. 8.10). 

  

            

1 2 3 4 
Control 

characters Graphic characters 

Figure 8.10 

Decision 3 

It was decided that the special graphics should be contained in one 

quadrant (mostly) and the alphabetics and numerics in another quadrant, 
as shown in Fig. 8.9. This decision was based on Criterion 1, the 

requirement to embed the BCDIC collating sequence in the EBCDIC
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collating sequence. Letting S stand for special graphics, and AN stand for 

alphabetics and numerics, this gave rise to three possibilities, as shown in 
Fig. 8.11. 

    

        

                                

1}/2/3 1) 4 1}/2/3)]4 1}/2/3 / 4 

S |AN S SN AN S |AN 

Possibility one Possibility two Possibility three 

Figure 8.11 

Decision 4 

Criterion 2 dictated that the Space character should occupy the first 
code-table position in the Second Quadrant (Fig. 8.12). 

Space 

[ 
| 

1 2 3 4 

  

            

Figure 8.12 

Decision 5 

The gross collating sequence of BCDIC, and hence of EBCDIC, was 

specials, alphabetics, numerics. It was decided (intuitively) that specials 
should collate low to lower-case alphabetics as well as to upper-case 

alphabetics. 

Decision 6 

Criterion 4 (inclusion of lower-case alphabetics) and Decision 5 clearly 
ruled out Possibility 3 of Fig. 8.11. 

Decision 7 

It was decided (intuitively) that lower-case alphabetics as well as upper- 
case alphabetics should collate low to numerics. 

Decision 8 

Decision 7 clearly ruled out Possibility 1 of Fig. 8.11, and left Possibility 
2 as the only possible structure for EBCDIC. Decision 2, and Decisions
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3, 5, 6, and 7 which led to Decision 8, established the EBCDIC structure 

as shown in Fig. 8.13. 

Column o 

Bit 
Pat. 

0000 

0001 

0010 

00171 

a100 CONTROLS LOWER CASE UPPER CASE 
ALPHABETICS HABETICS 

0101 

0110 

0141 

1000 

1001 

101710 

1011 

1100 

SPECIALS 
1101 

1110 

1111   
Fig. 8.13 EBCDIC gross structure 

Decision 9 

It was decided that Criterion 1 would be applied absolutely, regardless of 
other criteria. An examination of Fig. 8.9, therefore, indicated that 

characters 6, 12, 19, 0, and 13 must be rearranged and Figs. 8.14 and 

8.15 show the final result. 
It is to be noted that Criterion 6 was also met by Fig. 

8.15. The card hole patterns and positive, negative, and absolute 

numeric equivalents were as shown in Fig. 8.16. Note also that some of 

the card hole patterns for EBCDIC had now been established, as shown 
in Fig. 8.17. It was decided at this time that, as regards small letters and 
capital letters, the capital letters should be assigned to the BCDIC hole 
patterns for alphabetics, in order to ensure a more reasonable migration 
from BCDIC to the EBCDIC environments.



  

  

  

  

  

    

  

  

  

  

  

  

  

  

  

  

  

  

                                  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

coum] of 1]2[s|[«[e]e,7]*,e,alelelol«|.r 
Bit | 00 01 10 11 

Pat. ” 
oo | 01 10 14 oo | 01 10 | 11 oo | 01 10 11 oo! 01 10 11 

Row 

o j;o000 I 0 6 12 19 TIL f 25 35 45 54 

1 0001 13 26 36 55 

2 {0010 27 37 46 56 

3 {0011 28 38 47 57 

4 0100 29 39 48 58 

5 0101 IT] 30 40 49 59 

— 

6 0110 31 al 50 a 

7 [0111 32 42 51 61 

8 |1000 33 43 52 62 

9 71001 34 Qh 53 63 

A |1010 

B 11041 1 7 ra | 20 | 

c 1100 2 8 15 21 

—_ 

D {1101 IV 3 9 16 22 

—E {1110 4 10 17 23 

F 11111 5 12 18 24 

Fig. 8.14 BCDIC rearrangement 5 (correct collating sequence) 

Column} 0 | 1 | 2 | 3 4 5 | 6 7 8 | 9 I A | B c |» | E | F 

Bit 00 01 10 11 i” 

Pat, ~ 
oo | 01 10 11 oo | 01 10 11 oo | 01 10 11 oo] 01 10 11 

Row 

o |ooo0o0 SP | &+ - 6 ? | + 0 

1 0001 / A J J 

2 |0010 B K S 2 

3 [0011 c L T 3 

4 ]0100 D M U 4 

5 {0701 E N Vv 5 

6 101170 F Oo W 6 

7 Yow G P xX 7 

8 1000 H Q Y 8 

9 1001 IT R Zz 9 

A |1010 
au 

B 11011 . $ > its 

c |1100 m)t| * 1% ¢(/@!' 

D |1101 [ J Y 

E /1710 < 3 \ > 

F |a1i1 ¢ A # ¥                                         

Fig. 8.15 BCDIC graphics in EBCDIC 

1A1



  

Hole Numeric Hole Numeric Hole Numeric 
Graphic | pattern | equivalent | Graphic | pattern | equivalent | Graphic | pattern | equivalent 

? 12-0 +0 ! 11-0 —-0 0 0 0 
A 12-1 +1 J 11-1 -1 1 1 1 
B 12-2 +2 K 14-2 —2 2 2 2 
Cc 12-3 +3 L 11-3 —3 3 3 3 
D 12-4 +4 M 11-4 —4 4 4 4 
E 12-5 +5 N 11-5 -5 5 5 5 
F 12-6 +6 O 11-6 ~6 6 6 6 
G 12-7 +7 P 11-7 ~7 7 7 7 
H 12-8 +8 Q 11-8 -8 8 8 8 
I 12-9 +9 R 11-9 -9 9 9 9                   

Fig. 8.16 EBCDIC-—BCD relationship 

Column 0 

00 

Hote 

Pat.   
  

  

  
  

  

  

X = Assigned Hole Patterns 
Hole Patterns: 

G] Ml [13] 0-1 
2] Block | Hole Patterns at: 

[3] [3] 12-0 1 3 L Top and Left 

(4] 11-0 2 Bottom and Left 

[5] No Pch [1] 0-8-2 2 4 3. | Top and Right 

[e] 12 [2] 0 4 | Bottom and Right               
Fig. 8.17. Preliminary EBCDIC hole patterns 
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The Duals 
of 

EBCDIC 

9.1 A- AND H-DUALS 

In Chapters 4 and 5 there is a discussion of the five duals of BCDIC; why 
they came into being, an attempt to eliminate them, and why they were 
not eliminated after all. The duals came into existence because of 
equipment limitations and were retained for reasons of compatibility. 

A number of different 48-character chains were provided for the 
families of 6-bit computers. These chains were designated by letters A, B, 
C, D, E, F, G, H, I, etc. One of these chains carried the ‘‘commerical”’ 

graphics and was designated an A chain. Another chain carried the 
“scientific” graphics and was designated the H chain. In time, the duals 
came to be designated by these letters; the A-duals and the H-duals. 

Hole patterns A-duals H-duals 
  

0-8-4 % ( 
12-8-4 x ) 
12 & + 

8-3 # = 
8-4 @ 
  

While EBCDIC was being developed (as described in previous chapters), 

the question arose again, “Should the duals be eliminated?” 

9.2 IMPLICATIONS OF REASSIGNING DUALS 

Certainly, the equipment limitations could be removed. While the 

System/360 was being designed, a new keypunch (which came to be the 

143
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IBM 029 Keypunch) was being designed. It would expand from the 

capability of the 026 Keypunch to key 48 characters by single key-stroke 
to a capability of 64 characters. New printers were being designed, and it 

was assumed or hoped that the long-established 48-character printing set 

could be expanded without sacrificing printing speed. The question of 
compatibility of card hole patterns with BCDIC would obviously arise 
and would have to be reviewed. But the full implications of any such 

incompatibility could not be reviewed in depth until the nature and extent 

of the incompatibility was known. The first thing to be determined was 
what the incompatibility might be. There were four possibilities: 

Possibility 1. Retain the de facto BCDIC hole patterns for the A-duals, 
and assign new hole patterns to the H-duals. 

Possibility 2. Retain the de facto BCDIC hole patterns for the H-duals, 
and assign new hole patterns for the A-duals. 

Possibility 3. Retain the de facto BCDIC hole patterns for some of the 
A-duals and for some of the H-duals, and assign new hole patterns to the 
other A-duals and to the other H-duals. 

Possibility 4. Assign new hole patterns to the A-duals and to the 

H-duals. 

It was clear that, whatever the implications of Possibilities 1 and 2, these 

must be determined first, after which the implications of Possibilities 3 

and 4 could be determined easily. So Possibilities 1 and 2 were looked at 
first. 

Three data processing customer situations were reviewed: 

Situation 1. Customer now, or in the future, will take a successfully 

performing application on a BCDIC computer and convert it to run on an 
EBCDIC computer. 

Situation 2. An application will be organized so that it is processed 
partially on a BCDIC computer and partially on an EBCDIC computer. 

Situation 3. An application will be processed completely on an EBC- 

DIC computer. 

With respect to Possibilities 1, 2, 3, and 4, Situation 3 seemed to display 

no implications, so it was disregarded in further review. 
Two assumptions were now made: 

Assumption 1. A-duals will appear mainly in data. That is, they will be 
required to be input to the system, will exist in data during various stages 
of processing, and may be required in output listings or other output data.
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Assumption 2. H-duals will appear mainly in programming source lan- 
guage statements. That is, they will require to be input to the system, and 
will be required for source language program listings, and will be required 
during compile processes, but will not then be required in further stages 

of processing. 

Some implications now emerged: 

Implication 1. Possibility 1 posed no adverse implications under As- 
sumption 1 for any of Situations 1, 2, or 3, but it posed adverse 
implications under Assumption 2. 

Implication 2. Possibility 2 posed no adverse implications under As- 
sumption 2 for any of Situations 1, 2, or 3, but it posed adverse 
implications under Assumption 1. 

Implication 3. Possibilities 3 and 4 posed adverse implications for all of 
Situations 1, 2, and 3 under both Assumptions 1 and 2. 

Before we consider adverse implications, let us look at another 

assumption that was made. 

Assumption 3. Under Possibilities 1, 2, 3, and 4, the “new” hole 

patterns would nevertheless be contained within the set of 64 BCDIC 
hole patterns. That is to say, the “new” hole patterns* could still be input 
to BCDIC computing systems, even though their graphic meanings had 

been changed. 

Now, let us examine the adverse implications in detail. First we need 
some terminology to cover the four Possibilities precisely. 

If the old and therefore compatible hole patterns are retained for the 
A-duals, the data containing these duals will be called “‘compatible 

BCDIC A-data,” or “compatible EBCDIC A-data,” depending on which 
code is used. Similarly, if old hole patterns are retained for the H-duals, 
reference will be made to “compatible BCDIC H-data,” or to ‘‘compati- 

ble EBCDIC H-data.” 
If new and therefore incompatible hole patterns are assigned to the 

A-duals, reference will be made to “incompatible BCDIC A-data” or to 

*An intriguing aspect of “new” hole patterns emerged in EBCDIC. A 64- 
character subset of the 256 EBCDIC hole patterns was the set that was single- 
stroke keypunchable on the 029 Keypunch. But the EBCDIC set of 64 hole 
patterns did not match the BCDIC set of 64 hole patterns. EBCDIC subset 
contained 12-8-2 and 11-8-2, but not 12-0 and 11-0 (12-0 and 11-0 were, of 

course, contained in the total set of 256 EBCDIC hole patterns). BCDIC set 
contained 12-0 and 11-0, but did not contain 12-8-2 and 11-8-2. This anomaly is 
fully discussed in Chapter 10.
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“incompatible EBCDIC A-data.” Similarly, if new hole patterns are 
assigned to the H-duals, reference will be made to “incompatible BCDIC 
H-data” or to “incompatible EBCDIC H-data.” 

9.2.1 Situation 1 Consequences 

Consider Situation 1 under each of the four Possibilities: 

Situation 1/Possibility 1. There will be no problem with A-data, but all 
programs will have to be either reprogrammed or rekeypunched for the 
incompatible EBCDIC H-data, then recompiled and redebugged. 

Situation 1/Possibility 2. Data containing compatible BCDIC A-data 
will have to be converted to incompatible EBCDIC A-data. Programs 

will have to be either reprogrammed or recompiled and redebugged (but 

not rekeypunched). 

Situation 1/Possibility 3. The actual situation here would depend on 
which A- and H-duals were, or were not, changed. However, for those 

applications with A-data whose A-duals had been changed, data would 
have to be converted. Programs would have to be either reprogrammed 
or rekeypunched, then recompiled and redebugged. 

Situation 1/Possibility 4. Data containing compatible BCDIC A-data 
would have to be converted. Programs would have to be rekeypunched, 
recompiled, and redebugged. 

9.2.2 Situation 2 Consequences 

Now, Situation 2 had to be defined in greater depth. There are three 
considerations: 

* BCDIC computer does, or does not, process H-data. 

= BCDIC computer does, or does not, pass A-data to EBCDIC 

computer. 

=" BCDIC computer does, or does not, receive A-data from EBCDIC 

computer. 

The various possible situations are shown in the left column of Fig. 9.1. 

For these various situations, the table indicates whether implications are 
unsatisfactory (U) or satisfactory (S). For the various Situations under the 

four Possibilities, Situation/Possibilities were unsatisfactory in 12 in- 
stances because of change of H-duals, unsatisfactory in 18 instances 

because of change of A-duals. Assuming all Situation/Possibilities were
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BCDIC Possibility Possibility Possibility Possibility 

Computer 1 2 3 4 

Processes H, yes U S U U 
Passes A, yes S U U U 
Receives A, yes S U U U 

Processes H, yes U S U U 

Passes A, yes S U U U 

Receives A, no S S S S 

Processes H, yes U S U U 

Passes A, no S S S S 

Receives A, yes S U U U 

Processes H, yes U S U U 
Passes A, no S S S N) 

Receives A, no S S S S 

Processes H, no S S S S 

Passes A, yes S U U U 

Receives A, yes Ss U U U 

Processes H, no S S S S 

Passes A, yes S U U U 

Receives A, no S S S S 

Processes H, no S S S S 

Passes A, no S S S S 

Receives A, yes S U U U 

Processes H, no S S S S 

Passes A, no S S S S 

Receives A, no S S S S 
  

Figure 9.1 
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equally likely to occur, the table shows more unsatisfactory implications 
for A-dual changes than for H-dual changes. 

There was another consideration. There are vastly more tapes con- 

taining application data (i.e., containing A-duals) than there are source 
language program tapes (i.e., tapes containing H-duals). In general, it was 
reasoned that the costs of converting data (if A-duals were changed) 

would be vastly greater than the costs of converting programs (if H-duals 

were changed). Possibility 1, therefore, seemed to pose very much less of
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a cost implication for users than Possibility 2. Possibilities 3 and 4 seemed 
to pose more cost implications for users than either Possibilities 1 or 2. In 
short, Possibility 1 seemed to be the least onerous choice. 

9.3 FIRST DECISION 

The first decision was made. If one of the four Possibilities were chosen, it 

would be Possibility 1—to retain the BCDIC hole patterns for the 
A-duals and to change the hole patterns for the H-duals. This Possibility 
would be taken together with Assumption 3—to retain the 64 BCDIC 

hole patterns. 

The next step was to decide which five BCDIC graphics would be 

replaced by the EBCDIC H-duals: 

() + =! 

9.4 FURTHER DECISIONS 

Some further decisions were made: 

1. Space, numerics, alphabets would not be changed. 

2. @ # % & HK would not be changed. 

3. ., * / $ — would not be changed. 

This left the following BCDIC graphics for consideration: 

>> $2 < > [— J 

/ 6 y + £ # A V 

This problem was being considered in the same time frame as the 
design and development of the System/360. It had already been decided 

that none of the control functions provided by the seven BCDIC control 
characters would be provided as functions on the System/360, and the 
seven graphics would not be provided on the System/360. Therefore, the 
seven graphics would not be provided in EBCDIC, and the seven 

corresponding code positions were available for assignments of the H- 
duals or of new graphics as seemed appropriate. 

It was decided that the five H-duals would not be assigned to any of 
these seven code positions. The reasoning went as follows. The five 
H-duals were graphics used in programming languages. It was entirely 
possible that source language programs intended for execution on 
System/360 might first pass through a BCDIC computer, for one or 
another reason. But such programs would have to have the “new” codes
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for the H-duals, whatever they might be. If the H-duals were assigned to 
the hole patterns of BCDIC control characters, then, when such programs 
were entered into a BCDIC computer, the H-duals would have bit 

patterns of control characters. And if such programs were then recorded 

on seven-track magnetic tape, during the recording or subsequent reading 
of such tapes on BCDIC computers, the control bit patterns might cause 
unexpected and undesirable effects. Might not, of course, if care was 
taken, but the feeling was, it was better to be safe than sorry. The 

H-duals should not be assigned to the hole patterns of the BCDIC control 
characters. 

This left the following set of BCDIC graphics, of which five were to 
be replaced by H-duals: 

;!< > \ CE ] 

Intuitively, it was decided to replace 

[ ] by ( ) 

leaving 

; ! < > \ 

three of which were to be replaced by 

+ = ! 

As has been mentioned before, it had already been decided not to 
provide on the 029 keypunch the hole patterns 12-0 and 11-0 as 
single-stroke keypunchable characters. In consequence, the hole patterns 
of the BCDIC graphics ? ! were not available to be replaced by any of the 
H-duals. (The reason for this aspect of the design of the 029 Keypunch is 
discussed more fully in Chapter 10.) This left BCDIC graphics 

; < > \ 

The ; was a required graphic in COBOL, so it could not be replaced. 
Both < and > were also COBOL graphics, but the COBOL standard 
stipulated that they could be represented by two-character representa- 
tions; GT (Greater Than) for > and LT (Less Than) for <. It was 

decided that < and > were the two BCDIC graphics to be replaced, and 
+ and = were chosen to replace them, respectively. BCDIC ; and 

EBCDIC ; would be matched. This left BCDIC graphic either : or \ to be 
replaced by ’; on not much more than a toss of a coin basis, it was decided 
to replace 

by '
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The situation was now as follows: 

  

BCDIC EBCDIC 

Space match Space 

0-9 match 0-9 

A-Z match A-Z, 

.,* /$—- ; match .,* (/$-; 

@#% & match @#F%*&k&H 

:>[< ] replaced by "= (+ ) 

2! hole patterns not 

to be assigned 

EBCDIC graphics 

\ undecided 
By + # + AV not to be assigned 

in EBCDIC 

At this stage then, five BCDIC graphics < > [ |: were to be replaced, 
the card hole patterns of two BCDIC graphics ? ! were not to be on the 

029 Keypunch, and no decision has been made with respect to the 
BCDIC graphic \ . 

The next question was whether any of the seven BCDIC graphics 

< > [— ]: ! ? 

should be reassigned to BCDIC hole patterns to be vacated by 

+ + + 6 AV ¥ 

9.5 PL/I CONSIDERATIONS 

While this question was being considered, a new factor came on the 

scene. A new higher-level programming language, PL/I was being de- 

veloped. PL/I itself has some character set requirements. The Space 

character would be needed and so would the following 59 graphics: 

10 numerics 0 to 9 

26 alphabetics A to Z 

3 alphabetic extenders # $ @ 
20 syntactics* + = -—- {[ * () < > L 

, 2 3 2? | Tt ' % & 

*A syntactic is a character that has some specific meaning within the syntax of a 
programming language.
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Actually, the PL/I designers had wanted more graphics, in particular [ 
and ], but the requirement to implement the set on a 60-character chain 
made it impossible to provide the brackets to PL/I. 

It was decided that these 59 graphics must definitely be assigned in 
EBCDIC and to hole patterns that are single-stroke keypunchable on the 
029 Keypunch. Many of them had already been assigned, under the 
discussion above. The Space character, numerics, alphabetics, and al- 

phabetic extenders had been assigned. Of the syntactics, 13 had been 

assigned: 

() + = ' 2,5 % &/ * - 
Seven syntactics remained to be assigned: 

< > | 7 _ ? 

Also, graphics for three lower-case alphabetic extenders needed to be 
assigned. Ten BCDIC graphics had not yet been replaced: 

27 !\ 6 + £ # AV 

Of these ten, as mentioned previously, the hole patterns 12-0 and 11-0 
for ? and ! were not to be available on the 029 Keypunch. Compensating 
for this, two new hole patterns would be available, 12-8-2 and 11-8-2. 

It seemed like a fortuitous match—seven syntactics and three lower- 

case alphabetic extenders needed to be assigned, and eight BCDIC hole 
patterns and two new hole patterns were available. This fortuity quickly 

disappeared, for the following reasons. 

9.6 “88 — 26 = 62” 

The console typewriter for the System/360 would provide 88 graphics and 

the Space character. Of these 88, 26 are lower-case alphabetics, leaving 

62 graphics. The 029 Keypunch can provide 63 graphics and the Space 
character, but if it does so, one of those 63 graphics cannot be typed on 
the console typewriter. The system would be out of balance. To resolve 

this system imbalance, the 029 Keypunch must be allowed to provide 
only 62 graphics, and the Space character. The 029 would have the 

physical capability of providing a 63rd graphic, but it must not do so. This 

reasoning was accepted. (A fuller discussion is given in Chapter 10.) The 
029 Keypunch was designed to have a key that will generate the 0-8-2 

hole pattern, but no graphic is interpreted on the punched card. Since the 

0-8-2 hole pattern was selected, no EBCDIC graphic would be assigned 
to replace the BCDIC +.
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9.7 ASCIi CONSIDERATIONS 

The consequence of this decision was that there were 9 hole patterns 
available and 10 graphics to be assigned. This dilemma was resolved by 
consideration of another factor. It would be helpful in the long run if 
EBCDIC provided the same set of graphics as ASCII. A corollary of this 
was that EBCDIC should not have graphics that were not in ASCII. This 
focused attention on three EBCDIC graphics: 

| 7° x 

The first part of the solution involved | and “‘. As described in Chapter 
24, this problem was solved when the standards committees decided that 

the ASCII graphics ! and * could be stylized as (that is, substituted by) | 

and “| 

This left the graphic 4 to be resolved. Attempts to persuade the 

standards committees to assign this graphic in ASCII were unavailing. 
Eventually, it was decided not to assign 4 in EBCDIC. This decision, as it 
turned out, was not subsequently accepted by many customers, who 

requested that it be provided on printers for the System/360. It was 
provided to these customers, although it ostensibly did not exist in 

EBCDIC. 

9.8 BCDIC CONTROL CHARACTERS 

This brought the counts back to match—EBCDIC graphics for BCDIC 
hole patterns. The question that now arose concerned the fact that six of 
these BCDIC hole patterns represented BCDIC control characters. As 

stated above, BCDIC hole patterns that represented BCDIC control 

characters were avoided in reassigning the H-duals. Shouldn’t they also 

be avoided in assigning the rest of the PL/I syntactics? 
It would not be possible to avoid them, however, if Assumption 3 

above was to be valid. So the question was not how to avoid assigning 
PL/I graphics to BCDIC control characters, but rather what the implica- 
tions of such an assignment might be. The reasons for avoiding BCDIC 

control characters for H-duals were reviewed: 

=» H-duals were used in FORTRAN and COBOL source language 
programs. 

* Such programs, intended for execution on a System/360, might 

nevertheless be processed in some way on a BCDIC computer before 

arriving at the System/360. 

=" During the processing on a BCDIC computer, the source language 

program might be stored on magnetic tape.
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=" The control bit patterns might cause unpredictable and unwanted 
results. 

Since PL/I, as a programming language, was not being developed for 

use on a BCDIC computer, it seemed unlikely that any PL/I source 
language programs intended for execution on a System/360 would be 
entered into a BCDIC computer for any reason. Therefore, it seemed 

that assigning PL/I syntactics to BCDIC control bit patterns was unlikely 

to lead to trouble. Two of these syntactics < and > were also COBOL 
syntactics, so it was decided not to assign < and > to BCDIC control 
characters. There were just two BCDIC noncontrol characters remaining 

unassigned, 4 (freed up as described above) and \. These two hole 

patterns were assigned to < and > (respectively). 

The five remaining PL/I syntactics | * _ : ? were assigned to the hole 
patterns previously assigned to BCDIC graphics = y A 6 # respec- 

tively. 

9.9 LOWER-CASE ALPHABETIC EXTENDERS 

The sole remaining problem, then, was assignments for the three lower- 

case alphabetic extenders. While this development work on EBCDIC was 
going on, a new PTTC was being developed for the System/360 (see 

Chapter 12). The criterion developed for lower-case alphabetic extenders 

for the new PTTC was as follows: 

U.S.A. graphics for the three lower-case alphabetic extender code 

positions must be such that they will not be required or wanted in 

any European country with a Latin alphabet. That is, in such 
countries, the U.S.A graphics can be “throwaways.” 

The three graphics ¢ ! ” were chosen to meet this criterion. (These 
graphics also met the requirement that they be ASCII graphics, although 

¢ disappeared from ASCII before ASCII was finally approved as an 
American National Standard.) And so ¢ ! were assigned to the two new 

hole patterns, 12-8-2 and 11-8-2, and ” was assigned to the sole re- 

maining BCDIC graphic ,/ with its hole pattern of 8-7. 

It should be pointed out that because of their card hole patterns 12- 
8-2 and 11-8-2, the EBCDIC ¢ and ! came in time to be associated with 

the ASCII graphics [ and ] associated with those hole patterns. When this 

association became firm (when the American National Standard Hollerith 

Punched Card Code was approved), it was suggested that EBCDIC be 
changed, replacing ¢ and ! with [ and ] (respectively). This suggestion was 

reviewed, but not adopted, for the following reasons.
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1. The cost to replace 029 Keypunch printing plates and keytops, 
printer chains and trains, typewriter printing elements, graphic dis- 
play character generators, etc., would be considerable. 

2. Graphics [ and | were in ASCII code positions which corresponded 

to National Use positions in the ISO 7-Bit Code. ISO 7-Bit Code 

National Use graphics, like EBCDIC alphabetic extenders, were ex- 

pected to be replaced in those European countries with Latin al- 
phabets of more than 26 letters; that is, the graphics [ and | would 
not, in fact, appear in Europe. 

3. In FORTRAN and PL/I, there had long been an unfulfilled require- 
ment for a second pair of ‘‘parentheses.”” The [ and ] would certainly 
serve that purpose. If the brackets were put on the 029 Keypunch, 

that would make them available for just such a second level of 

parentheses. 

4. But such a compiler would not serve in Europe, where the brackets 

would be replaced by letters. 

5. To avoid such a potential dichotomy for programming languages 
between Europe and the U.S.A., graphics [ and | were not put on the 

029 Keypunch. 

6. A small glitch between ASCII and EBCDIC—{[ and ] corresponding 
respectively to ¢ and !—seemed preferable to the potential program- 
ming language dichotomy of reason 5 above. 

9.10 FINAL ASSIGNMENT OF SPECIALS 

Figure 9.2 shows the final assignment of specials into EBCDIC in 1970, 
as a result of reassigning the H-duals. Figure 9.3 shows, for comparison, 
the graphics that would have been assigned in EBCDIC if the BCDIC 
specials, complete with A/H-duals, had been assigned according to their 
BCDIC card hole patterns. Of the 27 BCDIC specials, only 11 ended up 
with unchanged code positions in EBCDIC. 

9.11 CONSEQUENCES OF REASSIGNMENT 

A question that arose was whether the collating sequence had been 

affected by these changes. The primary criterion in the development of 

EBCDIC was that the collating sequence of BCDIC should be embedded 
in the EBCDIC collating sequence (see Chapter 8). In a very real sense, 
this criterion had not been aborted, even though many BCDIC graphics 

ended up with EBCDIC card hole patterns different than their BCDIC 

card hole patterns.
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Fig. 9.3 BCDIC specials in EBCDIC 
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Example 

The field on which records are sorted or collated is called a keyword. 
Keypunch a set of records, and keywords, on an 026 (BCDIC) Keypunch. 
Enter the data into a BCDIC computer. Sort the records in sequence of 

keywords. 
Take the same card deck, and enter it into an EBCDIC computer. 

Sort the records in sequence of keywords. 
The sequence of records in the BCDIC computer and the sequence 

of records in the EBCDIC computer will be identical. 

The sequence of records will be identical, but will anything be 

different? List the keywords and records on the printer of the BCDIC 

computer. List the keywords and records on the EBCDIC computer. 
Compare the listings. If all graphics in the keywords and records are in 
the following set, the listings will be identical: 

Space 

Numerics 0 to 9 

Alphabetics A to Z 

Specials ., f * $ - 3; & % F @ 

If graphics are used in keywords or records beyond the set above, the 
listings will look different, the differences corresponding to the differences 

between Fig. 9.2 and 9.3. But it must be reemphasized that the sequence of 

records will be identical. 
Were there any adverse effects of the reassignment of the H-duals? 

Yes, indeed! The first effect showed up for programmers who were 
developing various programs for the System/360. Engineering models of 

the System/360 were available for the use of programmers, but 029 

Keypunches were not. Programmers could not get their programs 

keypunched according to the EBCDIC card hole patterns. If programs 

could not be keypunched, they could not be entered and debugged. The 

solution to this impasse was to modify several 026 keypunches to gener- 

ate the EBCDIC hole patterns for() + = '. Then the programs could be 

keypunched, entered, and debugged. 
The second effect was on customers who had received a System/360. 

Of course, old BCDIC machine language programs would not work on 

the System/360, but, to the extent that customers had retained source 

language program decks or program tapes for COBOL or FORTRAN, 

the programs could be recompiled, a task which was a far less onerous 

proposition than reprogramming. Unfortunately, such program decks or 

tapes would have the old BCDIC H-dual hole patterns or bit patterns for 

() + =' and the System/360 compilers for COBOL and FORTRAN had
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Fig. 9.4 A- and H-duals in EBCDIC 

been written assuming the new EBCDIC patterns for these graphics. 

Could this dilemma be resolved? 

It could, and was, with the aid of some IBM customers. Consider Fig. 

9.4. EBCDIC hex positions 4D, 5D, 4E, 7E, and 7D were the assigned 

positions for the bit patterns of () + = '. EBCDIC hex positions 6C, 4C, 

50, 7B, and 7C were where these graphics would have been assigned 

according to their old BCDIC hole patterns or bit patterns. Three things 

were done. 

1. The logic in the control unit of the chain and train printers was 

modified, as shown in Fig. 9.4, so that 

either hex position 4D or 6C printed ( 

either hex position 5D or 4C printed ) 

either hex position 4E or 50 printed + 

either hex position 7E or 7B printed = 

either hex position 7D or 7C printed '
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2. The scan portion of the FORTRAN compiler was modified so that 
either of the equivalent pairs of bit patterns would be accepted for () 
+=", 

3. The scan portion of the COBOL compiler was similarly modified. 

By these actions, old FORTRAN or old COBOL program decks or tapes 

could be read into a System/360, listed for debug purposes, compiled, and 
executed. 

Clearly, if these actions had been taken during the development cycle 
of System/360 programs, the first adverse effect above would not have 
occurred, and unmodified 026 Keypunches could have been used. Hind- 

sight is easily come by. 

With the reassignment of H-duals in EBCDIC, and with the assign- 
ment or reassignment of the remaining PL/I syntactics and of the lower- 

case alphabetic extenders, the 88 graphics of EBCDIC were set in place. 
Attention now centered on completing the 256 card-hole-patterns—to— 

bit-patterns assignments. This will be discussed in Chapter 11.



The 
Graphic Subsets 

of EBCDIC 

The 256-character code EBCDIC was designed as the CPU code for the 
System/360. As described in Chapter 8, a decision was made to reserve 
64 code positions for control meanings and 192 code positions for graphic 
positions. The physical capability of chain/train printers of providing up 
to 240 different graphics did not limit the total numbers of graphics to be 
assigned in EBCDIC. Other factors did set limits and gave rise to graphic 
subsets of EBCDIC. 

10.1 88-GRAPHIC SETS 

The console printer for the System/360 was based on an electric typewri- 
ter, duocase, with 44 keys, and a capability of printing the following 88 

graphics: 

10 numerics 0 to 9 
26 lower-case alphabetics a to z 

3 lower-case alphabetic extenders ¢ ! ” 
26 upper-case alphabetics A to Z 

3 upper-case alphabetic extenders # $ @ 
20 specials /*+ = - &€& % | 7 

a ee ee GD 

As described in Chapter 8, these 88 graphics were assigned to code 
positions as shown in Fig. 10.1. 

159
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Fig. 10.1 EBCDIC 88-graphic set 

10.2 62-GRAPHIC SUBSET 

From the duocase set of 88 graphics emerged a monocase set. The IBM 

029 Keypunch was being designed at the same time as the System/360, 

and it had been decided to provide 64 hole patterns on the 029. One of 

these hole patterns would be the “no-holes” hole pattern for the Space 

character, leaving 63 hole patterns to be assigned. It was decided that the 

029 Keypunch would provide a monocase set, and that the hole patterns 

for the monocase alphabetics would be those already assigned to the 

upper case alphabetics of EBCDIC. A keypunch keyboard is represented 

in Fig. 10.2. 
By the decision to assign the hole patterns of the EBCDIC upper- 

case alphabetics to the keypunch monocase alphabetics, the EBCDIC 

lower-case alphabetics were excluded from the keypunch—excluded in 
the sense of being single-stroke punchable. That is to say, of the 88
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Hole 

Pattern——> 12 11 0 

& - a) SP 

1 A J / 1 

2 B K 8 2 

3 Cc L T 3 

4 D M U 4 

5 E N Vv 5 

6 F 0 W 6 

7 G P x 7 

8 H Q Y 8 

9 L R Zz 9 

a ¢ ! 

8-3 $ , i# 

8-4 < * x @ 

8-5 ) _ t 

8-6 + = 

8-7 { 7 2 " 
  

Fig. 10.3 EBCDIC 64-graphic set 

EBCDIC graphics, 88 — 26 = 62 could be provided. But the keypunch 

could provide 63 graphics. There were, then, two possible choices: 

1. Assign 63 graphics on the keypunch, and add a graphic to EBCDIC, 

making a total of 89. 

2. Assign 62 graphics on the keypunch, and thus leave one of the 63 

hole patterns unassigned. 

If choice (1) were made, the 89th graphic could then not be printed on 

the 88-graphic console typewriter. An imbalance in the system would be 

created. For this reason, choice (1) was rejected. 

Under choice (2), the keypunch could punch and interpret 62 charac- 

ters and the Space character. The hole pattern 0-8-2 has no graphic
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Hole 

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

      

Pattern > 12 11 0 

& or + - 0 SP 

1 A J / i 

2 B K S 2 

3 c L T 3 

4 D M U 4 

5 E N Vv 5 

6 F ) W 6 

7 G P x 7 

8 H Q Y 8 

9 I R Zz 9 

9 2 Ly ! L2| + b 

8-3 $ > # or = 

8-4 Wor ) * Zor ¢ @ or ' 

8-5 L 1 Y 

8-6 < ; \ > 

8-7 # A a v             

Hole Patterns: 

[7] 12-0 

[2] 11-0 

Fig. 10.4 BCDIC 64-graphic set 
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assigned. As can be seen from Fig. 10.2, 0-8-2 is engraved on a keytop. 
When this key is depressed, the hole pattern 0-8-2 is punched in the card, 
but no graphic is interpreted on the card. (As described later in Section 
10.3, a graphic was assigned some years later to the hole pattern 0-8-2, 
but it is not interpreted on the 029 Keypunch.) 

The 64 characters of this EBCDIC subset are shown in Fig. 10.3. 
Figure 10.4 shows the 64-character set of BCDIC. It is to be noted that 
the two sets of 64 hole patterns are not quite the same. EBCDIC-64 has 

hole patterns 12-8-2 and 11-8-2, and does not have 12-0 and 11-0. 
BCDIC has hole patterns 12-0 and 11-0, and does not have 12-8-2 and
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11-8-2. The hole patterns 12-8-2 and 11-8-2 were chosen instead of 12-0 

and 11-0 for the 029 Keypunch because of a mechanical problem.* 
It is of interest that these 64 hole patterns of the 029 Keypunch are 

the hole patterns assigned to the 64 graphics and Space in columns 2, 3, 
4, and 5 of the 7-Bit Code (Fig. 2.26). In that code, the graphic \ is 

assigned to the hole pattern 0-8-2, and the graphics [ and ] are assigned 

to the hole patterns 12-8-2 and 11-8-2, respectively, as contrasted to the 
EBCDIC graphics ¢ and !. Further, in the 7-Bit Code, graphics ! and ” 
are assigned to hole patterns 12-8-7 and 11-8-7, respectively, as con- 
trasted to the stylistically similar EBCDIC graphics | and —. This 
64-graphic set is shown in Fig. 10.5. 

Another 64-character set emerged during the design of the IBM 
System/3. It was decided to provide a printing set of 63 graphics and 
Space. Of these 63 graphics, it was quickly decided that 62 would be 
those of EBCDIC previously described. But what should the 63rd graphic 
be? It will be recalled that for the System/360, a console typewriter of 
88-graphic capacity limited the EBCDIC monocase set to 62 graphics. 
But for the System/3, a 63 monocase printer would be provided for the 
console, so the system imbalance limitation did not appear. 

In the System/3, as with other BCD computers, the BCD relation- 

ship for alphabetics would be provided. That is, as discussed in Chapter 2, 
hole patterns 12-1, 12-2,...,12-9 would mean A, B,...,I as alpha- 

betics, but would mean +1, +2,...,+9 as signed numerics; hole patterns 

11-1, 11-2,...,11-9 would mean J, K,..., R as alphabetics, but would 

mean —1, —2,...,—9 as signed numerics. 

When signed numerics are printed out in final listings, the sign — is 
separated from the units position of a numeric field and printed sepa- 
rately. But during debugging runs, the sign is generally not printed out. 
That is to say, —1, -2,..., —9 will print as J, K,..., R. While this may 

look peculiar, it is quite unambiguous to the programmer, and is accepta- 
ble. Similarly, +1, +2,..., +9 will print as A, B,..., I. 

The problem is, what will print for —O and for +0? The problem 
with +0 is not so pressing, since input data for debugging generally has 
absolute (unsigned) numbers instead of positive (signed) numbers. But the 

* Without going into details on this mechanical problem, let it suffice that to 
interpret from hole patterns 12-0 and 11-0 would be quite difficult, while to 
interpret from hole patterns 12-8-2 and 11-8-2 was quite easy, so the latter pair 
were chosen. The hole patterns 12-0 and 11-0 are included in the total set of 256 
hole patterns of the EBCDIC card code, but they are not in the 64-character set 
of the 029 Keypunch.
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Hole 

  

  

  

  

  

  

  

Pattern 12 11 0 

& - 0 SP 

1 A J / 1 

2 B K 8 2 

3 G L T 3 

4 D M U 4 

5 E M v 5 

6 F 0 W 6 
  

“I
 

Q
 Wd
 

~ “ 

  

  

  

  

  

  

  

                
8 H Q Y 8 

9 I R Z 9 

0 C 7 \ 

8-3 $ > # 

8-4 < & % @ 

8-5 ( ) _ ' 

8-6 + 5 > = 

8-7 i “ 9 " 
  

Fig. 10.5 7-Bit code 64-graphic set 

problem for —0 remains. It was decided that there must be an actual 
graphic to represent —0. The bit pattern for —0 is in hex-position DO. As 
explained later in this chapter, the graphic } had been assigned to this 
EBCDIC code position. Therefore, it was chosen to represent —0 in the 
System/3. 

It seemed strange to provide, in a printing set, } and not to provide {. 
However, with the addition of } to the 62 graphics and Space, all positions 
of the 64-character set were filled. If { were to be provided, then one of 
the 62 graphics would not be provided, and this possibility was rejected 
by the System/3 designers. The 64-character set of the System/3 is shown 
in Fig. 10.6.
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Column| 6 | 1 | 2 | 3 4 | 5 | 6 | 7 8 | 9 | A | B c D | E F 

Bit 00 01 10 41 

Row Poe oo | o1 | 10 | 11 |] OO} 01 10 | 11 | 00 | o1 10 | 17 | oo | o1 | 10 | 11 

a |oo00 SP & ~ } 0 

1 |o001 / A J 1 

2 {0010 B K Ss 2 

3 [0011 c L T 3 

4 \0100 D M U 4 

5 |0101 E N Vv 5 

6 {0110 F 0 W 6 

7 10111 G P X 7 

8 |1000 H Q Y 8 

9 {1001 I R Zz 9 

A |1010 e ! 

B 11011 $ ’ # 

c |1100 < * h @ 

D |1101 ( ) _ ' 

—E |1110 + > = 

Fo o}aad { 7 ? " 

Fig. 10.6 System/3 64-graphic set 

10.3 94-GRAPHIC SUBSETS 

ASCII, the U.S.A. version of the ISO 7-Bit Code, has 94 graphics. When 
the card code for ASCII was approved (to be discussed in Chapter 17), it 

was possible to match the graphics of EBCDIC with the graphics of 

ASCII, through their associated card hole patterns. At that time, the four 

anomalies previously described were revealed: 

  

  

Hole pattern ASCII EBCDIC 

12-8-2 [ ¢ 
11-8-2 | ! 

12-8-7 ! | 
11-8-7 A 7 
  

(A fuller discussion of the respective matching of ! and A with | and — is 
found in Chapter 24.) 

 



10.3 94-Graphic Subsets 167 

In addition to these four anomalies, the 94-graphic set of ASCII 
contained 6 more graphics than the 88-graphic set of EBCDIC. Since 
these 6 graphics had associated hole patterns, and since the hole patterns 
had associated code positions in EBCDIC, it was possible to determine 
where to locate them in EBCDIC, as follows: 

  

  

  

Hole Hexadecimal 

Graphic pattern position 

Back slash \ 0-8-2 EO 
Grave accent ° 8-1 719 

Opening brace { 12-0 CO 
Vertical line | 12-11 6A 

Closing brace } 11-0 DO 
Tilde ~ 12-11-0-1 Al 
  

These six graphics were assigned in EBCDIC, as shown in Fig. 10.7. 

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

                                      

Column! 0 | 1 | 2 3 4 5 6 | 7 8 | 2 | A | B c D [ E | F 

Bit 00 01 10 11 

Row Par 00 } 01 10 | 114 oo |} 01 10] 11 00 | 01 to | 11 oo} 01 10 |] 11 

0 |oo00 sp | & | - { } \ | 0 

1 |o0001 / a j ~ A J 1 

2 10010 b k 8 B K 5 2 

3 [0011 c 1 t c L T 3 

4 |0100 d m u D M U 4 

5 |0101 e n Vv E N Vv 5 

6 |01170 £ ° w F 0 Ww 6 

7 10111 g p x G P x 7 

8 |1000 h q y H Q Y 8 

9 |1001 * 1 Yr Zz I R Zz 9 

A |1010 ¢ | ! 

B 11011 $ i 

c |1100 < Fe % @ 

D 41101 ( ) _ ' 

E |iite + ; > = 

Fo41414 | = 2 " 
  

Fig. 10.7 EBDIC 94-graphic set 
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10.4 CHAIN/TRAIN PRINTER SETS 

It is necessary to understand the fundamental principles of chain/train 

printers in order to see the rationale for printer sets of graphics. 

Chains and trains are similar in concept. They are loops of printing 

slugs which are continuously circulated in a plane normal to the plane of 

the paper on which printing is to take place (Fig. 10.8). 

One principle of a chain/train is significant: the more times a graphic 

is repeated around the chain/train, the more frequently it will pass a 

printing position. It is common practice to repeat sets of graphics around 

the chain/train. Thus a 48-graphic set can be repeated 5 times (5 « 48 = 

240), a 60-graphic set can be repeated 4 times (4 x 60 = 240), and so on. 

The chain/train does not move more rapidly, but individual graphics pass 

a given printing position more frequently. The following table presents 

comparative information. Nominal printing speed is given in number of 

lines printed per minute (LPM). 

  

  

Number of graphics Repeated sets Nominal printing speed 

40 6 1250 LPM 
48 5 1100 LPM 
60 4 950 LPM 

120 2 570 LPM 
240 1 300 LPM 

Type array 

   
  

   Paper form 

Armature 

hammer 

magnet 

Fig. 10.8 Schematic representation of chain/train printer
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10.5 “PREFERRED” GRAPHICS 

A more subtle method is to repeat more frequently used graphics more 
often than less frequently used graphics. The sets of more frequently used 
graphics are called “preferred” graphics. Of course, the principle is still 
the same—the more times a graphic is repeated around the chain/train, 

the more frequently it passes a given printing position. 
Consider a 60-graphic set, which could be repeated 4 times around 

the 240 position chain/train, with nominal printing speed of 950 LPM. 
But it is also possible to repeat 45 of the graphics 5 times and 15 graphics 

just once: 

(45 x 5) + (15 x 1) = 240 

Then, if all the data being printed on a line contain graphics only in the 
set of 45, the nominal printing speed will be 1100 LPM. If the data of a 
line contains one or more graphics in the set of 15, the printing speed of 
those lines will be 300 LPM. If the data consists mostly of graphics in the 
set of 45, printing speeds will approach 1100 LPM, as compared with 
950 LPM for a chain/train with 60 graphics repeated 4 times. 

Some examples of chain/train sets with preferred sets are given, with 
both 48- and 60-character chains for comparison: 

Chain/train sets Repeat pattern Nominal printing speed 
  

  

  

  

  

  

48 1100 LPM 

60, with 45 preferred 45 x 5 = 225 950 LPM 

I5x1= 15 
60 240 

52, with 47 preferred 47 xX 5 = 235 950 LPM 

Sx1= 5 
52 240 

42, with 39 preferred 39 X 6 = 234 1250 LPM 

3x2= 6 
42 240 

84, with 78 preferred 78 X 3 = 234 770 LPM 

6x1= 6 
84 240 

120 120 x 2 = 240 570 LPM 
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10.6 48-GRAPHIC SETS 

We know that 48-character sets are very popular. They strike a good 

balance between reasonably fast printing speeds and adequate graphic 
capability. Two well-known sets emerged in the days of BCDIC (Chapter 

4) called the A-set and the H-Set, and were perpetuated into EBCDIC 

(Chapter 9). Some care must be taken with the terminology. A 48-graphic 
set for BCDCIC consisted of 47 graphics and Space, while a set for 

EBCDIC consisted of 48 graphics and Space. The 4 of BCDIC was 
replaced by the < of EBCDIC. 

  

  

  

11 specials 

BCDIC A-set Space 0 to 9 AtoZ ,/* - §$ HH @ EK 

H-set Space 0to9 | AtoZ ,o/*-$ ( ) =H! + 

12 specials 

EBCDIC A-set | SpaceO0to9 | AtoZ ,/* -~$ & + %<H#@ 
H-set Space 0 to 9 A to Z ,/* -~-$& + ( ) =’         

10.7. PL/I SUBSETS 

The 60-character set for the programming language PL/I consists of 59 
graphics and Space: 

1 Space 

10 numerics 0 to 9 

26 alphabetics A to Z 
3 alphabetic extenders # $ @ 

20 specials /* + = - | a _ & % 
() <> ’ ., : ; 2 

In addition, four 2-character operators are recognized by PL/I: 

>= Greater than or equal to 

<= Less than or equal to 

a= Not equal to 

|| Concatenation 

A 48-graphic subset of PL/I consists of 48 single-graphic representa- 

tions and some 2- and 3-graphic representations: 

1 Space 

10 numerics
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26 alphabetics 

  

12 specials ~ y ' §$ FY 
+ - ( ) = & 

Operator Representation Meaning 

: Colon 

; . Semicolon 

% // Percent 
> GT Greater than 

< LT Less than 

>= GE Greater than or equal to 

<= LE Less than or equal to 
= NE | Not equal to 

7 NOT Logical NOT 

| OR Logical OR 
& AND Logical AND 

| CAT Concatenation 

10.8 KATAKANA SUBSETS 

The Japanese written language, like the Chinese written language on 
which it is based, consists of ideographs—one ideograph per word. Kanji, 
as it is called, consists of many thousands of ideographs. For normal data 
processing printers, with limited graphic repertoires, the printing of Kanji 
is quite impossible. 

Another alphabet, invented by the Japanese and called Katakana, is 

more amenable to data processing printer technology. Katakana is a 
phonetic alphabet; each Katakana character consists of a vowel, or of a 

consonant and a vowel, as shown in Fig. 10.9. Thus, Japanese spoken 
words can be phonetically approximated by a written or printed 
alphabetic. . 

As originally assigned in EBCDIC, Katakana consisted of 47 
graphics assigned to bit patterns as shown in Fig. 10.10. From. this 
assignment, two Katakana sets were available. 

64-character 

Space 

10 numerics 

Katakana graphics 
6 specials -— / y . ,



  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

                                        

Shape Name Shape Name 

P A A HA 

4 I t HI 

9 U 2 FU 

I E A HE 

4 0 ih HO 

D KA 2 MA 

+ KI = MI 
7 KU b MU 
a KE x ME 
4 KO E MO 

yy SA P YA 
y SHI 
R SU 2 YU 

P SE 
y SO 3 YO 

a TA 5 RA 
F CHI y RI 
y TSU Ib RU 
Fz TE v RE 
b TO og RO 

t NA 9 WA 
= NI y N 
5 NU 
R NE * Voiced Sound Symbol 
2 NO ° Semi-voiced Sound Symbol 

Fig. 10.9 Katakana-47, phonetics 

coumn] o | 1 | 2 | 3 a|s6]el| 7 e]|o|a|s c]ofele 

Bit 00 01 10 11 

Poe oo | 01 10 | 41 oo | 01 10] 41 oo | 01 10 | 11 | oo | 01 10} 11 
Row 

0 o000 SP - y 0 

Vv [0004 / ? a A J 1 

2 |o0010 q F \ B K Ss 2 

3 [0011 9 4) ih c L T 3 

4 |0100 I T Y D M U 4 

5 |0101 4 bh = E N Vv 5 

6 |0110 n t 4 F oO W 6 

7 10111 + = m G P xX 7 

8 1000 9 R £ H Q Y 8 

9 |1001 y ]oal p t/ ref] zj9 

A |1010 q 7 1 L 

B }1011 xX , QO 

c |1100 * i 3 9 

DB 71101 y Nn 3 Dv 

— |1110 z cb y * 

Fo }4441 Pr 2 b ° 

Fig. 10.10 Katakana 89-graphic set 
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This set, outlined by heavy lines in Fig. 10.11 is provided by collapse logic 
(as described in Chapter 2). 

89-character 
1 space 

10 numerics 
26 Latin alphabetics 
47 Katakana alphabetics 

of 5 Specials . , - | 

The 64-character set was sufficient for most normal data processing 
applications. The 89-character set was provided on 44-key electric type- 
writers. The 89-graphic set is shown in Fig. 10.10. 

We shall learn in Chapter 18 that the assignment of Katakana in 
EBCDIC created complications. 

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

cum] © [+ telel«lelel7lelel*l[elel ell. 
Bit 00 Ot 10 11 
Pat. 

Row ; oo | 01 | 10 | 14 | oo | o1 | 10} 11 | OO | o1 | 10 | 11 | 00 | ov | 10 | 11 

0 |0000 SP - y 0 

4 | 0001 / Pp a 1 

2 |0010 4 5 2 

3 [0011 9 4 ih 3 

4 0100 L F Q 4 

5 |0101 Zz k = 5 

6 |o110 hb t bs 6 

7 $0111 + = x 7 

8 |1000 2 x E 8 

9 |1001 x a P 9 

A |1010 a / \ u 

B {1011 . ¥ ; g 

c |1100 # t 3 5 

D |i101 »{| nls] 2 

—E |1170 2 ao y ‘ 

F f4411 t 2 Wu °                                         
Fig. 10.11 Katakana 64-graphic set





11 
The 

Card Code 
of EBCDIC 

As described in Chapters 8 and 9, some 63 graphic and card hole-pattern 

and bit-pattern assignments had been made in EBCDIC. In Fig. 11.1, the 

code positions designated X indentify the hole patterns assigned in 
EBCDIC. 

11.1 PTTC CONSIDERATIONS 

In Chapter 6, it was noted that the de facto monocase card hole patterns 
12-1,...,12-9, 11-1,...,11-9, 0-2, 0-3,...,0-9 were assigned to 

lower-case alphabetics A, B,...,1, J, K,...,R, S$, T,...,Z, and that 

new card hole patterns 12-0-1, 12-0-2,...,12-0-9, 12-11-1, 12-11-2, 

...,12-11-9, 11-0-2, 11-0-3,...,11-0-9 had been assigned to upper- 

case alphabetics. However, as will be described in Chapter 12, a new 

version of the IBM 1050 terminal was being designed for the System/360, 

and with it, a new PTTC emerged, which reversed the assignments of 

lower-case and upper-case alphabetics noted above. In Chapter 8, it had 

been decided to locate the lower-case alphabetics in hex-columns 8, 9, 

and A. The card hole-pattern-to—bit-pattern assignments for EBCDIC 

were thus extended from those of Fig. 11.1 to those of Fig. 11.2. In 

Chapter 9, two hole patterns, 12-8-2 and 11-8-2, were noted and 

assigned to graphics ¢ and ! in hex-positions 4A and 5A, respectively. 

Figure 11.2, then, shows the hole patterns assigned at this point. 

Where a graphic is shown in the code table, the corresponding hole 
pattern was assigned. 

175
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Hole 

Pat.   
Hole Patterns: X = Assigned Hole Patterns 

  

  

  

  

  

  

J ll [13] 0-1 

[2] Block | Hole Patterns at: 

[3] [2] 12-0 [is] 1 3 1 | Top and Left 

[4] 11-0 2 | Bottom and Left 

(s] No Pch [1] 0-8-2 2 4 3 | Top and Right 

[e] 12 [i2] 0 4 | Bottom and Right               
Fig. 11.1 EBCDIC card code, Version 1



11.1 

Column 0 1 2 3 

00 

00 01 10 11 00 

Hole 

Pat. 

Hole Patterns: 

11 [13] 0-1 

12-0 [15] 

11-0 

[5] No Pch [11] 0-8-2 

[s] 12 [12] 0 

E
E
E
 E 

Fig. 11.2 EBCDIC card code, Version 2 
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Block | Hole Patterns at: 

1 3 1 | Top and Left 

2 Bottom and Left 

2 4 3. | Top and Right 

4 Bottom and Right 
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8-7   
Fig. 11.3 256 hole patterns 

In order to arrive at the total EBCDIC set of 256 different hole 

patterns, two decisions were made: 

Decision 1 All 32 possible combinations of the zone punches 9, 12, 11, 
0, 8 (including “‘no-zones”) would be used. 

Decision 2 With each of the 32 possible zone-punch combinations, one 
of the digit punches 1, 2, 3, 4, 5, 6, 7 (including “no-digits”) would be 

used. 
The logical set of 256 hole patterns is shown in Fig. 11.3. 
In BCDIC, 0 had served both as a zone punch and as a digit punch 

for the numeric 0. Thus, in 0, 12-0, and 11-0, the 0 is regarded as a digit 
punch rather than a zone punch. In a sense 8 also served as both a zone 

punch and a digit punch. With the decision for EBCDIC that 9 would 

serve as a zone punch, 9 would also serve both as a zone punch and as a 
digit punch for the graphics 9, I, R, Z, i, r, and z. 

As described in Chapter 6, in PTTC 16 hole patterns had been 
assigned to control characters, as shown in Fig. 11.4. It was decided to
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carry these assignments forward into EBCDIC. The control characters 
might, probably would, not be needed for EBCDIC as a CPU code, but it 
was sensible to preempt these hole patterns in EBCDIC, so that they 
could not subsequently be assigned to EBCDIC control characters that 
would conflict with the PTTC control characters. Besides, with the 

decision to attach the IBM 1050 (implementing PTTC) to System/360, it 
was clear that PTTC data would enter the System/360. It would be 
necessary to have EBCDIC bit patterns into which all PTTC bit patterns, 
controls, and graphics could be translated. 

In Chapter 8, it was decided that the first quadrant of EBCDIC 
would be reserved for control characters. In consequence of this decision, 
the PTTC control characters would be located in the first quadrant. 
Therefore, zone punches 9-12, 9-11, 9-0, and 9 would be assigned to 

Quadrant 1. 

  

  

  

  

  

Zone 

punches 

9 9-0 | 9-11] 9-12 
Digit 

punches 

4 PN | BYP| RES| PF 

5 RS |LF |NL | HT 

6 UC |ETB|BS | LC 

7 EOT| ESC | IL DEL           

Fig. 11.4 PTTC hole patterns for control 
characters 

11.2 TRANSLATION CONSIDERATIONS 

From Fig. 11.2, it was noted that zone patterns 12, 11, 0, and ‘‘No-zone” 
would appear for the bottom six rows of Quadrant 2 and for the top ten 
rows of Quadrant 4. It was decided for purposes of reducing translation 

complexity (bit patterns to/from hole patterns) that the zone patterns for 
the top ten rows of Quadrant 2 should also be the zone patterns for the 

bottom six rows of Quadrant 4. (This decision was later slightly amended, 
but the spirit of it was maintained.) Fig. 11.5 represents decisions up to 
this point.
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Column 0 1 2 3 4 5 6 7 

00 

00 o1 10 11 00 ot 10 11 

ZONES 

? 

Hole 

Pat.   
Hole Patterns: 

  

Block | Hole Patterns at: 
  

f
l
)
 &) 

Top and Left 
  

Bottom and Left 
  

Top and Right 
  

S
E
E
 
E
E
E
 

          

CG] 
2] 
(3) 
[4] 
[s] 
[] Bottom and Right 

  

Fig. 11.5 EBCDIC card code, Version 3 

This left zone patterns 12-11-0, 9-12-0, 9-12-11, 9-11-0, 9-12-11-0 

unassigned. It seemed intuitive that the fourth zone pattern for Quadrant 

3 should be one of these five without a 9-zone, that is, 12-11-0. 

To meet the criterion above for the top ten rows of Quadrant 2 and 

the bottom six rows of Quadrant 4, the zone patterns 12-0, 12-11, 11-0, 

12-11-0 clearly could not be assigned, because they had already been 

assigned to the top ten rows of Quadrant 3. Also since zone patterns



11.2 Translation Consideration 181 

9-12, 9-11, 9-0, 9 were to be assigned to Quadrant 1 (not yet decided if 

to the top ten rows, the bottom six rows, or to both the top ten and the 

bottom six rows), they could not be assigned to the top ten rows of 

Quadrant 2 and the bottom six rows of Quadrant 4. This left only one 

choice; zones 9-12-0, 9-12-11, 9-11-0, 9-12-11-0 for the top ten rows of 

Quadrant 2 and for the bottom six rows of Quadrant 4. We now had Fig. 

11.6. 
This now left two choices: 

Choice 1 

# 9-12, 9-11, 9-0, 9 for the top ten rows of Quadrant 3. 

=» 12-0, 12-11, 11-0, 12-11-0 for the top ten rows of Quadrant 3 and 

the bottom six rows of Quadrant 1. 

Choice 2 

# 9-12, 9-11, 9-0, 9 for both the top ten and the bottom six rows of 

Quadrant 1. 

  

Column) | 0 | al 2 | 3 a 5 6 7 8 | 9 A | B c D | E F 

Bit 00 01 10 14 
  

  

          
  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

          
Fig. 11.6 EBCDIC card code, Version 4
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=" 12-0, 12-11, 11-0, 12-11-0 for both the top ten and the bottom six 

rows of Quadrant 3. 

Choice 2 posed a less complex translation relationship (hole patterns 

to/from bit patterns) and Choice 2 was decided. This led to Fig. 11.7. 

Column 

12 
Hole 

Pat.   
Hole Patterns: 

  

Block | Hate Patterns at: 
  

fj
 E]

 B
) 

1 1 Top and Left 
  

2 Bottom and Left 
  

  

Ae
le
l 
e
G
 

A
E
E
 
E
E
S
 

            
Fig. 11.7 EBCDIC card code, Version 5



11.3 8-1 Versus 9 183 

11.3 8-1 VERSUS 9 

It was now noted (Fig. 11.7) that certain hole patterns appeared twice: for 
example, 9 in hex F9 and in hex 30, 9-12 in hex C9 and hex 00. Further, 

missing from the set of hole patterns were zone punches combined with 

Column 0 1 2 3 4 5 

00 01 

00 a1 10 11 00 01 10 

9 
12 
il il 

0 

Hole 

Pat.   
Hole Patterns: 

  

Block | Hole Patterns at: 
  

[a]
 

2] 

1 1 Top and Left 
  

2 Bottom and Left 
  

  

B
E
A
L
E
 

    F
E
A
L
 

        
Fig. 11.8 EBCDIC card code, Version 6
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8-1 hole patterns. This glitch could be fixed by applying the digit-punch 
combinations 8-1, rather than the digit 9, to hex row 9. The result was 

Fig. 11.8. 
While the card code of Fig. 11.8 would lead to a translation (bit code 

to/from card code) of not unreasonable complexity, it was not acceptable. 

Column 0 1 2 

aa 

a0 01 10 11 

Hole 
Pat.   

Hole Patterns: 

  

  

  

  

  

  

7] 11 [13] 0-1 
[2] Block | Hole Patterns at: 

[3] [2] 12-0 [is] 1 3 1 | Top and Left 

(4] 11-0 2 | Bottom and Left 

[s] No Pch [i] 0-8-2 2 4 3. | Top and Right 

[e] 12 {i2] 0 4 | Bottom and Right               
Fig. 11.9 EBCDIC card code, Version 7
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The digit-punch combination 8-1 could not be assigned to hex row 9 of 
Quadrants 3 and 4, because i, r, z, I, R, Z, and 9 (all of which had the 

digit punch 9) were already assigned to that row. 
But if hole patterns 9-12-0, 9-12-11, 9-11-0, 9-12-11-0, 9-12, 9-11, 

9-0, and 9 are assigned to hex row 9 of Quadrants 3 and 4, then hole 
patterns 9-12-0-8-1, 9-12-11-8-1, 9-11-0-8-1, 9-12-11-0-8-1, 9-12- 
8-1, 9-11-8-1, 9-0-8-1, and 9-8-1 must be displaced. Since the hole 
pattern 8-1 translates in BCD the same as 9, these displaced hole 
patterns were assigned intuitively to hex row 9, Quadrants 1 and 2, as 
shown in Fig. 11.9. Note that the horizontal line is now staggered as it 
crosses between hex columns 7 and 8. | 

11.4 EXCEPTION TRANSLATIONS 

As shown in Fig. 11.2, there were eight code positions with exception 
hole patterns. These are also noted in Fig. 11.9. These eight exception 
hole patterns would, of course, displace eight more hole patterns, as 

shown in Fig. 11.10. These exception hole patterns, if they had occupied 
their “theoretical” code positions in Fig. 11.9, would have occupied 
positions as shown as shown in Fig. 11.11. 

Thus there were twelve code positions affected directly or indirectly 
by the exception hole patterns: 

40, 50, 60, 61, 6A, 80, 90, CO, DO, EO, E1, FO 

  

  

  

  

  

Code-table Exception Displaced 
location hole patterns hole patterns 

40 No punches 9-12-0 

50 12 9-12-11 

60 11 9-11-0 
61 0-1 9-11-0-1 

CO 12-0 12 
DO 11-0 11 

E6 0-8-2 0 

FO 0 No punches       
Fig. 11.10 Exception and displaced hole patterns
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Exception Theoretical 
hole patterns code-table location 

No punches FO 
12 CO 

11 DO 
0-1 El 

12-0 80 
11-0 90 

0-8-2 6A 
0 EO     

Fig. 11.11 Theoretical code-table 

locations 

In the accommodation of the displaced hole patterns, even more hole- 

pattern exceptions were generated, giving rise to a total of 15, as shown 

in Fig. 11.12. 

The card code shown in Fig. 11.12 became the EBCDIC card code. It 

was incorporated into IBM’s Corporate System Standard CSS 2-8015- 

002 [11.1], later designated CSS 3-3220-002 [11.2]. The EBCDIC code 

chart of that time (1964 October) was completed with the assignment of 

the 16 control characters of PTTC (from Fig. 11.4). 

11.5 A DIFFERENT BLOCKING 

It was subsequently discovered that if the blocking into four blocks was 

done in a slightly different way, and if the four zone patterns above block 

1 were amended as shown in Fig. 11.13, four of the exception translations 

(hole pattern to/from bit patterns) would disappear, namely those in hex 

positions 00, 10, 20, and 30. It is to be emphasized that while the tableau 

of Fig. 11.13 is different than that of Fig. 11.12, the actual translation 

relationship (hole patterns to/from bit patterns) is, in fact, identical for 

both tableaux. For both tableaux, the hole patterns for hex positions 00, 

10, 20 and 30 are 9-12-0-8-1, 9-12-11-8-1, 9-11-0-8-1, 8-12-11-0-8-1, 

respectively.
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Hole 

Pat.   
Hole Patterns: 

  

  

  
  

  

  

[7] 9-12-0-8-1 ll [13] 0-1 . 
(2] 9-12-11-8-1 12-11-0 9-11-0-1 Block | Hole Patterns at: 

[3] 9-11-0-8-1  [] 12-0 [is] 12-11 1 3 L_ | Top and Left 

[4] 9-12-11-0-8-1 [io] 11-0 2 | Bottom and Left 

[s] No Pch [11] 0-8-2 , F 2 4 3 | Top and Right 

[e} 12 [12] 0 4 Bottom and Right               

Fig. 11.12 Final EBCDIC card code
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Hole 

Pat.   
Hole Patterns: 

  

  

  
  

  

  

7] 11 [13] 0-1 

2] 12-11-0 9-11-0-1 Block | Hole Patterns at: 

[3] fe] 12-0 (15) 12-11 r. 3 1 | Top and Left 

[4] 11-0 2 | Bottom and Left 

[5] No Pch [1] 0-8-2 2 4 3, | Top and Right 

[6] 12 [:2] 0 4 | Bottom and Right               
Fig. 11.13 EBCDIC card code, modified tableau 
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12 
The 

New PTTC 

In Chapter 6, the development of a shifted 6-bit code for paper tape and 

for transmission was described. In Chapter 9, how the graphic assignment 
of some graphics to hole patterns was changed in order to eliminate duals 
was described. The IBM 1050, a terminal implementing PTTC, had been 

designed for use with BCDIC computers. The 1050 had an associated 

punched card code. 

12.1 A NEW 1050 

A new model of the 1050 was being designed for use with the then-being- 

designed System/360. This new model would also implement PTTC and 

have an associated card code. Since some graphic—to—-hole-pattern assign- 

ments had been changed between BCDIC and EBCDIC and since the 

new 1050 would be used with the System/360, an EBCDIC computer, it 

was clear that some corresponding changes would have to be made in the 
PTTC card code. There would have to be a new PTTC. 

Since the old and new PTTC would be different, it was decided that 

they should be distinguished by different names. The old PTTC was 

designed for use in the environment of 6-bit, BCDIC computers. The new 

PTTC would be used in the environment of 8-bit, EBCDIC computers. 

Initially, then, the codes were named 

PTTC/6, the PTTC for 6-Bit Environments, and 

PTTC/8, the PTTC for 8-Bit Environments. 

When these two names were published an unexpected confusion arose. 

aon
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Some people interpreted PTTC/6 to mean a 6-bit code and PTTC/8 to 

mean an 8-bit code. The latter interpretation, of course, was incorrect. 

This confusion became manifest to such an extent that it was decided the 

names must be changed to eliminate the source of confusion. Eventually, 

the two codes were renamed: 

PTTC/BCD, the PTTC for BCDIC Environments, and 

PTTC/EBCD, the PTTC for EBCDIC Environments. 

12.2 CRITERIA 

Some criteria were established for the design of PTTC/EBCD: 

Criterion 1. PTTC structure 

PTTC/EBCD should have the same structure as PTTC/BCD,;; that is, be a 

shifted 6-bit code, with Space, 16 shift-independent control positions, and 

94 graphic positions. 

Criterion 2. PTTC/BCD compatibility 

PTTC/EBCD should be as compatible as possible with PTTC/BCD. 

Criterion 3. EBCDIC compatibility 

The graphic-to-card-hole-pattern assignments for PTTC/EBCDIC 

should match those of EBCDIC. 

Criterion 4. Monocase/Duocase* 

There should be a monocase alphabet set of the 62 graphics of the 029 

Keypunch, and a duocase alphabet set of the 88 graphics of EBCDIC. 

Criterion 5. Basic/extended card code 

There should be a card-code subset of 64 hole patterns that is a subset of 

the full set of 111 hole patterns. 

* The Monocase Alphabet Set of PTTC/EBCD is so entitled because it contains 
only the capital-letter representations of the alphabet independent of whether the 
case shift is upper or lower. The Duocase Alphabet Set contains both capital- 
letter representations and small-letter representations of the alphabet. A clear 
distinction must be kept between the concept on the one hand of small and capital 
letters and the concept orf the other hand of lower-case shift and upper-case shift 
on a typewriter-like device. Normally, small letters are implemented on the 
lower-case shift, and capital letters are implemented on the upper-case shift. This 
was the way the 1050 implemented the duocase alphabet for PTTC/BCD. But for 
PTTC/EBCD, the Monocase Alphabet Set was implemented on the 1050 with 
capital letters in both upper- and lower-case shift (as will be described).
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As with the 1050 implementing PTTC/BCD, the 1050 implementing 
PTTC/EBCD used an electric typewriter as the keyboard and printer. 

The typewriter forced its arithmetic on the decision for the code. 

12.3 TYPEWRITER ARITHMETIC 
1. 

w
k
 

Y
N
 

44 keys, lower-case shift 

44 keys, upper-case shift 

26 keys, alphabetic in both shifts 

10 keys, numeric in lower-case shift, specials in upper-case shift 

8 keys, specials in both shifts 

The structure of the code also forced its arithmetic on decisions 

for the code. 

12.4 PTTC/EBCD ARITHMETIC 

1. 

I
A
M
 

SY 

47 graphic positions in lower-case shift, 3 of which would be non- 

printing 

47 graphic positions in upper-case shift, 3 of which would be non- 

printing 

1 Space position, shift independent 

16 control positions, shift independent . 

64 lower-case shift positions, 17 of them shift independent 

64 upper-case shift positions, 17 of them shift independent 

111 different characters (94 shift-dependent graphic characters plus 1 
shift-independent Space character plus 16 shift-independent control 

characters) . 

This structure is illustrated in Fig. 12.1. 

12.5 MONOCASE AND DUOCASE SETS 

In the design of the 1050, there would be two variables that were 

essentially independent. The first variable would be the graphic set, 

Monocase and Duocase (Criterion 4). The particular set in use at any 
particular time would be determined by which printing element the 

customer mounted on the 1050. The printing elements for both would 

have 88 printing positions. In the case of the Duocase Alphabet Set 

element, all 88 graphics would be different, and small and capital letters
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Lower Case Upper Case 
  

Bit 
————_—_—_—_—_—_—_—_—__—_ P| 

Pattern 
  

Hole 

Pattern—>|                           

  

  

  

  

  

  

  

  

  

  

  

  

$16 CONTROLS #   

          

Hole 

Pattern           

    

Biock | Hole Patterns at: 
  

1 3 1 Top And Left 
  

Bottom and Left 
    

  

2 

2 4 3 Top and Left 

4 Bottom and Left                   

Fig. 12.1 PTTC structure 

would be provided. In the case of the Monocase Alphabet Set, 26 

printing positions would provide capital letters, and 26 other printing 

positions would also provide capital letters, so that there would, in fact, 

be 88—26= 62 different graphics.
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12.6 BASIC SET AND EXTENDED SETS 

The other variable would be the card-code set, which came to be called 

the Basic Set and the Extended Set (Criterion 5). The Extended Set 

would consist of 111 different hole patterns; the Basic Set would consist 

of 64 different hole patterns. The particular card-code set in use on the 

1050 would depend on which of the two card-code features the customer 

had ordered. 

12.7. INITIAL DECISIONS 

The code-structure arithmetic spoke quickly to Criterion 5. The 64- 

character, Basic Card-Code Set would be assigned to both sets of 64- 

character upper- and lower-shift code positions. 

1 space character 

47 graphic characters 

17 control characters 

64 characters 

Although it would be possible to use the Basic Card-Code Set with the 
Ducocase Alphabet Set (as will be described), it is more reasonable to 

discuss the Basic Card-Code Set in the context of the Monocase Alphabet 

Set. 

It was decided that PTTC/EBCD should have not only the same 
structure as PTTC/BCD (Criterion 1) but also the same set of control 
characters (Criterion 2). Since the positioning of the alphabetics and 
numerics was implicit in the structure, the Monocase Alphabet Set would 

start as shown in Fig. 12.2. 

As described in Chapter 6, it was decided to assign the BCDIC hole 

patterns for alphabetics to the lower-case shift, regardless. of whether 

these were small or capital letters. This decision was reviewed for 

PTTC/EBCD in the context of the Duocase Alphabet Set (as will be 
described), but in the context of the Monocase Alphabet Set and the 

Basic Card-Code Set, it seemed obvious that these alphabetic hole 

patterns should be assigned to the capital letters in both shifts. 

Further, it was observed in PTTC/BCD (see Fig..6.6) that the 8 

printable graphics 

#@/,.—$& 

in the lower-case shift had not changed card hole patterns between 

BCDIC and EBCDIC. Therefore, it was decided, in view of Criteria 2 

and 3, that these specials should have the same bit patterns in
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Lower Case Upper Case 

Bit I A B BA A B BA 
Pattern 

Hole 

Pattern—> 

y 

SP SP 

1 1 J A J A 

2 2 s K B S K B 

21 3 tT L Cc T L C 

4 4 U M D U M Dd 

4 1 5 v N E Vv N E 

42 6 W Oo F W 0 F 

421 7 x P G xX P G 

8 8 Y Q H Y Q H 

8 1 9 Zz R I Zz R I 

8 2 0 N.P N.P N.P N.P N.P N.P 

8 21 

84 PN BYP RES PF PN BYP RES PF 

84 1 RS LF NL HT RS LF NL HT 

842 uc EOB BS LC uC EOB BS LC 

8421 EOT PRE IL DEL EOT PRE IL DEL 

Hole_—»| 

Pattern 

N.P. - Non-Printing Positions 

Block | Hole Patterns at: 

1 3 1 | Top And Left 

2 Bottom and Left 

2 4 3 Top and Left 

4 Bottom and Left                 
Fig. 12.2 PTTC/EBCD Monocase Alphabet Set, Version 1 

PTTC/EBCD as in PTTC/BCD and the same hole patterns as in BCDIC, 

EBCDIC, and PTTC/BCD. 
Further, in view of Criterion 2, it was decided that the 16 control 

characters should have both the same bit patterns and the same hole 

patterns in PTTC/EBCD as in PTTC/BCD. (This decision led to the 

decision, as described in Chapter 11, that these 16 control characters



  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

                              

  

  

  

  

  

12.7 Initial Decisions 195 

Lower Case Upper Case 

Bit = ______» A B BA A B BA 
Pattern : 

Hole 

Pattern—>} 0 11 12 0 ll 12 

2 
1 1 

SP @ OY - & SP Ly 

1 1 l / J A J A 

2 2 2 8 K B Ss K B 

21 3 3 T L Cc T L Cc 

4 4 4 U M D U M D 

4 1 5 5 Vv N E Vv N E 

42 6 6 W 0 P W 0 F 

421 7 7 x P G X P G 

8 8 8 Y Q H Y Q H 

8 1 9 9 Z R Tr Z R IT 

L2] [3] Tal Lz] La] La] 
8 2 0 0 

8 21 8-3 # , $ 

84 4 PN BYP RES PF PN BYP RES PF 

84 1 5 RS LF NL HT -RS LE NL HT 

842 6 UC EOB BS LC UC EOB BS LC 

8421 7 EOT PRE TL DEL EOT PRE IL DEL 

Hole—p») 9 9-0 | 9-11 | 9-12 9 9-0 | 9-11 | 9-12 
Pattern : 

Hole Patterns: 

[i] 84 
(2) 0-8-2 Block | Hole Patterns at: 

B] 11-0 1 3 1 Top And Left 

4] 12-0 2 Bottom and Left 

2 4 3 Top and Loft 

4 Bottom and Left 

Fig. 12.3. PTTC/EBCD, Version 2, Monocase Alphabet Set, 
Basic Card-Code Set 

                

would be assigned in EBCDIC, and with the PTTC/EBCD hole patterns. 

This decision, therefore, also satisfied Criterion 3.) 

Finally, for the Basic Card-Code Set, it was decided, for the non- 

printing graphic code positions (in both shifts), to maintain card-code 

compatibility with PTTC/BCD (Criterion 2).
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With these decisions, the Monocase Alphabet Set and Basic Card- 

Code Set shaped up as in Fig. 12.3. Blank spaces in the code table are for 

as yet unassigned graphics. The 64-character, Basic Card-Code Set was 

complete. 

In the development of PTTC/BCD, as described in Chapter 6, it was 

decided for various reasons to assign the BCDIC card hole patterns for 

alphabetics to the lower-case shift, regardless of whether small or capital 

letters were assigned to that shift. That decision was now reviewed for 

PTTC/EBCD. 
For the Monocase Alphabet Set, capital letters would be assigned to 

both lower- and upper-case shift code positions. For the Duocase Al- 

phabet Set, small letters would be assigned to lower-case shift and capital 

letters to upper-case shift. (The same decision had been made for 
PTTC/BCD.) In assigning card hole patterns for PTTC/BCD, it had been 

decided at that time to assign the BCDIC hole patterns for alphabetics to 

small letters and another (related) set of hole patterns to capital letters. 
Criterion 2 should dictate the same decision for PTTC/EBCD. But for 
EBCDIC (Chapter 8) exactly the opposite had been decided. Criterion 3 

should dictate the same decision for PTTC/EBCD. 

12.8 FURTHER DECISIONS 

Since PTTC/EBCD was being designed for a 1050 to operate with the 

System/360, an EBCDIC computer, it was decided that Criterion 3, 

EBCDIC compatibility, outweighed Criterion 2, PTTC/BCD com- 

patibility. 

It was also decided for the Duocase Alphabet Set and Extended 

Card-Code Set, that the eight specials 

#@/.,-$& 

should have the hole patterns previously decided for the Basic Card Set, 

in order to ensure compatibility with EBCDIC (Criterion 3). 
Since no reason could be found not to do so, it was decided to carry 

forward from positions *, *, and * in Fig. 12.3 the hole patterns 0-8-2, 
11-0, and 12-0 for lower-case shift. This would be in accord with 

Criterion 2, PTTC/BCD compatibility. 

With these decisions, a beginning was made on the Duocase Al- 

phabet Set and Extended Card-Code Set for PTTC/EBCD, as shown in 

Fig. 12.4. Blank spaces on the code table are for as yet unassigned 

graphics or hole patterns.
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Lower Case Upper Case 

Bit A B BA A B BA 
Pattern 

Hole 

Patera 11-0 12-11 12-0 0 Il 12 

y 

Ly Ls] 184 
SP @ - & SP 

1 1 1 / By I a J A 

2 2 2 s k b S K B 

21 3 3 t 1 c T L C 

4 4 4 u om d U M D 

41 5 5 v n e v N E 

42 6 6 w o £ W 0 F 

424 7 7 x P g xX P G 

8 8 8 y gq h Y Q H 

8 1 9 9 z r A Z R I 

6 9 8 2 0 0 C3 [se] La 

32 7 10 
8 21 |] 83 Se a ee 

84. 4 PN BYP RES PF J PN BYP RES PF 

84 1 5 RS LF NL HI RS LF NL HT 

842 6 UC EOB BS LC UC EOB BS LC 

8421 7 EOT PRE TL DEL EOT PRE IL DEL 

Hole—p| 9 9-0 9-11 9-12 9 9-0 9-11 9-12 
Pattern 

Hole Patterns: 

[i] 8-4 12 
{2] 0-1 fe] 12-0 Block | Hole Patterns at: 

[3] 0-8-2 12-8-3 1 3 1 | Top And Left 

[4] 0-8-3 [32] 8-3 2 Bottom and Left 

fs] 11 , 2 4 3 Top and Left 

Le] 11-0 4 Bottom and Left 

11~8-3 

Fig. 12.4 PTTC/EBCD, Version 1, Duocase Alphabet Set, 
Extended Card-Code Set 

There now remained the question of 18 printable graphic positions 

and the 3 nonprinting graphic positions in upper-case shift. In 

PTTC/BCD, for the 3 nonprinting graphic positions in upper-case shift, 

hole patterns 12-8-7, 0-8-5, and 8-7 had been assigned. At the same 

time, hole patterns 8-1, 0-8-1, and 12-8-1 has been assigned to graphics
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in printable positions. The typewriter arithmetic referred to earlier would 
yield 88 printable graphic positions (hence the 6 nonprintable graphic 

positions in the code structure’s 94 graphic positions). Of these 88 
graphics, 26 would be small letters, leaving 62 graphic positions for 

numerics, specials, and capital letters. 

  

  

  

  
  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

    
                        
  

  

  

  

  

  

Lower Case Upper Case 

Bit A B BA A B BA 
Pattern 

Hole 

Pattern—> 11-0 12-11 12-0 0 11 12 

1 5 8 
x x4 x x YT x (22 las] 28 

1 1 x x L2| x x Ly eal Xx 

12 
2 2 x x x X hl x x x 

13 
21 3 x x x x X X x 

4 4 x x X X by x x x 

41 5 x x x x us| x x 
16 

42 6 X x x x bg x Xx x 

421 7 x x x x by Xx x x 

8 8 x x xX x bel x x xX 

8 1 9 x Xx x X Lal X x x 

3 6 9 20 24 27 0 
8 2 0 x yy yl yl bf ey by 

32 q Z 10 21 25 28 31 8 21 3-3 x [22] x Ll x Lz x [19] [24 Ls] [2.8] By 

84 4 x x x x x x x x 

84 1] 5 x x x x x x x x 

842 6 Xx X x x Xx x x x 

8421 7 x x x x x x x x 

Hole—y| 9-0 | 911 | 9-12 9 9-0 | 9-11 | 9-12 
Pattern 

Hole Patterns: X ~ Assigned Hole Patterns 

[4] 8-4 12 
(2] 0-1 12-0 Block | Hole Patterns at: 

[3] 0-8-2 12-8-3 1 3 1 | Top And Left 

[a] 0-8-3 0-8-1 2 Bottom and Left 

{s] 11 12-8-1 2 4 3 | Top and Left 

[6] 11-0 8-1 4 | Bottom‘and Left                   

11-8-3 [Be] 8-3 

Fig. 12.56 PTTC/EBCD partial card-code assignments
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During the design of EBCDIC, this same typewriter arithmetic had 
been reviewed in the context of the console typewriter for the 

System/360. It had been decided that, in EBCDIC, the 62 numerics, 

specials, and capital letters would be assigned to the hole patterns of the 

62 interpretable graphics on the 029 Keypunch. 

It was now decided that these 62 029 Keypunch hole patterns would 

be assigned to the 62 printable graphic positions of PTTC/EBCD referred 
to above. Since the set of 62 hole patterns included 12-8-7, 0-8-5, and 

8-7, these three hole patterns should not be assigned in PTTC/EBCD to 

nonprintable positions (as they had been in PTTC/BCD); and since they 

did not include 8-1, 0-8-1, and 12-8-1 (assigned to printable positions in 

PTTC/BCD), these should not be assigned to printable positions in 

PTTC/EBCD. Once again, Criterion 3, EBCDIC compatibility, out- 

weighed Criterion 2, PTTC/BCD compatibility. Hole patterns 0-8-1, 12- 

8-1, and 8-1 were assigned to the nonprintable positions in upper case 

designated by **, 7’, and *° in Fig. 12.5; 12-8-7, 0-8-5, and 8-7 would be 
assigned somewhere to printable positions. 

The situation on assignment for PTTC/EBCD, Duocase Alphabet 

Set, and Extended Card-Code Set is shown in Fig. 12.5, where X 
indicates code positions with assigned hole patterns. Eighteen printable 

code positions remained for assignment of hole patterns and graphics. 

12.9 ALPHABETIC EXTENDERS 

At this point another factor was taken into consideration. In EBCDIC, 

graphics # $ @ were designated as upper-case alphabetic extenders for 

European and South American countries. That is to say, on printing, 

display, and interpreting devices, these graphics would be replaced by 

alphabetics as required. For example, the German language requires 29 

alphabetics—the 26 alphabetics of English-speaking countries and three 

more alphabetics, A, U, and O. On equipment designed for Germany, 

therefore, A, U, and O would replace # $ @ respectively. Also in 

EBCDIC, three graphics " ! ¢ were designated as lower-case alphabetic 

extenders, to be replaced, in Germany for example, by 4, u, and 6. 

Certainly, provision must be made in PTTC/EBCD for alphabetic 

extenders, both lower and upper case. The dilemma was that upper-case 

alphabetic extenders were to replace graphics # $ @ which had been 

assigned in PTTC/EBCD to lower-case shift. The actual assignment in 

PTTC/EBCD was not significant, but the reason for the assignment was. 

In accordance with the long-established U.S.A. electric typewriter prac- 

tice, # $ @ were in upper-case shift. Which’ should take precedence, the 
U.S.A. electric typewriter practice or the alphabetic extender require-
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ment for Europe? A very interesting decision was made. For the new 

1050s implementing PTTC/EBCD, # $ @ and their respective hole 

patterns 8-3, 11-8-3, 8-4 would indeed be in lower-case shift for the 

U.S.A. But, for new 1050’s for Europe, modifications would be made so 

that the hole patterns assigned to # $ @ in upper case for the U.S.A. 

would be in lower case for Europe. 

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

                              
    

  

  

    

  

Lower Case Upper Case 

Bit A B BA A B BA 
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Pattern—> 

@ ¢ 

1 

2 

21 

4 

4 1 

42 

421 

8 

8 1 

8 2 

8 21 i $ tt Il 

84 

84 1 

842 

8421 

Hole» 

Pattern 

Block | Hole Patterns at: 

L 3 1 Top And Left 

2 Bottom and Left 

2 4 3 Top and Left 

4 Bottom and Left                   
Fig. 12.6 PTTC/EBCD alphabetic extender positions
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Clearly, for Europe, one would require that alphabetic extender keys 

on the 1050 that provide capital alphabetic extenders in upper case would 

provide the equivalent small alphabetic extenders in lower case. Relating 

this to the U.S.A., the 1050 keys with # $ @ in lower case must provide 
" ! ¢ in lower case. This dictated, for PTTC/EBCD, that ” ! ¢ be in 

upper-case code positions corresponding to the lower-case code positions 

of # $ @ . That is to say, the PITC/EBCD code positions for # $ @ 
already having been assigned, ” ! ¢ must be assigned as shown in Fig. 

12.6. 

12.10 DIFFERENCES WITH PTTC/BCD 

As described in Chapter 9, hole patterns 8-7, 11-8-2, and 12-8-2 had 

been assigned to ” ! ¢. The assignment of ! (as shown in Fig. 12.6) with 

its hole pattern of 11-8-2 coincidentally matched PTTC/BCD (Fig. 6.6), 

but the assignment of hole patterns 8-7 and 12-8-2 to graphics " ¢ (as 

shown in Fig. 12.6) would displace the PTTC/BCD hole patterns 0-8-7 

and 11-8-7 assigned to these positions. Also, as previously noted, the 

assignment of 0-8-1, 12-8-1, and 8-1 to positions °*, 7’, and *° (Fig. 12.5) 
would displace hole patterns 12-8-7, 0-8-5, and 8-7 from PTTC/BCD 

positions '°, '°, and 7? as shown in Fig. 6.6. 
In short, five hole patterns had been assigned to PTTC/EBCD 

differently than to PTTC/BCD as shown below: 

Move 1. 8-7 assigned to *', displacing 0-8-7 

Move 2. 12-8-2 assigned to 7”, displacing 11-8-7 

Move 3. 8-1 assigned to *°, displacing 8-7 

Move 4. 0-8-1 assigned to 7*, displacing 12-8-7 

Move 5. 12-8-1 assigned to *’, displacing 0-8-5 

(Code table position references above are in respect to Fig. 12.5) 

12.11 “MUSICAL-CHAIRS” PHENOMENON 

These moves, by the ‘‘musical chairs’? phenomenon, necessarily led to 

further moves as shown below: 

Move 6. 12-8-7, displaced by Move 4, replaced 0-8-1 in 7°, moved from 
75 by Move 4 

Move 7. 11-8-7, displaced by Move 2, replaced 12-8-1 in 3', moved from 
31 by Move 5
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Move 8. 0-8-7, displaced by Move 1, replaced 12-8-2 in 7°, moved from 
23 by Move 2 

Move 9. 0-8-5, displaced by Move 5, replaced 0-8-6 in 7° 

Move 10. 0-8-6, displaced by Move 9,* replaced 8-1 in '7, moved from 

'7 by Move 3 

Of course, these code positions, having hole patterns assigned to them by 

these moves, also took their EBCDIC graphics with them under Criterion 

3, EBCDIC compatibility. 

No further moves were made. Under Criterion 2, PTTC/BCD com- 

patibility, the remainder of the code positions in upper-case shift took the 

hole patterns from PTTC/BCD (Fig. 6.6 in Chapter 6), but under 

  

  

  

  

  

  

              

PTTC/BCD PTTC/EBCD 

Code Code EBCDIC 
Hole pattern Graphic position Graphic position graphic 

(Figure 6.6) (Figure 12.8) 

8-6 > = = 

12-8-4 Hor} [4] < < 

11-8-6 [5 | 

8-2 b [6 | 

0-8-4 % or ( % [15] % 

8-5 

11-8-4 * * " 

12.8.5 [ ( ( 

11-8-5 1 } ) 

11-8-2 ! | | 

12-8-6 < + + 
  

Fig. 12.7. PTTC/BCD compatibility 

  
* The author cannot recall why, in Move 9, 0-8-5 displaced 0-8-6 in code position 
6 It would seem to have been reasonable for 0-8-5 to have replaced 8-1, moved 
from code position *”? in Move 3. Such a move would then have completed the 
“‘musical chairs’? moves. However, Move 9 was made, for whatever reason, and 

led to Move 10, which did complete the moves.
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Criterion 3, EBCDIC compatibility, they took for those hole patterns the 

EBCDIC graphics as shown in Fig. 12.7. 
This, then, completed the assignment for the Duocase Alphabet Set 

and Extended Card-Code Set for PTTC/EBCD, as shown in Fig. 12.8. 

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

    
                          

    

  

  

  

      
  

            

Lower Case Upper Case 

Bit Pattern A B BA A B BA 

Hole 

Pattern—>| 11-0 12-11 11-0 0 1l 12 

Sp ety _tst , LT op « 22] _ kel, baal 

1 1 1 peg a -') ,ks) | A 

2 2 2 g k b < 42] g K B 

21 3 3 t 1 c 3 Lal T L Cc 

1 
4 4 4 u m d : U M D 

44 5 5 v n e yO} y N E 

42 6 6 w o £ 1 Gs W 0 F 

421 7 7 * Pp g > ha x P G 

18 
8 8 8 y q h % el Y Q H 

8 1 9 9 Zz r t ¢ hal Z R I 

8 2 0 0 [3] Le] L9] ) Be [24] 27] Bo 

8 2 3-3 4 22 = 3 4 1o , 24 | 25 , Ba _ B4 

84 4 PN BYP RES PF PN BYP RES PF 

84 1 5 RS LF NL AT RS LF NL HT 

842 6 UC EOB BS LC UC EOB BS LC 

8421 7 EOT PRE IL DEL EOT PRE IL DEL 

4 
Hole —y 9 9-0 | 9-11 | 9-12 9 9-0 | 9-11 | 9~12 

Hole Patterns 

[7] 8-4 12 0-8-4 [a2] 12-8-2 12-8-6 

[2] 0-1 12-0 8-5 [23] 0-8-7 8-1 Block | Hole Patterns at: 

[3] 0-8-2 12-8-3 0-8-6 0-8-1 [i] 11-8-7 1 3 1 | Top And Left 
[4] 0-8-3 fii] 8-6 11-8~4 [5] 12-8-7 [32] 8-3 2 | Bottom and Left 
[s] 11 [rz] 12-8-4 12~8-5 0-8-5 2 4 3 | Top and Left 
[e} 11-0 [3] 11-8-6 118-5 12-8-1 4 | Bottom and Left 
[7] 11-8-3 8-2 [zi] 8-7 11-8~2 

Fig. 12.8 PTTC/EBCD, Duocase Alphabet Set, Final Version, 
Extended Card-Code Set
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The Basic Card-Code Set had been completed (see Fig. 12.3), but 

the Monocase Alphabet Set had not. The Monocase Alphabet Set could 

now be completed since it, as previously described, would be different 

from the Duocase Alphabet Set only in that capital letters would appear 
in both lower- and upper-case shift. That is to say, the specials in 
upper-case shift for the Duocase Alphabet Set (Fig. 12.8) would also 

  

  

  

  
  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

                              
  

  

  

  

  

Lower Case Upper Case 

Bit A B BA A B BA 
Pattern 

Hole 

Pattern—>) 0 11 12 0 ll 12 

sP @ yy - & SP ¢ by _ + 

1 1 1 / ty J A = 2 Bg A 

2 2 2 s K B < S K B 

21 3 3 T L Cc 3 T L Cc 

4 4 4 U M D U M D 

4 1 5 5 v N E a v N E 

42 6 6 W 0 F ‘ W 0 F 

421 7 7 xX P G > xX P G 

8 8 8 Y Q H * Y Q H 

8 1 9 9 Z R I ( Z R I 

8 2 0 0 N.P N.P N.P ) N.P N.P N.P 

8 21 8-3 # : $ " | I = 

84 4 PN BYP RES PF PN BYP RES PF 

84 1 5 RS LF NL HT RS LF NL HT 

842 6 UC EOB BS LC uc EOB BS Le 

8421 7 EOT PRE IL DEL EOT PRE IL DEL 

Hole——p/ = g 9-0 | 9-11 | 9-12 9 9-0 | 9-11 | 9-12 
Pattern 

N. P. =~ Non-Printing 
Hole Patterns: 

[i] 84 
[2] 0-1 Block | Hole Patterns at: 

1 3 1 Top And Left 

2 Bottom and Left 

2 4 3 Top and Left 

4 Bottom and Left                 

Fig. 12.9 PTTC/EBCD, Final Version, Monocase Alphabet Set, 
Basic Card-Code Set
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appear in upper-case shift for the Monocase Alphabet Set. The final 

version of PTTC/EBCD Monocase Alphabet Set and Basic Card-Code 

Set, is shown in Fig. 12.9. 

At this point it should be emphasized that the 64-character Basic 

Card-Code Set and the 63-character Monocase Alphabet Set do not 

consist of the same set of characters. The Basic Card-Code Set consists of 
the hole patterns for the Space character, 47 graphic characters (3 

nonprinting), and 16 control characters. The Monocase Alphabet Set 

consists of the Space character (in upper- and lower-case shift), 10 
numerics in lower-case shift, 8 specials in lower-case shift, 18 specials in 
upper-case shift, and 26 capital letters in upper- and lower-case shift. 

12.12 INTERACTIONS, BASIC AND EXTENDED SETS 

Some examples are now given to illustrate interactions between the Basic 

and Extended Card-Code Sets and the Monocase and Duocase Alphabet 

Sets. Applications are straightforward when the 1050 is configured either 

with the Basic Card-Code Set feature and the Monocase Alphabet Set or 
with the Extended Card-Code Set and the Duocase Alphabet Set. Other 

combinations were possible, such as the Basic Card-Code Set feature with 

the Duocase Alphabet Set, but ingenuity and a knowledge of the codes 

was necessary in such cases in order to make the 1050 produce the 
desired result. 

In the examples that follow, the ‘‘desired result” is a line of printed 
characters, whether produced by reading a punched card on the 1050 card 
reader or produced by the operator keying from the 1050 keyboard. 

Example 1 

This example illustrates the use of the 1050 Basic Card-Code Set feature 
to drive the Monocase Alphabet Set, with capital letters, but with 

lower-case shift only; that is, no shift characters are required. 

Line 1 J L . SPS M I T H SP $ 1... #23 

J J J J db vv bo vod 4 tv vd 
J J J J db bdvybboviod Ld do vd 
J J J J b+veb bo bod , bb vd 

Line 2 ml . il . Sook Yoloalis . $ i . |: 
Line 3| 11-1] 12-8-3] 11-3 12-8-3 [NP 0-2 thalt2-0 0-3 }12-8 |NP is-3lt 12-8-3|2}3 

  

Note: NP means No Punches. SP means Space 

Line 1 is the print line—J. L. Smith $1.23. 
Line 2 are the Basic Card-Code Set characters. 
Line 3 are the Basic Card-Code Set hole patterns.
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Example 2 

This example illustrates the use of the 1050 keyboard to drive the 

Monocase Alphabet Set, with capital letters but with lower-case shift 

only; that is, no shifting is required during the keyboard operation. 

Line 1 J LL. SPS M IT H SP ¢$ 1. 23 
L 1 1 L, dss L J dD bb vv be 
L L J L 4 ' ' J J Db bv bo ibe 
| 1 | 1 Mi ’ 1 Lb bt bo bo vob 

Line 2| 3 | | | si a H |S $ i _ |2i3 
Line 3| B1! A821! B21! A821 SP A2|B4 BABI A21|BA8! SP B821 |1]A821]213     

  

Line 1 is the print line—J. L. Smith $1.23. 
Line 2 are the keys. 

Line 3 are the PTTC bit patterns. 

Example 3 

This example illustrates the use of the 1050 Basic Card-Code Set feature 

to drive the Monocase Alphabet Set, with capital letters only, but with 

upper- and lower-case shift. 

Line 1 Z =( KX + YY )*(€ P — D ) 

Lb lb d 1 1 bid dl Y LJ 
—-<«|) Jl L Lvbd id -<« |) <<] J 
L J J 
t L, vbiod Y L vido’ 1 Log L J 

Lb tid J b dd , ie L 4 L J 
Line 2 119/ xX | & 01 8|9 — |UC | 
Line 3 9-6 lool alo 0-7] 12 oslo 0} 8/9 912-6 11 9-6 [12-410               

Line 1 is the print line—Z = (X+ Y)*(P—D). 
Line 2 are the Basic Card-Code Set characters. 

Line 3 are the Basic Card-Code Set hole patterns. 

Example 4 

This example illustrates the use of the 1050 keyboard to drive the 

Monocase Alphabet Set, with capital letters only, but with upper- and 

lower-case shift. 

  

Line 1 Z =( X + Y /j) * (¢ P - D ) 

Lossy 1 vb od d d 4 
-<| 4 ’ J Lsvsvbebood —-<|) <<) | 
J Lb, dvlid 1 sevld id J L 4 L of 

Tine 3 [2 [ast {1 il atoilpalat |ndir | pasar! p | seal naa lan Line 3 349 A81 | 1 {1] A4211BA/A8] 82/8181! B421 | BA842 842 | BA4 | 82 
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Line 1 is the print line—Z = (X+ Y)*(P—D). 
Line 2 are the keys. 

Line 3 are the PTTC bit patterns. 

Example 5 

This example illustrates the use of the Basic Card-Code Set feature to 

drive the Duocase Alphabet Set, with small and capital letters. 

Line 1 SP SP S a m a n d J a n 

J 4 bebo vod J Lod 
<<] W~-<—-) | Lob bobo bo ced «<1 4 
t J 4 4b bhbodbobedboaypod d Lb 

J J L ‘ ; bbb bVdvid ‘ L od 
Line 2 sel | LC | A rhe lan | SP JUC None I | 
Line 3 0-2 o-10-6l12-1lti-alwPlraltslizalwplocela-aloinetio alte 

Line 1 is the print line—Sam and Jan. 

Line 2 are the Basic Card-Code Set characters. 
Line 3 are the Basic Card-Code Set hole patterns. 

Example 6 

This example illustrates the use of the 1050 keyboard to drive the 
Duocase Alphabet Set, with small and capital letters. 

Line 1 S a SP SP m a n d J a n 

1 a d Loy J Lo oo4 
<<| -<«tl J did Y dd <<) -<]| J 
Lov J Lub diy L J ' / J 1 Loo¢ 
dod J 4 bboy d J J a Ld 

Line 2} UC a n n 

Line 31842 lao pasa? BAI | pal sp plBAt B41 padl s ney. | BAs4#2 BAI B41 

Line 1 is the print line—Sam and Jan. 

Line 2 are the keys. 

Line 3 are the PTTC bit patterns. 

Example 7 

This example illustrates the use of the Extended Card-Code Set feature 
to drive the Duocase Alphabet Set, with small and capital letters. Shift 
characters are not required. 

Line 1 S a m SP oa n d SP J a n 

Loy J L od J Lb boy J | 
Lod J 4 4 J 4 ov 4 Y J 
4 4 1 4 J 4 dod 1 | 

Line 2| S a a n d J a n 

Line local 1.0-2 12-11-4 NP ht 1.0-2112-11-5111.0-4 NP 11-1111-0-2 112-11-5
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Line 1 is the print line—Sam and Jan. 
Line 2 are the Extended Card-Code Set characters. 

Line 3 are the Extended Card-Code Set hole patterns. 

12.13. PTTC AND EBCDIC 

One final aspect of PTTC/EBCD needs to be covered—the translation of 

the shifted 6-bit PTTC into the unshifted 8-bit EBCDIC. 
The translation of a shifted code into an unshifted code, and vice 

versa, is an interesting problem. For example, a and A, both have the 

same bit pattern, BA1, in PTTC/EBCD, but have different bit patterns, 

10000001 and 11000001, respectively, in EBCDIC. Of course, whether 
BA1 means a or A in PTTC/EBCD depends on whether it was preceded 

in the data stream by BA842, lower case, or by 842, upper case. Another 

complication is that in the EBCDIC data stream equivalent to a 

PTTC/EBCD data stream, the UC and LC bit patterns should not be 

present. 

The solution, for the 1050 and System/360, was to transform the 

PTTC/EBCD data stream first into an intermediate 8-bit data stream, 

with shift characters replaced by “‘shift bits’ in each 8-bit byte, and then 
to translate this string of 8-bit bytes into a string of EBCDIC bytes. The 
transformation process from shifted to intermediate form was effected by 

hardware (by the IBM 2701 Data Adapter Unit, which stood between 

the data transmission lines and the System/360). The translation from the 

intermediate form, which was called the “‘System/360 Oriented Form’’ in 

IBM literature, was effected, if necessary, by software in the System/360. 

PTTC/EBCD as actually transmitted was a 9-bit byte as follows: 

Stat B A 8 4 2 1 C Stop 

The start-stop bits are deleted by the 2701 on receive operations and 

inserted on transmit operations. The C-bit is a ‘“‘check bit,” actually an 

odd-parity. check. 

The transformation process of the resultant 7-bit byte (start and stop 
bits deleted) into the 8-bit “‘System/360 Oriented Form’’ proceeded as 

follows: 

S BA 8421 C 

As the data stream goes through the transformation process, UC bit 

patterns are removed from the data stream, and a one-bit is set into the S 

bit position of each succeeding 8-bit byte until an LC bit pattern is 

detected (and removed from the data stream). Then a zero-bit is set into 

the S bit position of each succeeding 8-bit byte until a UC bit pattern is 

detected, and so on.
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The bit positions of a System/360 8-bit byte are numbered as 

follows: 

0 123 4 5 6 7 

Then the S-bit as described above, the 6 bits BA9421, and the check-bit 

C of the PTTC/EBCD byte are set into the System/360 byte as follows: 
  

  

SBA 8421C 
$b bud dd 
a 
012 34567     

The resulting code table, PTTC/EBCD, System/360 Oriented, is shown in 

Fig. 12.10. The six shaded code positions come from the six nonprinting 

code positions of PTTC/EBCD. 

The System/360 Oriented Form of PTTC/EBCD could then be 

translated (if necessary) by software. The “‘if necessary” aspect should be 
noted. There are applications, store and forward, for example, where 

translation into EBCDIC would be unnecessary. 
  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

                                      

Column 0 | 1 2 3 4 | 5 | 6 | 7 8 | 9 | A | B c | Oo | E | F 

Bit 00 01 10 11 4 

Pat.” 
00 01 10 117 00 01 10 11 00 01 10 11 00 01 10 11 

Row 

0 |o000 8 @ ~ h * ¢ _ H 

1 |0001] sp y q & SP Y Q + 7 

2 |0010 1 Z r a = Z R A 

3 |oot1i 9 / j t ¢ ? J I 
_ 

4 10100 2 b < B 

6 10701 0 s k ) S K 

6 |0110 it t 1 . " T L 7 

7 |o111 3 : $ c ; | ! Cc 

8 ;10007 4 BYP RES | d : BYP RES | D 
4 

9 |1001 PN u ™m PF PN U M PF 

A {1010 RS Vv n HT | RS Vv N HT 
- 

B jTo1te 5 LF NL e % LE NL E 

c |1700 uc Ww ° LC UC W 0 LC 

D j1701) 6 EOB BS £ - EOB BS F 

E ;1110) 7 PRE IL g > PRE IL G 1 

Foya4it EOT, x P DEL EOT} X P DEL     
Fig. 12.10 PTTC/EBCD, System/360 Oriented Form



210 The New PTTC 

A similar, but opposite, process took place on transmitting from the 

System/360 to a 1050. A string of bytes of the System/360 Oriented 

Form was processed through the 2701. The first byte was inspected for its 

S-bit. If S-bit is one, a UC bit pattern is injected. If S-bit is zero, an LC 

bit pattern is injected into the data stream. S-bits of succeeding bytes 

were inspected for a change: if a change was from zero to one, a UC bit 

pattern is injected; if a change was from one to zero, an LC bit pattern is 

injected into the data stream. For all bytes, the S-bit was deleted, yielding 

PTTC/EBCD bytes. Of course, start-stop bits were appended to each 

PTTC/EBCD byte before transmission from the 2701. 

12.14 DIFFERENCES, PTTC/BCD AND PTTC/EBCD 

As has been pointed out, there were a number of differences between 

PTTC/BCD and PTTC/EBCD. These stemmed mainly from changes 

going from BCDIC to EBCDIC and from different principles for assign- 

ment of card hole patterns to the small and capital alphabetics. Before the 

design of either PTTC, the well-established hole patterns for alphabetics 

had been assigned to capital letters, the only kind of letters then available 

on monocase data processing equipment. The use of a duocase electric 

typewriter for PTTC/BCD and for PTTC/EBCD introduced the capabil- 

ity for both small and capital letters. The principles established for 

PTTC/BCD and for PTTC/EBCD were as follows: 

PTTC/BCD. The card hole patterns previously associated with mono- 

case alphabetics will be assigned to the lower-case shift (of the typewri- 

ter), regardless of whether small or capital letters appear in that case shift. 

PTTC/EBCD. The card hole patterns previously associated with mono- 
case alphabetics will be assigned to capital letters, regardless of whether 

capital letters appear in upper- or lower-case shift. 

The principle for PTTC/BCD had as its objective maximum simplicity of 

the logic circuitry between the keys of the keyboard and the hole patterns 

of the punched card. The principle for PITC/EBCD had as its objective 

unvarying (for the future) hole patterns for small and capital letters, even 

though this would increase the complexity of the logic circuitry between 

the keys of the keyboard and the hole patterns of the punched card.



13 
The Size 

and Structure 
of ASCII 

During the late 1950s, the need was recognized for a standard code for 

the communications industry not only in the U.S.A. but also in Europe 

and in Japan. Internationally, the development work was carried out in 

ISO/TC97/SC2. In the U.S.A., the work started under the auspices of 

E.I.A. (Electronic Industries Association). With the formation of the X3 

Committee under the auspices of the A.S.A. (American Standards As- 

sociation) to develop standards for the data processing industry, the X3.2 

Subcommittee was established to develop a standard code, standard 

media (magnetic tape, punched cards, paper tape), and the representation 

of the standard code on those media. 

13.1 NAME OF THE CODE 

Since a code was to be developed as an American Standard, it would be 

called the American Standard Code. It was thought well to qualify the 

name of the code, according to its purpose, and it came to be titled the 

American Standard Code for Information Interchange. From the initials 

of this title emerged the acronym ASCII. Later the American Standards 

Association changed its name to the United States of American Standards 

Institute (U.S.A.S.I.). The code then came to be titled the United States 

of America Standard Code for Information Interchange, from which 

emerged the acronym USASCII. Both acronyms, ASCII and USASCH, 

enjoyed currency and were eventually written into the standard itself as 

co-equal “‘standard”’ acronyms. Then U.S.A.S.I. once again changed its 

name, to the American National Standards Institute (A.N.S.I.). Needless 

to say, the code again changed its name, to the American National 

211
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Standard Code for Information Interchange. However, the suggestion 

that the third acronym, ANSCII, be adopted, met with opposition, and 

was rejected. The code is now commonly referred to as ASCII, the 

acronym USASCII having fallen into disuse. 

During the initial development of ASCII, the developers went 

through the same process that the developers of PTTC/BCD went 

through (see Chapter 6). The first thing to determine was the functional 

requirements of the code, how many graphic characters and how many 

control characters. It was at this time that the American Telephone and 

Telegraph Company stated its official requirements on the code. There 

should be an all-zeros character, Null, and an all-ones character, Delete. 

13.2 GRAPHIC REQUIREMENTS 

The standards committee first tackled the question of graphic characters. 

Existing codes were studied. 

CCITT #2 had 26 alphabetics, 10 numerics, 3 code positions for 

national use, and 11 specials 

2 = C ) oF 2 fF = 

for a total of 50 graphics. 

The Western Union Telegraph Company, using equipment from the 

Teletype Corporation, had substituted 

wr 
; for = + 

The punched card code of the day commonly (there were some 

variations) provided 52 graphics; 26 alphabetics, 10 numerics, 6 unique 

specials ., * $ / — and 10 specials as duals: 

%y H & F @ 

(yes! 
Fieldata, a code developed by the United States Army (later to be- 

come a military standard) for telecommunications, had 10 numerics, 26 

alphabetics, and 19 specials: 

» * $ Jf = ( ) + = 

~— < > 3; +: ? $ 7" ? 

BCDIC had 10 numerics, 26 alphabetics, and 32 specials (5 dual 

pairs) 

> * / $ ~ \ % ( mw ) S&L 

A 

# = @ 
>! 2, ]# # # By ' > < 

+ 

J
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for a total of 68. Of these 68 specials, 7 were for the representation of 

control functions, leaving 25 as true graphics. 

It seemed, therefore, that widely used codes of the day had a 
requirement for 10 numerics, 26 alphabetics, and from 11 to 25 specials. 

A total across these codes comes out as follows: 

Punctuation and correspondence yop EOL 9 

Bracketing ()[] 4 
Commerical &%H@%% 4 6 
Mathematical +—- =x*/\< > . 8 

27 

From this preliminary survey then, there appeared to be a requirement 

for at least 46 graphics and maybe for as many as 64 graphics. Other 

graphics in wide use were fractions } and 5, commonly provided on 

electric typewriters, and small letters (as well as capital letters). 

13.3. CONTROL FUNCTION REQUIREMENTS 

It began to appear that upward of 64 graphics should be provided in the 

standard code for information interchange. The standards committees 

were also studying the requirements for control characters. 

CCITT #2 had provided 7: 

Space Letter Shift 

Carriage Return Answer Back 

Line Feed Audible Signal 

Figure Shift 

Fieldata had provided 9 specific control characters and code positions 

for 64 unspecified control characters: 

Master Space Space 
Upper Case Stop 

Lower Case Special 

Line Feed Idle 

Carriage Return 

BCDIC provided 7: 

Record Mark Mode Change 

Group Mark Word Separator 

Tape Mark Substitute Blank 

Segment Mark
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The standards committee working on data transmission was studying 
the question of characters purely for data transmission control. A require- 

ment for about 10 data transmission control characters seemed to be 

emerging. 

13.4 MORE THAN 64 CHARACTERS! 

Putting the two tentative requirements for graphic and control characters 
together, one fact seemed to be very clear. More than 64 characters 

would be required for a code to span the needs of computing and of 
communications. The figure 64 was a key figure because it pointed at a 
code of more than 6 bits—at least 7 bits. This fact was very significant 
because nearly all the computers of the day had essentially a 6-bit 

architecture. In order to implement the standard code for information 
interchange, therefore, it was very desirable that it be 6 bits (or less). But 

try as it could, the standards committee could not reduce the character 
requirement to 64 or less. 

13.5 SHIFTED CODES 

At this point, the possibility of a shifted or precedence code was raised. 
The concept is explained in Chapter 2. The world-wide telegraphic code, 
CCITT #2 (see Chapter 3), was a shifted 5-bit code. IBM had made a 

decision to provide a shifted 6-bit code (see Chapter 6, the Size and 
Structure of PTTC). 

The great virtue of a shifted code is the capability of providing more 

characters than the byte size of a code would normally permit. The 

formula (given in Chapter 2) for the number of different characters is 

Qxtl _ y 

where x is the number of bits in the code byte and y is the number of 

shift-dependent characters. 

CCITT #2, a shifted 5-bit code, provided 58 different characters. 

PTTC, a shifted 6-bit code, provided 111 different characters. It ap- 

peared, therefore, that the character requirements for the standard code 

for information interchange would be accommodated by a shifted 6-bit 

code. 

A strong argument arose against adopting the concept of a shifted or 

precedence code for the code. In those days, telecommunication lines 

were not wonderfully reliable. A phenomenon known as a “‘hit’’ occurred 

not infrequently. When a one-bit was hit, it turned into a zero-bit. When 

a zero-bit was hit, it turned into a one-bit. If an individual graphic bit
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pattern was hit, the individual graphic would be garbled, but the word in 

which it appeared would generally be intelligible to a human. For 
example, suppose the bit pattern 11101 for Q was hit and turned into 

11001, the bit pattern for W. Then a word REQUIRE would be received 

and printed as REWUIRE. But, from context of the sentence and 

message in which REWUIRE appeared, it would usually be possible for 

the recipient to reason out that REQUIRE had been intended. 
If the graphic bit pattern that was hit was a numeric, and it was in 

consequence turned into another numeric or into a special, it was virtually 

impossible to reason out from context what the numeric had been. 

Indeed, if a numeric was changed into another numeric, it was not even 

evident to a human reader that a hit had taken place. To compensate for 

this, telegraphists would commonly take all numerics that had occurred in 

a telegram and rekey them in sequence at the end of the message. 

Provided there were no hits on this sequence of numerics, a comparison 

by the recipient showed what numerics, if any, had been hit in the 

message. 
Consider an example using CCITT #2 with its two shift characters, 

FS for Figure Shift and LS for Letter Shift. Consider a data stream 

[LS|x|X|xX|FS|x|xX|LS|x|xX|xX|xX|FS|xX|X|, ete. 

where X stands for a 5-bit graphic bit pattern. 

If a hit occurred in the bit pattern of either a Figure Shift character 

itself or a Letter Shift character itself, the message would generally be so 

garbled as to be incomprehensible, and retransmission would have to be 

requested. 

There were two situations then. If a graphic bit pattern were hit, the 

individual graphic would be garbled, but could sometimes be reasoned 

out. If a Figure Shift or Letter Shift bit pattern were hit, the message or a 

portion of the message was generally incomprehensible. 

The first controversy on the standards committee was the economy of 

a shifted code versus the potential occasional garble of a message on the 

telecommunication lines. Giving more weight to reliability than to cost, 

the standards committee decided against the concept of a shifted or 

precedence code. (Interestingly, much later, the committees nevertheless 

did decide to place two shift characters in the code, Shift In and Shift 
Out.) 

13.6 7 BITS OR 8 BITS? 

However, at that time, the consequence of the decision against a shifted 

code was that the code would apparently require at least 7 bits. At this
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point, it was proposed that the code should be 8 bits. The central basis of 

this proposal was the efficiency of representation of numerics. Each of the 

10 numerics can be represented by 4 bits (the BCD representation). The 

26 alphabetics can be represented by 5 bits. A 36-character code set 

consisting of the numerics and alphabetics requires 6 bits. But consider. If 

4 bits can represent numerics, but numerics are represented by 6 bits, 

then there are 2 bits of ““overhead.” Two bits more than strictly necessary 

are used to represent numerics, and this is clearly inefficient. The al- 

phabetics also, then, are inefficiently represented, with 1 bit of overhead. 

At the time the standard code was being developed, it was estimated 

that 75 percent of the data in data processing operations was numeric 

data. In short, 75 percent of the data was inefficiently represented. And 

now it was being suggested on the standards committees to use a 7-bit 

code. This would bring about 3 bits of overhead for numerics and 2 bits 

of overhead for alphabetics—even more inefficiency than in 6-bit rep- 

resentation. 

Into an 8-bit byte, two 4-bit bit patterns can be packed; that is, two 

numerics can be represented in an 8-bit byte. And there is zero overhead. 

An 8-bit byte provides optimum efficiency of representation of numeric 

data. Of course, the consequent 3 bits of overhead for alphabetics is more 
inefficient than the 2 bits of a 7-bit representation. 

The argument for an 8-bit byte, therefore, was that numeric data, 75 

percent of all data, could be represented with optimum efficiency. 

There were arguments against an 8-bit byte. One argument was a 

cost argument. In those days of relay logic and vacuum-tube logic, a ‘‘bit”’ 

cost an appreciable amount. Seven-bit registers were appreciably more 

costly than 6-bit registers, and 8-bit registers were appreciably more 

costly than 7-bit registers. Also, given a data communications line speed 

of a fixed number of bits per second, it would take more time to transmit 

1000 8-bit characters than 1000 7-bit characters. And time of use of data 
communication lines bears directly on cost of use of the lines. 

Another argument bore on the reliability of perforated tape. A 

common perforated tape of the day was 1-inch, 8-track. Representing a 

7-bit byte on such perforated tape meant 7 tracks for data, 1 track for 

parity. Representing an 8-bit byte on such tape meant 8 tracks for data, 

and no parity track. In short, a 7-bit byte could be represented more 

reliably on 8-track perforated tape than could an 8-bit byte. 

13.7. A 7-BIT CODE! 

The arguments for a 7-bit byte—cost of communications products, cost of 

data communication, and reliability of perforated tape—were weighed by 

the committee against the argument for an 8-bit byte—efficiency of
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representation of numeric data. This technical controversy was decided, 

as all technical controversies on standards committees are decided, by the 

democratic process of taking a vote. The majority voted for the 7-bit 

byte. The decision was thus made that the standard code for information 

interchange would be a 7-bit code. The words set down by Subcommittee 

X3.2 are interesting (set down after the character set had been developed, 

but essentially justifying the 7-bit decision): 

Consideration led the Subcommittee to a seven bit code set providing 

128 combinations. This character set contains a graphic subset ade- 

quate for both data processing and communication purposes. The 

character set also provides control characters for use in controlling 

transmission terminal equipment and input/output devices; data de- 

limiting characters for segregating and formatting data; and selected 

characters for special purposes. 

The Subcommittee recognizes that computer manufacturers are un- 

likely to design computers that use 7-bit codes internally. They are 

more likely to use 4-bit, 6-bit, and 8-bit codes. There is no wide- 

spread need at present for interchange of more than 128 separate 

and distinct characters between computers, and between computers 

and associated input/output equipment. However, an eight bit code 

structure does have distinct advantages in that two 4-bit numeric 

characters can be packed into an 8-bit frame. And larger code sets 

reduce the number of multicharacter symbols required for problem 

definition and programming. 

The Subcommittee concluded that a set larger than seven bits should 

not be recommended as a standard. Some of the primary factors 

which led to this conclusion were as follows: 

a) The 128 combinations available in a 7-bit set satisfy the infor- 

mation and control interchange requirements for the large ma- 

jority of users. 

b) Utilizing an 8-bit set which provides 256 combinations would 

require recording and transmission of 8-bits by all input-output 

and transmission systems even though the great majority of 

requirements are satisfied by a code of fewer bits. 

c) A redundancy (parity) bit is employed in most read/write opera- 
tions and may be used in transmission of data for error control 

purposes. 8-bits (7 coded bits plus one redundancy bit) are the 

maximum that can be recorded in a single frame or character 

position on one inch perforated tape under present recording 
practices.
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13.8 STRUCTURE OF THE CODE 

With the decision on size out of the way, the standards committee now 

went on to consider the structure of the code. The first decision to be 

made was more of an administrative than of a technical nature. How 

should the code be exhibited in documents? The committee opted for a 

matrix or tableau of eight columns and sixteen rows. The three high-order 

bits of the seven bits 000, 001,..., 111 would be used to distinguish the 

eight columns. And the four low-order bits 0000, 0001, ...,1111 would 

be used to distinguish the sixteen rows. 

The next administrative decision was how to name or number the 

seven bit positions. It was decided to name them 

b7, b6, b5, b4, b3, b2, b1 

from high-order bit position to low-order bit position. 

These administrative decisions are shown in Fig. 13.1. 
Some facts were now reviewed. 

1. AT&T had stated a functional requirement for an all-zeros character, 

Null, and an all-ones character, Delete. 

2. The Subcommittee’s surveys had shown a requirement for 10 

numerics, 26 alphabetics, and up to 27 specials; that is, up to 63 

graphic characters. 

3. There might or might not be a requirement for small letters, as well 

as for capital letters. 

4. From the data transmission standards committee was emerging a 

requirement for 10 or more data transmission control characters. 

5. There was a requirement for a number of format-effector characters, 

such as Space, Carriage Return, Line Feed, New Line, Horizontal 

Tab, Vertical Tab, Form Feed. 

6. There was a need for data-delimiter or information-separator charac- 

ters. How many would be required was far from clear. 

7. Looking to the future, it would be wise to include characters, such as 

Escape, Shift In, Shift Out, that could be used to extend the 

repertoire of control and graphic characters without increasing the 

byte size of the code. 

8. There would be a requirement for a number of specific or general 

control characters to control either devices or functions of devices. 

Two conclusions were drawn from these facts. 

Conclusion 1. About 64 graphic characters might be adequate. 

Conclusion 2. More than 16 control characters would be needed.
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Bit b7 | Q 0 0 0 1 1 1 1 

Pattern b6 0 0 1 1 0 0 1 1 

b5 0 1 0 1 0 1 0 1 

b4 b3 b2 b1 
    
  

0000 

  

  

  

  

  

  

  

  

  

  

  

  

  

  

                        
  

Fig. 13.1 Matrix representation of 7-bit code 

The numbers 64 and 16 (above) were used because the standards com- 

mittee was beginning to think of the code in terms of the code table (see 

Fig. 13.1) with its 8 columns of 16 characters each—16 and 64 are 

multiples of 16. 

At this point, the first criterion relative to the structuring of the code 

emerged.
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Column 0 1 2 3 4 5 6 7 

Bit b7/ 0 0 0 0 1 1 1 1 

Paver b6 0 0 1 1 0 0 1 1 

b5 0 1 0 1 0 1 0 1 

Row b4 b3 b2 b1 

0 0000 

1 0001 

2 0010 

3 0011 

4 0o1aqaq 

5 0101 

6 0747170 

7 01% 1 

8 1000 

9 1001 

10 107170 

11 1011 

12 17100 

13 17101 

14 1110 

15 1111                         
Fig. 13.2 7-bit code table 

13.8.1. Criterion 1 

Control characters and graphic characters should not be intermingled. 

Control characters should be grouped contiguously, and graphic charac- 

ters should be grouped contiguously. 

Conclusion 3. A further review of facts 4, 5, 6, 7, 8 above led to the 

conclusion that more than 16 control character positions were needed, 

but 32 positions (that is, two columns) might be sufficient.
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At this point, for purposes of easy reference, another administrative 

decision was made—to number the code columns 0, 1, 2,...,7, and to 

number the code rows 0, 1, 2,..., 15, as shown in Fig. 13.2. 

Conclusions 1 and 3 said that four columns of graphics and two 
columns of controls should be assumed as an initial basis for structuring 

the code. There were then twelve possibilities, as shown in Fig. 13.3, 

where 

Cc stands for a column of control characters, 

g stands for a column of graphic characters, and 

x stands for a column of as yet undefined function. 

Table 

Columns—> 0 t 2 3 4 5 6 7 

Possibilities J 
  

  

1 c c g g g g xk xX 

2 c c x g g g g x 

3 c c x x g g g g 

4 x c c g g g g x 

5 x c c xX g g g g 

6 x xX c ¢c g g g g 

7 ge g¢ g g@ ¢ ¢ x xXx 

8 eg g g g@ xX € ¢C x 

9 ge g g gg kK xX ¢ ¢€ 

10 xX g g @ 8 € C xX 

11 x g 2 g g x ¢€c ¢ 

12 x xX g 8 g g ci c¢ 

Figure 13.3 

Some of these possibilities were eliminated because of the require- 

ment for a control character of all-zeros, Null, and because of Criterion 1 

(not intermingling controls and graphics). The committee put two in- 

terpretations on Criterion 1. 

Interpretation 1. Within a column, there should not be both controls 

and graphics. 

Interpretation 2. A column of controls should not be positioned be- 

tween columns of graphics, and a column of graphics should not be 

positioned between columns of controls. 

Given Null, a control character, in column 0, Interpretation 1 ruled out 

possibilities 7, 8, and 9. 

All possibilities satisfied Interpretation 2. But if the x columns 

ultimately were defined to be graphic columns, possibilities 4, 5, and 8 
were ruled out, and probably 10. And if the x columns ultimately were 
defined as control columns, possibilities 2, 4, 10, and 11 were ruled out.
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Essentially, then, all possibilities with separated single x columns 

were ruled out, leaving possibilities 1, 3, 6, 12 with the two x columns 

always appearing as contiguous column pairs. 

The four remaining possibilities each gave rise to two possibilities, 

depending on whether both x columns were defined as controls or as 

graphics, as shown in Fig. 13.4. 

Table 

Columns> 0 1 2 3 4 5 6 7 
Possibilities | 
  

  

  

  

  

la c c g g g g € Cc 

1b c ¢ 8 £8 &€ 8 gg 8 

3a ec c c ¢c¢ g g g g 

3b c c g g g g g- g <ruled out same as 1b 

6a c c c c g g gg. g <ruled out same as 3a 

6b 8 g ¢ ¢ g g gB 8B 

12a c c g g g gcc «<ruled out same as la 

12b € g€ € € 8 8B ¢ C 

Figure 13.4 

We see that 6b and 12b were ruled out by Interpretation 1 and Null, a 

control character, in column 0; 3a was ruled out by Interpretation 1 and 

Delete, a control character, in column 7. 

Strictly speaking, the ruling that ruled out 3a also should rule out 1b, 

leaving only 1a as a possibility. However, the standards committee was 

reluctant, at this time, to rule out possibility 1b. The committee wanted to 

retain the possible configuration ccggg¢gxx, with xx not yet decided as to 

controls or graphics. To rule out 1b would rule out the graphic possibility 

for xx for configuration ccggggxx, and the committee was not yet ready to 

decide to rule that possibility out. However, possibility 3a was ruled out, 

for another, somewhat more torturous reason. 

The Space Character 

One character that was definitely going to be included in the final set was 

the Space character. But was the Space character a contro! character or a 

graphic character? Is it the nonvisible or nonprinting graphic in a set of 

graphics or is it the control character that moves the carriage of a serial 

printer one character position forward? It is, of course, both. However,
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from the point of view of a parallel printer, it is only one of these things, 

the invisible graphic. By this rather hair-splitting reasoning, the standards 

committee persuaded itself that the Space character must be regarded as 

a graphic character; that is, it must be positioned in a column of graphics, 

not in a column of controls. 

Now an interesting conclusion could be drawn. It was a well- 

established data processing practice that in sorting and collating opera- 

tions, the Space character should collate low to all other graphic charac- 
ters, specials. numerics, and alphabetics. Consider then the two Pos- 

sibilities 1 and 3: 

  

13.8.2 Criterion 2 

The Space character should collate low to all graphic characters. 

For Possibility 1, the Space character would clearly be positioned in 

column 2, row 0, thus preceding all graphics, and this precedence would 

hold regardless of whether the two x columns were subsequently decided 

to be graphic or control columns. But for Possibility 3, the situation was 

different. The Space character would be positioned in column 4, row Q, 

thus preceding all graphics. If the x columns, columns 2 and 3, were 

subsequently decided to be control columns, the precedence would still 

hold. But if the x columns, columns 2 and 3, were subsequently decided 

to be graphic columns, then the graphics in these two columns would 

collate low to the Space character, thus violating Criterion 2; that is to 

say, this possibility would be ruled out. In short, positioning the two x 

columns as columns 2 and 3 preempted the choice that the x columns 

might in the future be decided to be graphic columns. 

The standards committee did not at this time want the future choice 

of the two x columns as graphic columns or control columns to be 

preempted. Possibility 3 would really preempt this decision in advance (as 

outlined in the preceding paragraph). Therefore, the committee ruled out 

Possibility 3. This left Possibility 1 as the committee’s decision for 

structure of the code: | 

The basic structure of ASCII had now been decided. See Fig. 13.5.
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! Column 0 Toy 2 3 4 5 6 7 

Bit b7 | 0 0 0 0 1 1 1 1 

Pavers b6 0 0 1 i 0 0 1 1 

b5 0 1 0 1 0 1 0 1 

Row b4 b3 b2 bi 

0 0000 

1 0001 

2 0010 

3 o01mt 

4 0100 

5 0101 

6 0110 

7 074171 

8 1000 

9 1001 

10 101090 

1 10171 

12 1100 

13 110 1 

14 1171310 

15 711771         

Fig. 13.5 ASCII structure



The 
Sequence 

of ASCII 

In the previous chapter, the basic structure of ASCII was defined: 

Controls in Columns 0, 1; Graphics in Columns 2, 3, 4, 5; Undefined for 

Columns 6, 7. The Null character would be in code position 0/0, the 

Space character in code position 2/0, and the Delete character in code 

position 7/15. The standards committee now turned to the definition of 

ASCII in finer detail. 
During the discussion of ASCII structure, four kinds of control 

characters had been discussed; Transmission Controls, Formal Effectors, 

Device Controls, and Information Separators. As a preliminary step, the 

committee decided to apportion the 32 control code positions equally 

among these four categories. It was recognized that it was very unlikely 

that, in the final analysis, there would be exactly eight of each kind of 
control character. It was also recognized that there were control charac- 

ters, such as Escape, Shift In, Shift Out, that would not fit into any of the 

four categories. Nevertheless, it was decided to make this preliminary 
categorization of control characters, as shown in Fig. 14.1, and see what 
would befall. 

Attention now focused on the question of collating sequence of 

graphics. As described in the previous chapter, Space, by being positioned 

in code position 2/0, would collate low to all graphics. 

Column 2 was chosen for specials for two reasons: 

1. Numerics could not be located in this column, because if so, ‘‘0” 

would require the row 0 position, and this was already preempted by 

the Space character. 

225
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Column 0 1 4 5 6 7 

Bit b7/ 0 0 1 1 1 1 

Pattern 1 b6 0 0 0 0 1 1 

[lbs 0 0 1 0 1 

Row b4 b3 b2 bt 

0 0000 NUL 

1 0001 

2 0010 

3 0071 

4 0100 TC pc 

5 0101 

6 0110 

7 ott 1 

8 1000 

9 1001 

10 1010 

11 107 1 FE Is 

12 1100 

13 4101 

14 1110 

15 1117   
  

Fig. 14.1 ASCII, basic structure 

        

TC - Transmission Controls 

FE - Format Effectors 

DC Device Controls 

TS - Information Separators 

2. Alphabetics should not be in Column 2, because if so, specials in 

columns 3, 4, or 5 would then necessarily collate high to alphabetics. 

But there were some specials, such as period and hyphen, which 

should collate low to all alphabetics in sorting operations on names 

of people.
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14.1 SEPARATE OR INTERLEAVED ALPHABETS? 

This apparently left columns 3, 4, and 5 for numerics and alphabetics. But 
other questions had to be settled first. In the event that it was eventually 
decided to include both small and capital letters, should the two alphabets 
be separate, or interleaved? And if separate, should small letters collate 

low to capital letters or vice versa? 

The question of separate or interleaved alphabets was approached 
first. Two possibilities were apparent for interleaving: 

Possibility 1 Possibility 2 
a A 
A a 
b B 
B b 

Zz Z 

Z Z 

The choice between these two possibilities was clear, and stemmed from 
the very reason for having interleaved alphabets. In sorting names, it is 
conventional for capital letters to precede small letters. Thus, the AA 
Company precedes the Aardvark Company. But in sorting names of 

peoples, the rules become more subtle and complex. Does MacKenzie 

precede Mackenzie? In some telephone directories, yes, but in other 

telephone directories, the capitalization or noncapitalization of the K will 
be ignored in MacKenzie and Mackenzie—such names being blocked 
together, and ordered on the basis of the first names or initials. Indeed, 

the proponents of alphabet separation cited the fact that different tele- 

phone directories had different rules as evidence that alphabet interleav- 
ing would really not accomplish anything tangible. 

In any event, there was a more compelling argument against inter- 
leaving. In columns 2, 3, 4, and 5 there are 64 code positions, sufficient to 

accommodate the Space character, specials, numerics, and alphabetics; 

that is to say, a graphic set sufficient for most data processing applica- 

tions. And this set of 63 graphics and Space is derivable from the 7-bit 
code by dropping b6. The four columns 2, 3, 4, and 5 then form a 6-bit 

subset. 

If, however, the alphabets were interleaved, then it would clearly 

take columns 2 through 7 to contain Space, specials, numerics, small
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letters, and capital letters. With the alphabets interleaved, the derivation 
of a 64-character, 6-bit subset containing Space, specials, numerics, and 
capital letters, would require more complex logic. Suppose, for example, 
that Fig. 14.2 exhibits a 7-bit code with interleaved alphabets, and Fig. 
14.3 exhibits the 6-bit, 64-character subset to be derived. Let the bit 

positions of the 6-bit subset be named a6, a5, a4, a3, a2, al from 
high-order bit position to low-order bit position. Then the transformation 
equations, from 7 bits to 6 bits, are as follows: 

a6 = bTA b1 

aS = (b7 A b6 A BS) ¥ (b7 A BOG A 1) 

a4 = (b7 A b6 A b4) v (b7 A DS A 1) 

a3 = (b7 A B6 A b3) v (b7 A b4 A 1) 

a2 = (b7 A b6 A b2) v (b7 A b3 A D1) 

al = (b7 A b6 A b1) ¥ (b7 A 62 A D1) 

The consideration of a 6-bit, 64-character graphic subset was important 
to the standards committee. If the ultimate decision was that columns 6 
and 7 would be for graphics, then columns 2 through 7 would contain 
Space, 94 graphics, and Delete. But, even with the code providing 94 
graphics, a major assumption of the standards committee was that data 

processing applications would, for the foreseeable future, be satisfied with 
a monocase alphabet (that is, a 64- or less graphic subset) as they had in 
the past—that 64-character printers would predominate. So it was impor- 
tant to be able to derive a 64-character, monocase alphabet, graphic 
subset from the code by simple, not complex, logic. 

It was this consideration that weighted the decision against inter- 

leaved alphabets. Interestingly, consideration of this example led to 

another, and unexpected, conclusion. In the example, the capital alphabet 

was contained in two columns. Clearly, two alphabets, small and capital 

letters, could be contained in four columns; that is, the two undefined 

columns, 6 and 7, could contain an alphabet of small letters, if it was 

eventually decided to include that alphabet.
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Row 

Column 0 1 2 
  

Bit b7] 0 Q Q 

Pattern | b6 0 0 1 

bb 0 1     
b4 b3 b2 b1 
  

0000 NUL SP 

  

  

  

  

  

  

  

  

  

  

10 

  

11 

  

12 

  

13 

  

14 

  

15                     DEL     

Fig. 14.2 Interleaved alphabets 
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Row 

Column 

  
Bit 

Pattern t 

  

b7 

b6 

bS   
b4 b3 b2 b1 
  

0000 SP 

  

  

  

  

  

  

  

  

  

  

10 

  

11 

  

12 

  

13 

  

14 

  

15         
Fig. 14.3 6-bit subset 

14.2 THREE COLUMNS FOR ALPHABETICS? 

But consider the kind of code structure where the alphabet is contained in 

three columns (see Fig. 2.29). In order to provide two alphabets, small 
and capital letters, as in EBCDIC (see Fig. 2.28), six columns are 

required. And to provide two alphabets and also a column for numerics, 

seven columns are required. 
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Column 2 3 4 on) 

Row | 

9 SP t t 0 

1 A J t 1 

2 B K s 2 

3 c L T 3 

4 D M U 4 

5 E N V 5 

6 F 0 W 6 

7 G P X 7 

8 u Q y 8 

9 I R Z 9 

10 t t + + 

"1 t t t t 

12 t t t t 

13 + t t t 

“4 + t + t 

18 + + t t                       
  

t+ - Special 

Fig. 14.4 BCD arrangement 

Even if it was eventually decided to assign graphics to columns 6 and 

7, there would be only six columns available for graphics. Given the basic 

structure of ASCII, as defined in Fig. 14.1, two alphabets structured 

noncontiguously, as in BCDIC and in EBCDIC, and a column of 

numerics could not be accommodated in the 7-bit code table. At least an 

8-bit code table is necessary to accommodate a column of numerics, three 

columns of small letters, and three columns of capital letters. And the
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standards committee had already decided for a 7-bit code and against an 

8-bit code. 

The conclusion of the preceding paragraph is based on the assump- 

tion that two alphabets, small letters and capital letters, would be in- 

cluded in the 7-bit code and that decision had not yet been made. If the 

decision was ultimately made that columns 6 and 7 would contain 

controls, then small letters would not be included in the 7-bit code.” If 

only capital letters were to be included in the code, it would be quite 

feasible to have a BCD arrangement, such as shown in Fig. 14.4, for the 

graphic subset. Such an arrangement was, in fact, proposed to the 

standards committee, but it was rejected because it intermingled specials 

with alphabetics, and the subcommittee deemed this to be unwise, for 

collating reasons. 

The standards committee at this time made a fundamental decision. 

The 26 letters of the alphabet should be grouped contiguously in the code 

and should occupy two contiguous columns. 

The standards committee had, as described above, decided that column 

2 would contain specials. With respect to the assignment of numerics and 

alphabetics, there were two possibilities: 

Possibility 1. Numerics in column 3 

Alphabetics in columns 4 and 5 

Possibility 2. Alphabetics in columns 3 and 4 

Numerics in column 5 

14.3 EXISTING COLLATING SEQUENCE 

The committee recognized that an existing collating practice was that 

alphabetics collate low to numerics. So Possibility 2 seemed the clear 

choice. But there was an argument against this choice. 

If the ultimate decision for columns 6 and 7 was for graphics, then 

there would be two choices for the graphics: specials, or small letters. 

Suppose the choice was for small letters. Then the two possibilities above 

became as shown in Fig. 14.5. Assume, for purposes of discussion, that 

the alphabets are positioned as shown. Then, for Possibility 1, the bit 

patterns of the capital letters and the bit patterns of the small letters have 

a single bit difference, b6, for all corresponding small and capital letters. 

For Possibility 2, three bits, b7, b6, b5, are different and the bit differ- 

ences between A and a, for example, are not the same as the bit 

differences between Q and q. 

* If the committee did decide for controls in columns 6 and 7, it is still likely that 
they would have wanted an alphabet of small letters to be provided. Presumably, 
the small letter alphabet would then have been provided by a caseshift approach.
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Columns | 2 | 31415] 6 17 2134415 16)7 

b7 | o}oliliti4a4 o]/of1/141]1 
bo |1}1f/ofol1]14 1}/a;olol1 4 
bd |olilo{1loj4 o/i{toli{ol1 

SP} 0;A/]Q];alq SP| AJQ|]O]ajq 

1}/Bi/Riolr BiRiilolrc. 
21C1S fects C/Si2jctis 

3/p|Tla]t piT/3{al|t 

Possibility 1 Possibility 2 

Fig. 14.5 Positioning of alphabetics 

Clearly then, in order to keep open the choice for columns 6 and 7 

between graphics and controls, and between small letters and specials, 

Possibility 1 was preferable. 

Possibility 1, of course, would provide a collating sequence, specials, 

numerics, alphabetics, from low to high, contrary to the existing practice, 

specials, alphabetics, numerics. But to the standards committee the argu- 

ment above, keeping choices open at this time, was more compelling. 

The committee rationalized the decision against accepting the exist- 

ing collating sequence somewhat along the following lines: 

If it is necessary to achieve the de facto collating sequence (specials, 

alphabetics, numerics), it may be achieved, during comparison opera- 

tions, by inverting b7 if b6 = b5 = 1. That is, the three high-order 

bits of the column of numerics would then become 111, which would 

make them collate high to the alphabetics, with high-order bits of 

100 and 101. 

Out of this discussion, the committee established a major criterion. 

Criterion 

There should be a single bit difference between capital and small letters. 

The standards committee had now made its final decision with 

respect to the sequence of ASCII. The result was as follows: 

Jojr | 2 | 3 | 4]5 | 647 | 
| Controls | Specials | Numerics | Alphabetics | Undefined | 
  

We have, then, a code structure as shown in Fig. 14.6.
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Column 0 1 2 3 4 5 6 7 

Bit b7 | 0 0 0 0 1 1 1 1 

Pattern b6 0 0 1 1 0 0 1 1 

b5 0 1 0 1 0 1 0 1 

Row b4 b3 b2 b1 

0 0000 

1 0001 

2 0010 

3 00171 

4 0100 

5 0101 

6 0110 

7 01411 

8 1000 

9 100 1 

10 7010 

11 10141 

12 1100 

13 1101 

14 1110 

15 1141 DEL 

TC - Transmission Control 

FE ~ Format Effector 

. DC - Device Control 

Fig. 14.6 ASCII structure IS - Information Separator 

14.4 CRITERIA 

Up to this point, the standards committee had made a number of 

decisions, based on criteria. Three of those criteria have been stated so 

far in this chapter. In fact, the committee formulated 20 criteria. It should 

be noted that some of these criteria are conflicting, so not all can be met.
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Criterion 1. All bit patterns in the code should consist of the same 

number of bit positions. 

Criterion 2. The structure of the code should be such that logically 

related subsets or supersets are derivable simply; that is, by simple bit 

dropping, bit adding, or bit inversion. 

Criterion 3. All possible bit patterns of the code should be considered 
valid. For illustration, on 7-track magnetic tape with even parity, the 

all-zeroes 6-bit bit pattern was considered invalid, as being indistinguisha- 

ble from unrecorded tape, with the recording practice used at that time. 

Criterion 4. The code size, that is, the number of different possible 

character positions, should be sufficient to accommodate alphabetics, 

numerics, specials, and control characters needed for information inter- 

change. 

Criterion 5. The numerics 0 through 9 should be contained in a 4-bit 

subset. 

Criterion 6. The numerics should have bit patterns such that the four 

low-order bits shall be the binary coded decimal representation of 

numerics. 

Criterion 7. The intermingling of control and graphic characters should 

be avoided. The bit patterns of control characters should be distinguisha- 

ble from those of graphics by some simple test of the high-order bits. 

Criterion 8. The meaning associated with a bit pattern should depend 

on only the bit pattern itself, and not on any preceding bit patterns. 

Criterion 9. The alphabetics A through Z, and some code positions 

contiguous to the code position of Z, should be contained in a 5-bit 

subset. 

Criterion 10. The alphabetics should have contiguous bit patterns. 

Criterion 11. Such control characters are as required for communication 

and data processing should be included. 

Criterion 12. An Escape character, to allow for code extension, should 

be included. 

Criterion 13. The class of specials, the class of numerics, and the class of 

alphabetics should be distinguishable one from the other by simple binary 
comparison tests. 

Criterion 14. The Space character should be positioned so as to collate 
low to all other graphics.
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Criterion 15. Specials that are in 
tions should be positioned so as { 

alphabetics. 

Criterion 16. Specials should be 

for example, punctuation and math 

Criterion 17. Graphics that are n 

should differ only in a common sin 

Criterion 18. The graphics of th 

should be included. 

Criterion 19. The bit patterns of 
common, distinguishing subpattern 

Criterion 20. The all-zeroes chara 

Delete, should be included. 

14.5 DECISIONS FROM CRITER 

Up to this point in the deliberati 

committee had made some 17 decis 

parentheses, the criteria which affe 

Decision 1. There would be at le 

(Criterion 4). 

volved in sorting and collating opera- 
to collate low to both numerics and 

brouped according to their functions; 

ematical symbols. 

ormally paired on typewriter keytops 

gle bit position. 

ne principal programming languages 

all control characters should have a 

of bits. 

cters, Null, and the all-ones character, 

IA 

ons of the standards, the standards 

ions. These are now presented, and in 
cted the decisions. 

ast 64 graphic characters in the code 

Decision 2. There would be a total of more than 64 characters in the 

code (Criterion 4). 

Decision 3. There would be upw 

code (Criterion 11). 

Decision 4. The code would be an 

bits (Criterion 8). 

ards of 16 control characters in the 

unshifted code—therefore, at least 7 

Decision 5. The code would not be 8 bits—therefore, 7 bits. 

Decision 6. 

columns and 16 rows. (b) Columns 

(c) Rows would be numbered 0, 1, 

(a) The code table would be exhibited in a tableau of 8 

would be numbered 0, 1, 2, 3,..., 7. 

2, 3,..., 15. (d) Bit positions would 

be named b7, b6, b5, b4, b3, b2, b1, from high to low. 

Decision 7. There would be ani all-zeroes character, Null, and an 

all-ones character, Delete, in the c 

Decision 8. Tentatively, more th 

ode (Criterion 20). 

an 16, but less than or equal to 32 

control characters would be sufficient (Criterion 11).  
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Decision 9. Columns 0 and 1 would be for control characters, columns 

2, 3, 4, and 5 for graphic characters, and columns 6 and 7 undefined at 

this time (Criteria 7, 13, 19). 

Decision 10. The Space character would be in code position 2/0 (Criter- 

ion 14). 

Decision 11. Tentatively, code positions would be reserved for 8 

Transmission-Control characters, 8 Format-Effector characters, 8 Device- 

Control characters, and 8 Information-Separator characters (Criterion 

11). 

Decision 12. Column 2 would be reserved for Specials (Criterion 13). 

Decision 13. Small and capital letters, if provided, would be provided as 

separate alphabets, not as interleaved alphabets. 

Decision 14. A 6-bit, 64-character graphic subset should be collapsible 

out by dropping one of the seven bits (Criterion 2). 

Decision 15. The 3-column BCD arrangement for alphabetics is re- 

jected (Criteria 9, 10). 

Decision 16. Alphabetics would be contiguous (Criterion 10). 

Decision 17. The structure of the code would be 

Columns 0 and 1, controls 

Column 2, specials 

Column 3, numerics 

Columns 4 and 5, alphabetics 

Columns 6 and 7, undefined at this time. 

As stated above, the standards committee had decided that the al- 

phabet(s) would be contiguous and positioned in two contiguous columns 
of the code. For English-speaking countries, there are 26 alphabetics. 

There are 32 contiguous code positions in two columns. The first letter, 

A, could therefore be positioned in any of seven positions of column 4, 

as shown in Fig. 14.7. 

The standards committee noted that in Fieldata (see Fig. 3.3) the 

contiguous alphabet had been positioned with A in 4/7 down to Z in 

5/15. One factor precluded the position of the alphabet of the standard 

code into the Fieldata positions. The alphabets of some European coun- 

tries (Germany, Sweden, Norway, Denmark, Finland) require 29 letters— 

the 26 letters of the English-speaking countries and 3 diacritic letters. 

The Portuguese and Spanish languages require one or more diacritic 

letters. The French and Italian languages require accented letters.
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14.6 NATIONAL USE POSITIONS 

It was generally recognized by American manufacturers marketing 

equipment in Europe that these additional diacritic or accented letters 

must be provided. It was a natural decision, therefore, to provide code 
positions in the standard code to meet such requirements. In some of the 

continental ‘European countries, from a collating sequence point of view, 

the diacritic letters are interspersed among the other letters. But in 

Sweden they follow the letter Z. It was a natural decision, therefore, to 

assign the three code positions following the code position of Z to 

accommodate the alphabetic extender requirement. These three code 

positions came to be called National Use positions. 

It should be noted that this consideration rules out the last three 
possibilities shown in Fig. 14.7. In any event, the Fieldata positioning was 
ruled out by this consideration. But this still left four possibilities— 
positioning the letter A in code positions 4/0, 4/1, 4/2, or 4/3. Which of 

these should be chosen? 

The American standards committee decided on position 4/1 for the 

letter A because that code position had been decided for a draft British 

Standard and also for a draft ECMA Standard being developed at that 

time. So the American decision was based on the sensible desire for 

international accord on this point. (But the author does not know on what 

factors the British and ECMA decision was based.) This decision, Decision 

18, then, was the first on the specific positioning of graphics. 

  

  

  

  

  

  

  

  

  

  

al 4 4 4 4 4 4 4 

0 A 
1 B A 
2 C B A 
3 C B A 
4 C B A 
5 Cc B A 
6 C B A 
7 C B 
8 Cc 
9               

Fig. 14.7. Positioning of A
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14.7, POSITIONING OF NUMERICS 

Decision 19. The next decision of the standards committee had to do 
with the positioning of the numerics. It had already been decided to 

position the numerics in column 3. Criterion 6 clearly required that the 
numerics 0 through 9 should be in code positions 3/0 through 3/9, 

respectively. The specifics of the code were now beginning to shape up, as 

shown in Fig. 14.8. 

  

  

    
  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

Column 0 1 2 3 4 5 6 7 

Bit b7/ 0 0 0 0 1 1 1 1 
Pattern b6 0 0 1 1 0 0 1 1 

tI b5 0 1 0 1 0 4 0 1 

Row b4 b3 b2 b1 

0 9000 NUL SP ) P 

1 0001 1 A Q 

2 0010 2 B R 

3 0011 3 C g 

4 0100 4 D . 

5 010 1 5 E U 

6 0141 ~0 6 F Vv 

7 01171 7 G W 

8 1000 8 u x 

9 1001 9 L Y 

10 1010 J Zz 

11 10141 K 

12 1100 L 

13 11041 M 

14 1110 N 

15 14111 oO DEL                         
Fig. 14.8 ASCII, initial specifics
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14.8 ASSIGNMENT OF SPECIAL CHARACTERS 

Decision 20. The standards committee now turned its attention to 

assignment of specials. After much discussion, the standards committee 

decided on the 27 graphics to go in the available code positions in 

columns 2, 3, 4, and 5. The specials are classified by function.* 

Punctuation and Correspondence .,:;!2'" 8 

Commercial Usage #$% & @ 5 

Bracketing (Programming) ()C] 4 

Mathematical (Programming) +—-*/\= <> 8 

Flow Charting (Programming) ti 2 

Clearly, Criteria 4 and 18 bore on this decision. 

Decision 21. The standards committee now considered specific code 

positions for these specials. A number of criteria bore on this decision, 

Criteria 13, 15, 16, and 17. Actually, Criterion 13 was of little signifi- 

cance here, because the sets of available bit patterns had already been 

established by previous decisions on the positioning of Space, numerics, 

and alphabetics. 

It was soon evident that Criterion 16, which spoke to grouping of 

specials by function, would conflict with Criteria 15 and 17, which spoke 

to collating considerations and to typewriter-keytop-pairing considera- 

tions. Criterion 16 was considered to be of less importance than the other 

two. 

Criterion 17 spoke to positioning graphics in the code table to 

correspond to their positioning on typewriter keys. From this criterion, 

some decisions stemmed easily. 

The specials # $ % were positioned 2/3, 2/4, 2/5, respectively, in 
correspondence with 4, 5, 6 in 3/3, 3/4, 3/5, respectively, thus providing 

the typewriter-keytop pairing. The specials / and ? were positioned in 

2/15 and 3/15, respectively, thus providing correspondence with 

typewriter-keytop pairing. 

14.8 Period and Comma 

On electric typewriters both the period and the comma appear in both 

lower and upper-case shift. It was decided to correspond these two 

* Note that these classifications are not mutually exclusive. Bracketing symbols, 

the hyphen, and the asterisk are used in business correspondence. Period, comma, 

semicolon, apostrophe are used in programming languages. And so on.
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graphics with two others that typewriter manufacturers would reckon 

were unneeded in normal business correspondence; that is, the period 

and the comma in one case shift would be replaced. The specials < and 

> seemed to fill the bill. Accordingly, it was decided to pair , and < and 

to pair . and > in the code, but it was not yet clear where these four 
should specifically go. 

It was noted that the specials , . — frequently appear in sorting or 

collating situations. Under Criterion 15, then, these should be positioned 

so as to collate low to numerics and alphabetics. Clearly, this meant they 

would have to be positioned in Column 2. Of these three specials, it had 

been decided, as related in the previous paragraph, to pair ,. with < >. 

To satisfy these two conditions, specials ,. < > were positioned in code 

positions 2/12, 2/14, 3/12, 3/14, respectively. 

14.8.2 Left and Right Parentheses 

The graphics ( and ) are paired with 9 and 0 on electric typewriters. But 
no graphic could be paired with 0 in the code, since the Space character 

had already been assigned to the pair position of 0. It was decided to pair 
them in the code with 8 and 9 because then, if the code were im- 

plemented on a keyboard, they would be located as close as possible to 

their usual electric typewriter positions; that is, paired with 9 and 0. Also, 

on many European typewriter keyboards, ( and ) appear paired with 8 
and 9, Therefore, ( and ) were positioned in 2/8 and 2/9, respectively. 

It was now pointed out that in the United Kingdom the monetary 
system required not only the numerics 0 through 9 but also 10 and 11. 
Clearly, if these numerics were provided in the code for implementations 

for the United Kingdom, they would occupy the two code positions in the 
column of numerics under the 9; that is, code positions 3/10 and 3/11. It 

was deemed wise to assign to these two code positions graphics that could 

be replaced in the United Kingdom with minimum anguish. Eventually, 

the standards committee decided to assign : and ; to code positions 3/10 

and 3/11, respectively. 

14.8.3 Alphabetic Extenders 

Attention was now focussed on the three code positions 5/11, 5/12, 5/13 

that, as was explained above, would receive alphabetic extenders in 

European implementations. As in the preceding paragraph, the search 

was for graphics whose replacement would cause minimum anguish. The 
standards committee decided for [ \ | for code positions 5/11, 5/12, 5/13, 

respectively.
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14.8.4 Further Special Characters 

There now remained 10 specials to be assigned: 

! ron & @ + * = t <_ 

It seemed apt to position = in the code position between those occupied 

  

  

          
  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

Column i) 1 2 3 4 5 6 7 

Bit b7| 0 0 0 0 1 1 1 1 
Peven| b6 0 0 1 1 0 0 1 1 

b5 0 1 0 1 i) 1 0 1 

Row b4 b3 b2 b1 

0 0000 NUL DCO SP 0 @ P 

1 0001 TCL DCL \ 1 A Q 

2 0010 TC2 DC2 ' 2 B R 

3 0011 Tc3 DC3 i 3 Cc 5 

4 0100 TC4 DC4 $ 4 D T 

5 0101 TC5 DCS % 5 E U 

6 07110 TC6 DC6 & 6 F Vv 

7 0o1i%41 TC7 DC7 ' 7 G W 

8 1000 FEO Iso ( 8 H x 

9 1001 FE1 Isl ) 9 I Y 

10 1010 FE2 182 * : J Zz 

"1 1011 FE3 Is3 + ; K c 

12 1100 FE4 Is4 : < L \ 

13 1101 FES Is5 - = M J 

14 1110 FE6 186 . > N + 

15 1111 FE7 187 / 2 0 +                   
  

TC - Transmission Control 

FE - Format Effector 

DC - Device Control 

IS - Information Separator 

Fig. 14.9 ASCII, sequence of 63 graphics
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xy < and >. Thus these three mathematical symbols would be in code 
equence < = >, which might aid human beings to remember their 

ode positions. Therefore, = was assigned to 3/13. 

Because the special @ is not used in continental Europe, it seemed 

ikely to be replaced with an accented letter a in France and Italy. This 

etter should be in proximity to other letters in the code table. Code 
osition 4/0 filled the bill, and @ was assigned thereto. 

For the eight specials remaining, no reasons could be found for any 
articular code position, They were therefore positioned in the remaining 
sight code positions, more or less arbitrarily. The code table now looked 
ike that shown in Fig. 14.9. . 

14.9 CONTROL CHARACTERS 

Ihe standards committee responsible for coded character sets discussed 

with the standards committee responsible for data communications the 
control characters necessary for data transmission control. 

Nine functions were identified as being required for data transmis- 
sion control: 

SOM Start of Message 

EOA End of Address 

EOM End of Message 
EOT End of Transmission 

WRU Who Are You? 

RU Are You...? . 

DCO Device control reserved for Data Link Escape 

SYNC Synchronous Idle 

ACK Acknowledge 

When it came to decisions to position these characters in the code table, 

the concept of ‘““Hamming distance’? came into play. On transmission lines 

transmitting binary digital data, what was called a “hit” could occur. If a 
0-bit was hit, it changed into a 1-bit. If a 1-bit was hit, it changed into a 
0-bit. 

As a result of hits, with resultant changes to bit patterns, changes in 

meaning could occur. Consider the following: 

  

Graphic 

meaning Bit pattern 

B 1000010 
C 1000011 

If the bit pattern 1000010 meaning B received a hit in its last bit, 

changing it to 1000011, the meaning would be C. Hits on graphic bit
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patterns would result in garbled messages. But if hits occurred to data 
transmission control characters changing them into other data transmis- 
sion control characters, the transmission system could go out of control. 
This was clearly to be guarded against to the maximum extent possible. 

Consider two bit patterns: 

  

  

    
  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

b7 b6 b5 b4 b3 b2 bl 

1 0 0 0 0 1 0 

0 1 0 1 1 0 0 

Column 0 1 2 3 4 5 6 7 

Bit b7] 0 0 0 0 1 1 1 1 

Pattern b6 0 0 1 1 0 0 1 1 

| b5S 0 1 0 1 0 1 0 1 

Row b4 b3 b2 b1 

0 oo090 DCO 

1 000171 SOM 

2 0010 EOA 

3 0011 EOM 

4 0100 EOT 

5 0101 WRU 

6 0110 RU SYNC 

7 0111 

8 1000 

9 1001 

10 1010 

11 1011 

12 1100 ACK 

13 1101 

14 1171710 

15 141714721                         
Fig. 14.10 Data transmission control characters
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For these two bit patterns, b7, b6, b4, b3, and b2 are different. That is to 

say, five hits would have to occur to change one bit pattern into the other. 

The number of bits different between two bit patterns is known as their 
“Hamming distance.” 

Clearly, to minimize the possibility of one data transmission control 
character being hit and turning into another data transmission contral 

character, the Hamming distance between the two characters must be 

maximized. The set of data transmission control characters, therefore, 

should be positioned in the code table to. maximize the hamming dis- 
tances between and among them. . 

Many combinations were studied and, ultimately, agreement was 
reached to position them as shown in Fig. 14.10. 

The standards committee eventually came into agreement to include 
the following control characters: 

Format Effectors 

HT/SK Horizontal Tabulation, Skip (punched card) 
  

  

LF Line feed 

VT Vertical Tabulation 

FF Form Feed 

CR Carriage Return 

FEO Format Effector 

Device Control Code Extension 

DCc1 Device Control 1 ESC Escape 

DC2 Device Control 2 SO Shift Out 

DC3 Device Control 3 SI Shift In 

DC4 Device Control 4 

    

Information Separators Miscellaneous 

SO Separator 0 BELL Audible Signal 
S1 Separator 1 ERR Error 

S2 Separator 2 NULL Null 

S3 Separator 3 DEL Delete 
S4 Separator 4 @ Unassigned Control 
S5 Separator 5 
S6 Separator 6 
S7 Separator 7 

The final ASCII code table, as of 1963, is shown in Fig. 14.11.



246 The Sequence of ASCII 

  

  

          
  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

Column 0 1 2 3 4 5 6 7 

Bit b7 | 0 0 0 0 1 1 1 1 
Pattern | bG 0 0 1 1 0 0 1 1 

bS 0 1 0 1 0 1 0 1 

Row b4 b3 b2 bi 

0 0000 NULL DCO SP 0 @ P 

1 0001 SOM DCL ! 1 A Q 

2 0010 EOA DC2 " 2 B R 

3 0011 EOM DC3 # 3 Cc S 

4 0100 EOT DC4 $ 4 D T 

5 0101 WRU ERP % 5 E U 

6 014110 RU | SYNC & 6 F Vv x 

A: 

7 0111 RELL | LEM ' 7 G W . 
re 

8 1000 FEO | 80 ( 8 H X 

E 

9 1001 HT/sK| si ) 9 I Y D 

10 1010 LF $2 * : J Z 

1 1011 VI $3 + ; K C 

12 1100 FF S4 ; < L \ 

13 11071 CR 85 - = M ] 

14 v110 so sé |. > N + 

15 taad SI S7 / 2 0 «                       

Fig. 14.11 ASCII, 1963 

14.10 ASCII, 1967 

At the first meeting of ISO/TC97/SC2 in 1963 October 29-31, a resolu- 
tion was passed that the lower-case alphabet should be assigned to 
columns 6 and 7. Of course, with the assignment of three code positions 
7/11, 7/12, 7/13 for National Use, this meant that ACK must be removed 

from code position 7/13.



  

  

    
  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

14.10 ASCIll, 1967 

Coturnn 0 1 2 4 5 6 7 

Bit b7 0 

Pattern b6 0 0 1 0 0 1 1 

b5 0 1 1 0 1 

Row b4 b3 b2 b1 
L1] a 

0 0000 NUL DLE SP @ P * P 

‘TL 
1 0001 SOH DC1 1 A Q a q 

Ly 
2 0010 STX DC2 " B R b r 

Dy 
3 60011 LTX DCc3 if Cc Ss e s 

[2] 
4 0100 EOT DC4 $ D T d t 

L3] yy 
5 0101 ENO NAK % E U e@ u 

L3] 
6 01410 ACK SYN & F Vv f v 

12] 
7 0111 BEL ETB ' G W g w 

2 L2] 
8 100 0 BS CAN ( H _ x h x 

[222 
9 1001 HT EM ) L Y L y 

Lal 
10 1010 LF SUB * 3 Z j Zz 

L3| 2 
11 1011 VT ESC + K [ k { 

L2] 2 
12 1100 FF FS ; L \ 1 

[4 2 
13 1101 CR GS - M J m } 

[2] L2 2 
14 11106 SO RS N “ n ~ 

[2] Lal 
15 111471 SL us / oO ° DEL                         

Change of name 

[2] New character 

i] Moved character 

Fig. 14.12 ASCII; 1967 and 1968 
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This decision was in due course accepted by X3.2 for ASCII. 
Interaction between members of X3.2 and delegations at ISO/TC97/SC2 
ultimately led to further changes in ASCII. The final code table, as 

embodied in USAS X3.4—-1967, is shown in Fig. 14.12.
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Changes were of four kinds: 

= Changes of name. For example, Start of Message (1963) became 
Start of Header (1967). 

=" Characters moved. For example, Escape, in position 7/14 (1963), 
was moved to position 1/11 (1967). 

* Introduction of new characters. For example, grave accent and the 

opening brace {. For example, SUB (Substitute), CAN (Cancel). 

= Deletion completely of some characters. For example, RU (Are 
You...?) and ERR (Error) in the 1963 version are not in the 1967 

version at all.



[5 
Which 

Bit First? 

Following the approval of the American Standard Code for Information 

Interchange (ASCII) in 1963, the data transmission standards committee 

turned its attention to determining the bit sequence in which the bit 

patterns of ASCII should be transmitted for serial-by-bit-serial-by- 

character data transmission. The committee soon decided that the ASCII 

bit patterns should be transmitted consecutively. As well as considering 

problems of character framing and parity on data transmission lines 

(which problems are not discussed in this book), the committee consi- 

dered the problem of whether the ASCII bit patterns should be transmit- 

ted high-order bit first or low-order bit first. 

15.1 SPECIFIC CRITERIA 

The committee developed a set of ten specific criteria* pertinent to the 
decision of bit sequencing. Not all of the criteria were satisfied by the 

committee’s final decision. Some of the criteria are conflicting. The final 

decision on bit sequencing was based on a detailed analysis and weighting 

*The ten Specific Criteria are reproduced with permission from American Na- 
tional Standard for Bit Sequencing of the American National Standard Code for 
Information Interchange in Serial-by-Bit Data Transmission, X3.15-1966, 

copyright 1966, by the American National Standards Institute at 1430 Broadway, 
New York, New York 10018. The Criteria are reproduced from Appendix A2 of 
the Standard X3.15-1966. The Standard is available from the American National 
Standards Institute at 1430 Broadway, New York, New York 10018. 
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of the criteria. The Specific Criteria follow: 

1. The transmission bit sequence should be in consecutive numerical 

order (ascending or descending) in terms of ASCII nomenclature. 

2. The transmission bit sequence should minimize the amount and 

complexity of existing and future hardware. 

3. The transmission bit sequence should be selected to minimize ad- 
verse consequences of equipment or system malfunction. 

4. The transmission of a binary bit stream should not be precluded. 

GN . The transmission of encrypted material should not be precluded. 

6. There should be a correspondence among media track (channel or 

row) designation, ASCII bit number, and transmission bit sequence, 

in order to minimize training and reduce confusion of operating, 
maintenance, and engineering personnel. 

7. The transmission bit sequence should allow a logical extension of 

supersets of ASCII. 

8. The transmission bit sequence of any subset or superset of ASCII 
should provide that any designated bit be immutable in its position in 

the transmission sequence as well as in its logical order and media 

representation. 

9. The character parity bit should be positioned to allow it to be 

generated ‘“‘on the fly,” following the data bits. 

10. The transmission bit sequence should allow maximum design flexibil- 

ity in future systems utilizing ASCII. 

The two bit-sequencing choices, high-order bit first, or low-order bit first, 

were then investigated to determine their influence on data interchange 

from the following points of view: 

a) flexibility of hardware design, 

b) hardware efficiency, 

c) ease of maintenance, 

d) contraction of ASCII to subsets, 

e) expansion of ASCII to supersets, and 

f) system reliability. 

The arguments that were advanced to the committee are now reproduced. 

It is to be emphasized that the author does not testify to the validity or 

significance of the arguments. He merely reports the arguments. The 

arguments are grouped under the last five of the above points of view. In
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parentheses after each argument is indicated whether the argument was in 

favor of transmission high- or low-order bit first. 

15.2 HARDWARE EFFICIENCY 

1. Although the bit sequence is immaterial in a great majority of 

today’s applications, nevertheless specific cases were considered in 

which either one or the other bit order was advantageous. 

2. When ASCII is transmitted high-order bit first, it is possible to 
determine, by the first two or three bits received, the general use of 
the character and, in certain classes of equipments, thereby know the 

routing and final disposition of the remaining bits. In particular, this 

can reduce the necessary bit storage in I/O typewriters where reduc- 

tion in bit-storage requirements can be a reasonably significant 

portion of the total cost. (high) 

3. The problem of mapping the 7-bit ASCII code into a 6-bit data 
processor character code can be simplified if the high-order bit is 

placed first. . 
In particular, the first two bits received may be sufficent to 

generate an “‘escape’’ character prior to reception of the complete 

ASCII character, thus allowing a considerably longer effective time 

upon completion of reception of the ASCII character with conse- 

quent increase in traffic handling capacity for a given equipment. 

(high) 
4. Time (clock) codes are transmitted low-order bit first and low-order 

character first so that the fine detail will appear earlier, and the 

redundant, infrequently changing coarse portions will appear later in 

each time code group. If it is desired to intersperse time codes in 

general interchange data, less confusion should arise, and less hard- 

ware should be required, if the interchange data is also transmitted 

low-order bit first. (low) 

15.3 EASE OF MAINTENANCE 

1. With low-order bit transmitted first, the first data pulse can corres- 

pond to ASCII bit b1, the second to bit .b2, etc. Thus “third’’ will 
mean third pulse as well as bit b3. It can also mean third track (or 

channel or row) in media. This extremely simple relationship among 

media track number, pulse number, and bit designation number is 

highly desirable in the maintenance of communication equipment, 

especially in discussions between remote technicians or between 

technicians and engineers. (low)
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2. 

Which Bit First? 

This correspondence argument was at least partially offset in asyn- 

chronous systems where serially received bits are accompanied by 

synchronization bits. Thus the received ASCII bit b1 could actually 

be the second received bit, bit b2 could be the third received bit, etc. 

(high) 

15.4 CONTRACTION TO ASCII SUBSETS 

1. Logic for serial recognition of characters limited to specific coding 

groups of the 7-bit ASCII is expected to be implemented with less 

total hardware where transmission is sequential with high-order bit 

first. (high) 

. If subsets of ASCII, such as a 4-bit numeric subset or a 6-bit graphic 

subset, are used, then the low-order-bit-first arrangement allows 

high-order bits to be appended ‘‘on the fly,” according to logical 

rules, for transmission of the full 7-bit ASCII. (ow) 

Equipment receiving the full 7-bit ASCII, but operating on only a 

subset, may, with the low-order bit first, obtain the subset by simply 
ignoring bits received after the prescribed number for each ASCII 

character received. (low) 

15.5 EXPANSION TO ASCII SUPERSETS 

It has not been decided just how the 7 bits (b7 through b1) of ASCII will 

be represented in an 8-bit environment. If a superset takes the form of an 

8th bit which is higher in order than bit 7, then 

1. In the expansion and contraction between both 7- and 8-bit sets and 
6- and 8-bit sets, only the data contained in the high-order bits will 

be needed to determine the transformation. The transmission of 

high-order bit first provides the maximum time to convert between 

the sets. (high) 

With low-order bit transmitted first, compatibility between terminal 

equipments using ASCII and terminal equipments using an 8-bit 

superset of ASCII may be simplified, and transmission switching 

equipment may more readily handle either mode of transmission. 
(low) 

15.6 RELIABILITY 

1. Asynchronous transmission of characters results in a greater proba- 

bility of error in the later bits transmitted.
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2. If low-order bits are transmitted first, an error in the later bits would 

tend to convert some graphics to control characters. (high) 

3. If high-order bits are transmitted first, numerics may be converted to 

other numerics, and control characters to other control characters. 

(low) 

After many committee meetings, long discussion, and the considera- 

tion of over seventy technical papers on the subject, the standards 

committee decided in favor of low-order bit first for serial-by-bit—serial- 
by-character data transmission. 

Author’s Note 

All data is transmitted high-order character first, and it may be observed 

that similar arguments for order-of-character transmission could be made 
as for order-of-bit transmission. That is to say, it might have been argued 

that since similar reasons could have been advanced for order-of- 
character transmission but that nevertheless high-order-character trans- 
mission is universally practiced, it would seem to be logical to conclude that 
high-order-bit transmission first should become the practice. This argu- 
ment, however, was not introduced into the discussion.





16 
Decimal ASCII. 

After the bit code ASCII became an approved American National 
Standard in 1963 (actually termed “American Standard” then), the 
attention of the standards committee turned to developing standards for 
the representation of the code on the principal media, perforated tape, 
magnetic tape, and punched card. 

16.1 PERFORATED TAPE 

The representation for perforated tape presented no technical problems. 

A common form of perforated tape of the day was one-inch, eight-track 

paper tape. It was soon agreed 

a) To number the tracks of the tape 1, 2, 3, 4, 5, 6, 7, 8. 

b) To record the seven bits of the code: 

b1 in track 1 

b2 in track 2 

b7 in track 7. 

c) To use track 8 as a parity track. 

16.2 MAGNETIC TAPE 

The problem for magnetic tape was not quite so simple. First, the 
committee decided to reject as a candidate the existing magnetic tape of 
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the day—half-inch, seven tracks. One of the seven tracks was dedicated 
to parity—odd parity for some computing systems, even parity for other 
computing systems. 

If a track were to be dedicated to parity for the standard on magnetic 
tape, and the standards committee agreed that it should be, then only six 

tracks would remain to record the seven bits of the code. While it is 
feasible to devise a theoretical scheme for recording the 128 characters of 
a 7-bit code on 6 tracks (and, indeed an ISO Recommendation for just 
such a scheme was eventually approved), the American standards com- 

mittee deemed such a scheme unacceptable for an American standard. As 
described in Chapter 20, the standards committee proposed a recording 

format of nine tracks, and eventually, the representation of ASCII on 
magnetic tape became an approved American standard. 

16.3 PUNCHED CARDS 

The problem of deciding how to record ASCII on punched cards turned 
out to be extremely troublesome. 

The most common form of punched cards in use in the U.S.A. at the 
time used a 12-row, rectangular-holes representation (which came to be 

called the Hollerith Card Code in the U.S.A.). A less common representa- 

tion, provided by the UNIVAC Division of the Sperry-Rand Corpora- 
tion, used a punched card of virtually the same size, and twelve rows of 

punching, but the holes were circular. The initial draft American standard 

specified both the rectangular-hole and circular-hole representations. 

Eventually, the standards committee voted to exclude the circular- 

hole representation from further consideration, for an interesting reason. 

The circular-hole card had 45 columns of punching. The encoding format 
divided the twelve rows into two tiers of 6 holes per tier. The card was 
visualized as having 90 columns, and was frequently called the 90-column 
card (the rectangular hole card had 80 columns of punching, and was 
frequently called the 80-column card). But these 90 columns had only 6 
punchable rows per column and therefore could record a maximum of 64 
different characters. The problem with the 90-column card was the same 
as the problem for magnetic tape (6 data tracks plus 1 parity track). How 
could the 128 characters of ASCII be recorded on the 6 rows of the card? 
Of course, physically, the card had 12 rows. The alternatives for the 

circular-hole card were 

a) Using the 12 rows as necessary, record all 128 characters of ASCII, 

but then have a capacity of only 45 columns per card. 

b) Record only 64 characters of ASCII, and have a capacity of 90 

columns per card.
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c) Use 90 columns, record all 128 characters of ASCII by some 
complicated recording scheme involving the concept of a shifted or 

precedence code. 

None of these alternatives was attractive, and the committee dropped 
the circular-hole card from further consideration. 

Attention then focused solely on the rectangular-hole card. Inciden- 
tally, the “name” of this kind of card enjoyed some changes. During the 
discussion of the circular-hole card, it was necessary to differentiate 
between the two kinds of cards. “‘Circular-hole card’”’ and ”rectangular- 
hole card” were two differentiating names; “‘90-column card”’ and “‘80- 
column card” were more commonly used differentiating names (both 
kinds of card had 12 rows, so this characteristic could not be used to 

differentiate). After the circular-hole card was dropped from further 
consideration, the remaining card was referred to as the 80-column card 
for a while. But it was pointed out that this name was a misnomer, because 

different lengths of the card (that is, different numbers of columns) were 

available in the market. At this point, therefore, the standards committee 
began to refer to the rectangular-hole card as the 12-row card (12 rows 

being a characteristic of such cards regardless of length). The ISO 
Recommendations on punched cards refer to the card as the 12-Row 

Card. 

16.4 BINARY REPRESENTATION 

The standards committee now focussed on the 12-row card. At first, the 

problem seemed simply solvable. The card has twelve rows, commonly 

named the 12-row, the 11-row, the 0-row, the 1-row, the 2-row,..., the 

9-row, as shown in Fig. 16.1. Some members of the standards committee 
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Fig. 16.1 Punched card
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suggested that the code be recorded according to a very simple algorithm: 

a) bl would be recorded in the 1-row, 

b2 would be recorded in the 2-row, 

b3 would be recorded in the 3-row, 

b4 would be recorded in the 4-row, 

b5 would be recorded in the 5-row, 

b6 would be recorded in the 6-row, 

b7 would be recorded in the 7-row. 

b) When a bit of the bit pattern is 1, punch a hole. 
When a bit of the bit pattern is 0, leave the hole position unpunched. 

This proposed representation on punched cards came to be called the 

Binary Representation (and later came to be called the Direct Binary 

Representation). The advocates of the Binary Representation pointed out 

its advantages: 

1. It was a simple, direct representation (no translation required). 

2. If it became necessary some day in the future to expand the 7-bit 
code to an 8-bit code, the eighth bit of such a code could be recorded 
in the 8-row. 

3. The 12-row, 11l-row, and 9-row would be available so that error- 

checking, and even error-correcting, schemes could be implemented, 
a facility not previously available with the punched card medium. 

The initial argument against the Binary Representation was that it 
was completely different from the existing Hollerith Card Code. This 

argument was discounted by the Binary Representation proponents. 
After all, they argued, ASCII was different from any existing code; the 
representation of ASCII on magnetic tape would be different from any 
existing magnetic tape code; the representation of ASCII on paper tape 
would be different from any existing paper tape code. So what was 
alarming about the suggestion that the representation of ASCII be 
different from the existing punched card code? While the opponents of 

the Binary Representation grappled with this argument, a much more 
telling objection emerged. 

16.5 NUMBERS OF HOLES 

Observe, said the Direct Binary opponents, what happens when the 
numerics of ASCII are recorded on the punched card under such a 

scheme (see Fig. 16.2).
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Fig. 16.2 Numerics, Binary Representation 

Two facts emerge with respect to numerics: 

1. 0 requires 2 holes; 1, 2, 4, and 8 require 3 holes; 3, 5, 6, and 9 

require 4 holes; 7 requires 5 holes; this gives an average of 3.5 holes 

per numeric. 

2. For all numerics, both the 5-row and the 6-row have punched holes. 

These two facts contrast with the equivalent facts for the Hollerith 

Representation of numerics (Fig. 16.3). 

1. Each numeric requires exactly one hole. 

2. There is a different row punched for each different numeric. 

  

0 
a 
| i

)
 

22k kkk lm kkk kkk kkk kkk tk 2 kkk kkk kkk 22222 klk 2222 kk 2228222 

333939333935390333939333933393933393993933399333939333333939393393939333939939333 

MAMA AA AAA GAGA GAMMA Ada GAA AAA GAG ddd ddd ddd ddd ddd ddd ddd d ddd dad ddddagggaaaaaga 

Boe e a aoa ao ooo oo ae ooo ooo oo ooo ooo oo ooo ooo oo oo ooo oo ooo TUFF USF T SSH SSS H SSS 

CEGBECEC CECE CRG BEBE CEG SCEGE EGR CEG GCC ERG CCGG EGBE SEG CCGG EG GEGEGE CEG GSEE BEG ECEGEEGEE 

DUTT TUTTE TTT TTT 

BRGLORBARHA RRB RA BRIM ARAB RAGA TRU RE RA SHR AR BRR RRA RABE BAS HS ARBRE SH BARROS ASABE RAB ESS 

99999999999999999999M9999999999999999IITIIITIITIIIIFIITIFIIGIIIIIIIIIISIIIIIGI GY 
V2 3&5 6 7 GF WGN 1213 14 15 16 07 18 19 20 21 22 23 24 25 26 27 28 29 30 Bt 32 93 34 35 36 3F 38 39 40 4h 42 43 44 45 46 AT 43 49 50 51 52 53 54 56 96 ST 58 S960 61 62 83 G4 55 G6 B7 GB GS 7070 7273 1475 78 77 78 79 80 

\ 1M 
    

  

Fig. 16.3 Numerics, Hollerith Representation
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The significance of fact (1) is that if more holes are required per 

character, the dies that punch the holes will wear out sooner, and thus 

maintenance costs will be higher. The statistics above for fact (1) relate to 

numerics only. Consider the statistics for all 64 characters in columns 2, 

3, 4, 5 of the code: 

2 characters require 1 hole = 2 

10 characters require 2 holes = 20 

20 characters require 3 holes = 60 

20 characters require 4 holes = 80 

10 characters require 5 holes = 50 

_2 characters require 6 holes = 12 

64 224 

{I 

The average is 224/64 = 3.4 holes per character. 

By contrast, consider the Hollerith Card Code associated with BCDIC 

(see Fig. 16.4): 

1 character requires 0 holes = 0 

12 characters require 2 holes = 24 

35 characters require 2 holes = 70 

16 characters require 3 holes = 48 

64 142 

The average is 142/64 = 2.2 holes per character. 

We have, then, average number of holes per character, as shown 

below: 

  

  

  

Kind of Binary Hollerith 
characters | Representation | Representation 

Numerics 3.5 1 

All 64 3.4 2.2 

characters       
For numeric data, which was estimated at that time to constitute 75 

percent of all data punched, we have 3.5 holes per character compared to 

1 hole per character. For the 64 graphic characters, we have 3.4 holes per 

character compared to 2.2 holes per character.
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Fig. 16.4 BCDIC, Hollerith Card Code 

Fact (1) led to the conclusion that the Binary Representation would 

result in higher maintenance costs for punched card equipment than the 

existing Hollerith Representation. And, it is important to note, this would 

not be a one-time conversion cost (because of converting from one code to 

another); it would be a continuing cost. 

16.6 LACING 

Fact (2), however, led to an even more compelling argument against the 

Binary Representation. Observe Fig. 16.5. For numeric data, for all 

numerics, rows 5 and 6 are punched. If a card was punched with numeric
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Fig. 16.5 Laced card 

data only, the rows 5 and 6 would be punched completely across the 
length of the card. The technical term used for this phenomenon is 
“lacing.” For the Binary Representation, the card would be ‘“‘laced” 
completely across two rows for numeric data. 

The punched card is unique among the physical recording media in 
one very significant aspect, the way in which it is handled by human 
beings. Of course, reels of magnetic tape are also handled by human 
beings. And rolls of paper tape or lengths of paper tape are also handled 
by human beings. But these human beings are operators in a computing- 

room environment who handle the magnetic tape reels, or the paper tape, 
with some care. Punched cards, by contrast, go out of the computing- 

room environment into the hands of people who, not infrequently, treat 
the card with considerable roughness. The punched card is used for pay 
checks, for insurance premium billing, for utility billing, etc. In many 
cases, the punched card goes to people outside the computing-room 

environment, and is then subsequently returned for further computer 

processing. The cards may be folded, crumpled, wetted, scraped, torn, 

spindled, etc. (The famous phrase, “Do not spindle, fold, or mutilate” 

was devised by Mr. Charles A. Phillips in the hope that people, so 
advised, would treat cards more carefully.) 

The punched card is made of a fairly stiff paper stock. To some 
extent, it resists folding, wrinkling, tearing, etc. The presence in a 
punched card of two rows laced across the length of the card clearly make 
it much more susceptible to damage when casually or roughly treated by 

human beings. The thrust of this argument was that the Binary Represen- 

tation would make the card unreliable. On the standards committee,
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manufacturers of punched card equipment were unanimous in their op- 

position to the Binary Representation; partly because of the potential 
increase in continuing maintenance costs but mainly because of the 
potential unreliability of the punched card which would result. 

The proponents of the Binary Representation offset the cost argu- 
ment with a counter argument on cost. A hardware translator to translate 
ASCII to/from the Hollerith Representation would be very much more 
costly than a hardware translator to translate ASCH to/from the Binary 

Representation. But the reliability argument could not be offset. At first, 
it was suggested that using the 12- and/or 11-rows for error checking or 

error correcting would partly compensate for the unreliability aspect. But, 
punching 12 or 11 rows would add even more holes per character, which 
would worsen the maintenance cost situation. 

16.7 MODIFIED BINARY REPRESENTATIONS 

The reliability defect of the Binary Representation stemmed from the 
lacing phenomenon, which stemmed from the three high-order zone bits 
of ASCII. This defect could clearly be removed if the numerics had no 
zone bits. The solution now advanced by the Binary Representation 
proponents was to modify the binary representation as punched on the 
card by modifying the zone holes. Two representations were proposed for 
consideration—the Modified Binary Representation and the Optimum 
Modified Binary Representation. In both these representations, the 
numerics had no zone punches in the 5-row or 6-row, so the lacing 
phenomenon disappeared for numerics. 

The zone bits for the three binary representations are shown in Fig. 
16.6. The three binary representations and the Hollerith Representation 
are compared in Fig. 16.7, which shows the average number of holes per 

numeric and the average number of holes for the 64 characters of 

table-columns 2, 3, 4, and 5 of ASCII. 

While the Optimum Modified Binary Representation came the clos- 
est to Hollerith in average number of holes per numeric or character, it 
suffered from some other defects: 

1. A 64-character, 6-bit subset from columns 2, 3, 4, and 5 of the 7-bit 

code cannot be generated by simply dropping one bit. 

2. The translation algorithm, ASCII to/from Representation, is some- 
what complex (although not as complex as the one to/from Hol- 

lerith). 

If the three high-order bits of the Optimum Modified Binary Representa- 
tion are bj, bg, bs and the three high-order bits of ASCII are b7, b6, b5,
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Table column 

  

  

  

0} 1) 2) 3) 4) 5] 67 
Representation 

0/0} 0) 0} 1) 1} 1) 1)b7 
Direct Binary 0/0} 1) 1; 0} 0) 1}1}b6 

0} 1/0} 1)0}1]/0}1)b5 

1} 1)010}0}0/1]1/b7 
Modified Binary 1/0) 1/0}0/ 1/0} 1/b6 

1/0) 1)0)1/0)1)0)]b5 

1/0) 1/0/0}0)1/1}b7 
Optimum Modified Binary 1} 1/0} 0/0) 1/0] 1) b6 

1/1}0/0)1/0)1/0)b5                     

Fig. 16.6 Binary representation 
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Representation Numerics Ali 64 characters 

Direct Binary 3.5 3.4 
Modified Binary 1.4 3 

Optimum Modified Binary 1.4 2.7 
Hollerith 1 2.2     
  

Fig. 16.7. Average number of holes per character 

then the translation equations are 

bi = (b7 A bS) v (b7 A b6) 

bi = (b7 A b6) v (b7 A bS) 

bi = (b7 ~ b6) v (b7 A bS) 

With respect to all three Binary Representations, two more problems 

arose, which came to be called the Null/Space/Blank Problem, and the 

Plus and Minus Zero Problem.
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16.8 NULL/SPACE/BLANK PROBLEM 

In punched card applications, a blank card column, with no holes 

punched, represented one of three things, depending on the application: 

1. A card column not used in the application. 

2. Acard column not punched in the initial keypunching operation but 
punched in a subsequent card-punching operation. 

3. A space; that is, if the card is listed on either serial or parallel 
printers, blank card columns would be represented by unprinted 
printing positions on the paper. 

In practice, the blank card column was equated to the Space character. In 
keypunching, blank card columns are created by depressing the Space 
bar, or by skipping the card to a subsequent card column, or by ejecting 

the card. These operations are precisely analagous to the typing opera- 
tions of Space, Horizontal Tabulation, and Carriage Return. The format 
of data on the punched card is precisely analogous to the format of data 
printed from the card. 

Observe, however, the hole patterns for Null, Space, and Zero in the 

Binary Representations (Fig. 16.8). 

  

  

  

Representation Optimum 
Direct Modified Modified 

Character Binary Binary Binary 

Null Blank column | 7-6-5 punches | 7-6-5 punches 

Space 6 punch 6-5 punches 7 punch 

Zero 6-5 punches Blank column | Blank column         
Fig. 16.8 Null/Space/Zero hole patterns 

The blank card column is associated with the Null character in the Direct 
Binary Representation, and with the Zero character in the Modified and 

Optimum Binary Representation. In no case is blank card column as- 

sociated with the Space character. 

At first, the Binary proponents took the following lines: 

For the Direct Binary Representation. In the future, associate the blank 

card column on punched cards with the Null character. On keypunches
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the “‘old’? Space bar would now have to be called the Null bar, but a 

change in nomenclature should not be too distressing to users. 

The Binary opponents held that this proposal would be unacceptable. 
The proposal might be acceptable purely in the context of the 

punched card environment. But punched cards do not exist in a vacuum. 
A common punched card application is to read a deck of punched cards 
into a card reader, translate the data to a transmission code, and then 

transmit the data to some other location for further processing. But it was 
known that some communications products, when receiving the Null 
character, would not transmit it further. Also, it was known that, for 

various reasons in some data transmission systems, Null characters are 
injected into the data stream. 

In short, Null characters might be injected into, or removed from, 

the data stream. In the context of the punched card used in a data 
transmission application, if the Null character was equated to a blank card 
column, this would mean that, under data transmission, blank card 

columns would be added to, or removed from, the punched cards. Even 

the Binary proponents had to concede that such a consequence would be 

intolerable. 

For the Modified and Optimum Modified Binary Representations. In 

the future, associate the blank card column on punched cards with the 

Zero character. 

The Binary opponents held that this proposal would be unacceptable. 
The proposal to equate the blank card column with the zero charac- 

ter would lead to a dilemma. Consider a card punched as shown in Fig. 
16.9. Card-columns 1, 2, 4, 7, 12, 13, 16, and 19 are punched with 
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Fig. 16.9 Card with blank columns
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1umerics. Card-columns 3, 5, 6, 8, 9, 10, 11, 14, 15, 17, 18 and 20 

hrough 80 are blank. This punching represents numeric fields 12809001 
n card-columns 1 through 8, and 24001006 in card-columns 12 through 

L9. 
The dilemma is how to list such a card. Card-columns 3, 5, 6, 14, 15, 

7, and 18 were Zeros in the data, and should be listed as Zeros. But 

ard-columns 8 through 11 and 20 through 80, although blank card 

olumns, should not be listed as Zeros, but as Spaces. And there is no 

vay for a printer to tell when a blank card column means Zero, and when 
t means Space. 

The Binary proponents responded that the problem is that card 
olumns 8 through 11 and 20 through 80 should not have been blank 
‘ard columns, which is equated to the Zero character, but should have 
xeen punched whatever hole pattern would be associated with the Space 

‘haracter. 
The Binary opponents labeled this unacceptable for two reasons: 

1. Card-columns 8 through 11 would normally be created as blank card 
columns in keypunching by skipping, and card-columns 20 through 
80 by ejecting. Now, while it might be feasible to modify keypunches 
so that they would create the specific hole pattern for the Space 
character on skipping or on ejecting, the modification would reduce 
the relatively fast card motion of skipping or ejecting to the relatively 
slow card motion of punching. That is to say, the consequence of 
such a keypunch would be a substantial reduction in keypunch 
productivity. 

2. How would one provide the traditional capability of leaving certain 
card columns unpunched (blank card columns) during keypunching 
to be filled with punched data on subsequent card processing opera- 

tions? Such card columns would, in fact, have to be created by 

punching the Zero character that is equated to blank card column. In 
normal keypunching operations, such card columns are created by 
spacing, skipping, or ejecting. Under this proposal, then, the rela- 
tively fast card motion of skipping or ejecting would be replaced by 

the relatively slow card motion of manual keying by an operator. As 
in the previous argument, key punching productivity would be sub- 
stantially reduced. 

After much discussion, it was accepted that none of the Binary 
Representations, as shown in Fig. 16.6, would be viable, because of the 

Null/Space/Blank Problem. The Binary proponents then made some new 
proposals. Under these proposals, the zone hole patterns shown in Fig.
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Table column 
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Fig. 16.10 Row 0 

16.6 would hold for rows 1 through 15 of the code table, but for row 0 of 

the code table, some changes should be made, as shown in Fig. 16.10. 

Note, in Fig. 16.10, that for all three Binary Representations, the 
Space character, which is Column 2, Row 0 of the ASCII code table, is 

equated to blank card column. The three high-order bits in Fig. 16.10 

have been chosen to preserve the desirable characteristics of each of the 

Binary Representations and, at the same time, to minimize the translation 
complexity—ASCII to/from Binary card-code representation. 

This proposal would, of course, introduce translation complexity into 

the translation of ASCII to/from Binary card code. And translation 

simplicity, or requirement for no translation at all, was the primary and in 

fact the only argument in favor of a binary card-code representation over 

the de facto Hollerith card-code representation. The Binary opponents 
pointed out this undesirable consequence. 

The Null/Space/Blank Problem in the context of Binary Representa- 

tion was not resolved by the standards committee, for a reason that will 

emerge later in this chapter. 

16.9 PLUS AND MINUS ZERO PROBLEM 

The capability to store greater and greater quantities of data has been a 

requirement since the very beginning of data processing. Insufficient 

memory capacity, data records overrunning magnetic tape reels or paper 

tape reels, etc., have plagued, and will probably always plague, the data
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processing industry. Punched cards as a medium for storing data are not 
exempt from, and in fact are particularly prone to, this aggravation. How 
many readers of this book have experienced the aggravation of trying to 
squeeze 81 characters into an 80-column card? Indeed, most modern 
schemes of packing or compacting data had their forerunners in punched 

card applications. 
One very common “trick”? was to make a single card column do 

double, triple, or multiple duty. This was particularly evident in statistical 

applications. For example, the 12-punch could be used to signify male or 
female; the 11-punch, married or single; and the numerics 0 through 9 
could be used to specify some other statistical characteristic. 

A widespread convention was the use of a 12-punch, an 11-punch, or 
neither of these, to signify positive, negative, or absolute numerics, 
respectively. Usually the units position of a numeric field on a card was 
the sign position. Either the 12- or 11-punch was punched over the 
appropriate units position of a numeric field (as well as punching the 
actual digit for the units position). Since 12- and 11-punches, in conjunc- 

tion with numeric punches, also had the meanings of alphabetics, the 

result was dual meanings for these hole patterns, as shown in Fig. 16.11. 
A crucial aspect of this convention for signed numerics was that they 

must be keypunchable by the technique of overpunching. A skilled 
keypunch operator, being required to keypunch —3, for example, would 

      

  

  

  

  

  

Meaning Meaning Meaning 

Hole Hole Hole 
pattern | Alphabetic Numeric | pattern | Alphabetic | Numeric | pattern | Alphabetic | Numeric 

0 0 12-0 * +0 11-0 * -0 

1 1 12-1 A +1 11-1 J -1 

2 2 12-2 B +2 11-2 K —2 

3 3 12-3 Cc +3 11-3 L -3 

4 4 12-4 D +4 11-4 M -4 

5 5 12-5 E +5 11-5 N -—5 

6 6 12-6 F +6 11-6 Oo —6 

7 7 12-7 G +7 11-7 P -7 

8 8 12-8 H +8 11-8 Q -8 

9 9 12-9 I +9 11-9 R -9                   

*In BCDIC, 12-0 and 11-0 have the meanings of ? and !, respectively. In EBCDIC, they 
have the meanings of { and }, respectively. 

Fig. 16.11 Overpunched numerics
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know that this was equivalent to the alphabetic L, and would depress the 
L key. However, a less skilled operator would use the multipunch key 
that had the function that, when depressed, would allow further key 

depressions of alphabetic, numeric, or special keys that would generate 

the appropriate hole patterns in the card, but the card would not advance 

longitudinally until the multipunch key was released; that is to say, 

multiple punches could be created in a single card column. The operator, 

then, being required to generate the 11-3 hole pattern, for —3, would 

depress the multipunch key, would then depress the 3 key, then depress 

the — key (which generates an 11-punch), then release the multipunch 

key. Similarly to generate the hole pattern 12-3 for +3, the sequence 

would be depress multipunch key, depress 3 key, depress + key (which 

generates a 12-punch), release multipunch key.* 

The requirement that signed numerics be keypunchable in this fash- 

ion places an interesting constraint on hole patterns for signed numerics. 
The hole pattern for positive, or for negative, must not conflict with the 
hole patterns for numerics. In the case of the Hollerith Card Code, where 

numerics had hole patterns 0 through 9, this constraint was met by the 
hole patterns for numerics. In the case of the Hollerith Card Code, where 

respectively. 
What would this constraint say with respect to a Binary Representa- 

tion? Given that the numerics are represented by BCD equivalents, that 
is, punches in rows 1, 2, 3, 4 of the card, the hole patterns for positive and 

negative must be restricted to rows 5, 6, 7, that is, to the zone rows. 

Further, if the same convention would be used—minus sign for negative 

zone and plus sign for positive zone—then the hole patterns for plus sign 

and minus sign must not have any holes in card rows 1, 2, 3, 4, for they 

would then conflict with hole patterns for numerics. But this constraint 
cannot be met, since ASCII plus sign and minus sign are in table-rows 11 
and 13; that is, they would have hole patterns in card-rows 1, 2, 3, 4. 

There is, then, no way in which the sign-overpunch-numeric conven- 
tion can be incorporated into a Binary card code, unless the minus sign 
and plus sign had zone bits only, no digit bits; that is, plus sign and minus 
sign to be in row 0 of the ASCII code table. Such a change to ASCII itself 
was not acceptable. 

The Binary proponents proposed that this problem be solved by 

making the problem go away. They proposed that, with a Binary Rep- 

resentation, algebraic sign be represented not by overpunching but by 

carrying the algebraic sign in a separate card column. The Binary propo- 

* Whether the sequence was first 3 key and then — key or first — key and then 3 
key was immaterial.
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nents then were proposing not only that the user change his card code, 
from Hollerith to Binary, but also that he give up the widespread practice 
of overpunching numerics for algebraic sign. 

This problem, as with the Null/Space/Blank Problem, was not resol- 
ved, for a reason that will emerge later in this chapter. 

In the remainder of this chapter, various card codes are illustrated 
and described. Some of these card codes have 128 hole patterns and are 
taken in conjunction with a 7-bit code. Other card codes have 256 hole 
patterns and are taken in conjuction with an 8-bit code. Both the 
Null/Space/Blank Problem and the Plus and Minus Zero Problem 

emerged with respect to some of these codes, and they became major 
points of technical controversy on the standards committees. 

16.10 TRANSLATION SIMPLICITY 

An aspect of these card codes that became crucial in discussions was the 
translation relationship, card code to/from bit code. The relative simplic- 
ity or complexity of translation became a factor for decision between 
candidate card codes. Boolean equations for the various card codes are 
set down in this chapter, using the notation described in Chapter 2. When 
comparing equations, the three simplifying assumptions of Chapter 2 
(repeated here for emphasis) are made. 

Assumption 1. The circuit complexity is equal to implement each of the 
four Boolean operators: 

AND 

Inclusive OR 

Exclusive OR 

IDENTITY lh 
t
<
 > 

Assumption 2. The circuitry which generates a bit generates the inverse 
of a bit with no additional complexity. 

Assumption 3. Given two sets of Boolean equations representing two sets 

of translation relationships, the relative circuit complexity of implement- 
ing the relationships is proportional to the number of Boolean operators 
in the equations. 

It should be understood that, to implement a hardware translator, bit 

code to/from card code, two sets of equations are necessary; the equa- 

tions for deriving bit patterns from hole patterns, and the equations for 
deriving hole patterns from bit patterns. However, in order to compare 
two card codes for relative complexity, one set of equations is sufficient.
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Accordingly, in this chapter, we set down only the equations for deriving 

bit patterns from hole patterns. 
At this point it must be stated that the equations for deriving 

EBCDIC bit patterns from EBCDIC hole patterns (to be given later) are 
not necessarily the actual set of equations used in implementing hardware 
translators. The equations for EBCDIC were derived by the author 
purely for purposes of illustration and comparison in this chapter. The 

Column 0 

Hole 
Pat.   

Hole Patterns: 

[7] 9-t-z-8-1 [7] £ [73]. 2-1 
  

  

  
  

  

  

[2] 9-T-E-8-1 T-E-Z 9-E-Z-1 Block | Hole Patterns at: 
[3] 9-E-2-8-1 [2] T-z [is] T-E 1 3 1 | Top and Left 

(4] 9-T-E~z-8-1 E-Z 2 | Bottom and Left 

(s] No Pch [ii] 2~8-2 2 4 3 | Top and Right 

[e] T fiz] Zz 4 | Bottom and Right               
Fig. 16.12 EBCDIC, 1963
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optimization of Boolean equations is an art. It is quite possible that the 
EBCDIC equations given here could be optimized further. However, they 
are adequate for the purposes of this chapter. 

During the early part of 1963, the author had been evolving the bit 
code and card code that came to be called EBCDIC. As described in 
Chapter 8, two criteria were of major importance; the embedment of 
BCDIC collating sequence in the EBCDIC collating sequence, and up- 
ward compatibility of the BCDIC card code to the EBCDIC card code. 
These two requirements together resulted in less than optimal simplicity 
in the translation relationships, EBCDIC card code to/from bit code. In 

consequence, at that time, the EBCDIC card code had not been adopted 

in IBM. The EBCDIC bit code and card code then under consideration 
are shown in Fig. 16.12. 

16.11 BENDIX PRIME 

The author had been requested to review a card code provided on some 
card equipment by the Bendix Corporation, to see if it might lead to a 
card code with simpler translation relationships to EBCDIC. Also, the 
“Bendix card code” did not suffer from the defects described above for 
binary card codes. 

The “Bendix card code,” per se, will not be described in this book. 
However, the principle of the Bendix card code is interesting and will be 
described. It will be called “Bendix Prime’’ for purposes of reference. 

12-row ~ 

11-row Tier 1 

0-row 

Tier 2 ) 

  

  

1-row 

2-row 

3-row 

  

7-row 

8-row 

9-row 

Tier 4 

4-row —~ 

5-row Tier 3 

6-row 

  
  

Fig. 16.13 Bendix card
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There are twelve punching rows in the punched card. In Bendix 
Prime, these are grouped in four tiers of three rows each, as shown in 
Fig. 16.13. 

Within a tier within a card column, only one of the three rows may 
be punched, or none may be punched. For example, within a card 
column, in the third tier, there are four possible hole patterns; 4-hole, 
5-hole, 6-hole, or no holes. There are therefore four possible hole 
patterns for each tier, and there are four tiers. Hence, within a card 
column, there are 4 x 4 x 4 x 4 = 256 different possible hole patterns. 

That is to say, the Bendix Prime card code could be used to represent 
256 characters. 

One possible Bendix Prime representation is shown in Fig. 16.14. 
For convenience, the twelve-, eleven-, and zero-rows are represented by 

  
Fig. 16.14 Bendix Prime
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E0O=Ev Z 

El=Tv Zz 

E2=2 v3 

B3=1v3 

F4=5 v6 

E5=4v¥6 

E6=8v9 

E7=7v9 

Fig. 16.15 Bendix Prime equations 

Common expressions 

A=2v3 

R=4y75 

C=6v77 

D= 9anA8aAl1 

F=AvRvC 

GH=(TAEAZ)vV(TAEAZ)¥(TAEAZ)v¥(TAEAZ) 

G=(TAEAZ)¥(TAEAZ)V¥(TAEAZ)¥(TAEAZ) 

J=(TABAGAyv Z) 

L=TAEAZA8A2A9 

K=(1AFA8ATAZ)AQ=E) 

U=1F 

Equations 

E0 ={(FaA9 ATA AG) v BADE v {Aa F) AO v 8)} 

ey{LUNOA8)¥(BAGHEV{QOATAEAZALARYL 

EL =f9n8alaARv {Ov Ga{Falvy 8]lv US v (Ga F) 

ATOABA I ¥ OABA I) 

E2 ={{((Ta BE) v (Ea Za (Ea D) v US v {(F a D) 

A{Ea Z)v-(Za 1) A(T = BD} 

E3={{TAB)v(TADSaA{FaBbv Div lha8a9)v UP v (Fa DI] 

A{(EaZ)v[Ea(Tv Z)}} 

B4={FaA[BAUAA Gh v (8 ATA [9v (Ta EAZ} 

YIRA(B¥ Rv Cly[2,AGnTAEAZ)M 

  

  

BE5=RvC 

BE6={3v6v 7] v[2ZAQa8aATAEAZRVIDAFATAEAZ 

E7=3v75v77Iv{Fa{ia[Bv¥ 8AG)]v[A8~ If} 

Fig. 16.16 EBCDIC equations
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T, E, Z, respectively. The bits of an 8-bit byte are named EO, El, 

E2,...,E7, from high to low order. 

Using Boolean notation, the translation equations may be derived as 

shown in Fig. 16.15. These translation relations for Bendix Prime card 

code to/from EBCDIC bit code are considerably less complex than those 

for EBCDIC card code to/from EBCDIC bit code, which are shown in 

Fig. 16.16. 

16.12 EBCDIC PRIME 

While the author was reviewing Bendix Prime, it occurred to him that it 

would be useful to have some basic card-code-to-bit-code relationship 

against which other relationships could be compared for simplicity or 

complexity. Such a basic relationship is shown in Fig. 16.17. It is called 

Column 0 1 2 3 

00 

00 01 10 11 a0 

Hole 

Pat.   
Fig. 16.17 EBCDIC Prime
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=BCDIC Prime for purposes of reference. The letters T, E, and Z are 
ised to represent the 12-row, 11-row, and 0-row. The Boolean relations 
‘or EBCDIC Prime, card code to bit code, are shown in Fig. 16.18. 

It may be noted, then, that Bendix Prime equations and EBCDIC 
Prime equations both require 8 Boolean operators. 

Common expressions 

A=2¥3 

B=4¥5 

C=6v77 

Equations 

EO = 9 

El = T 

E2=E 

E3=Z 

E4 = 8 

E5=BvC 

F6=AvC 

E7=1v3v5v7 

Fig. 16.18 EBCDIC Prime equations 

16.13 COMPARISON OF BENDIX PRIME AND EBCDIC PRIME 

The possibility of using either Bendix Prime or EBCDIC Prime, or some 
version of them, as the card code for ASCII was then considered. Neither 

card code manifests the undesirable trait of lacing. In order to arrive at 
figures of comparison for the average number of holes per character, we 

observe that the figures in Fig. 16.7 were in terms of 64 characters; that 

is, we would have to decide which 64 characters of Bendix Prime, or of 

EBCDIC Prime, were to be considered. If we want to optimize on the 

minimum number of holes per character, for Bendix Prime (Fig. 16.14), 

we would select table-columns 0, 1, 2, and 3; and for EBCDIC Prime 

(Fig. 16.17), we would select table-columns 0, 1, 2, and 4. For these 

selections, the figures for 64 characters are as follows: 

Average number of holes per character 
  

Bendix Prime 1.12 
  

EBCDIC Prime 0.98    
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Both Bendix Prime and EBCDIC Prime, for 64 characters, have an 

average of far fewer holes per character than do the Binary Representa- 

tions (Fig. 16.7). 

It is to be noted that Figs. 16.14 and 16.17 do not represent codes 

per se; that is, a set of meanings assigned to a set of bit patterns or hole 

patterns. Figures 16.14 and 16.17 show a relationship between a set of 

hole patterns and a set of bit patterns. 

These sets of hole patterns for Bendix Prime and EBCDIC Prime 

have interesting characteristics in contrast to the Binary Representations 

described above: 

1. No card lacing. 

2. On the average, fewer holes per character than Binary Representa- 
tions. 

3. Simple translation relationships, bit patterns to/from hole patterns, 
although slightly more complex than the Binary Representations. 

16.14 THE PLOMONDON PROPOSAL 

Such a card code would seem to be the obvious candidate for the card 

code for ASCII. In November 1963, a card code based on the principle of 
EBCDIC Prime was proposed for study to the standards committee by 

E. E. Plomondon. This card code (although not this actual version) came 
to be called Decimal ASCII. 

The Plomondon proposals were for a 128-character version and a 
256-character version, shown in Figs. 16.19 and 16.20, respectively. It 
should be noted that the 256-character proposal is, strictly speaking, not 

the one that was actually made. As described in Chapter 20, the al- 
gorithm for embedding the 7-bits of ASCII in an 8-bit byte had not 

actually been decided at that time by the standards committees. The 

algorithm E6 = b7 had been implemented on the System/360. 

Ultimately, the standards committees decided for the algorithm 

E8& = 0. The actual embedment algorithm does not affect any of the 

discussion that follows in this chapter. In consequence, since the E8 = 0 

algorithm was the one chosen, the author has used that algorithm in this 

chapter, even though the actual proposal at that time assumed the 

E6 = b7 algorithm. What is meant by the E8 = 0 algorithm is that the 8 

columns of the 7-bit ASCII code table were embedded in the first 8 

columns, the high-order bit, EO, is zero; hence the algorithm was 

characterized as E8 = 0.
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Column 0 

000 

Hole 
Pat.   

Hole Patterns: 

[7] z81 T 

[2] 81 E 
(3) No Pch [2] 9281 

[4] z 981 

[s] 12 

[e} Ez 

Fig. 16.19 Decimal ASCII-128, Plomondon proposal
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Hole 

Pat.   
Hole Patterns: 

  

  

  

  

  

[4] z81 T [i3} T81 QTEZ 

[z] 81 E E81 OTE Block | Hole Patterns at: 

[3] No Pch [9] TEz81 ffs) Tz81 1 | Top and Left 

[4] z TE81 EZ81 1 2 

{s] 12 [uu] TEZ [7] 9281 2 | Top and Right 
[e} Ez fiz} TE 981               

Fig. 16.20 Decimal ASCII-256, Plomondon proposal
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16.15 DECIMAL ASCII, VERSIONS 1 AND 2 

It was pointed out, in connection with these proposals, that the 9-punch 

was functioning as a zone punch. In the 128-character proposals, the 9 as 
a zone punch was assigned to columns 0 and 1 of the code table; that is, 

to control characters. And this was cited as desirable with respect to 
circuitry in terminals where a clear differentiability between control 
characters and graphic characters would be desirable. 

Column 0 1 2 3 4 5 6 7 

000; 601,010] 011/100{101 

Pat.   
Hole Pattarns: 

[2] 
[3] No Pch 

[4] z 

{s] 

Fig. 16.21 Decimal ASCII-128, Version 1
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Another member of the standards committee (Task Group X3.2.3) 

suggested that it seemed preferable to use the 9-punch, when used as a 

zone punch, to differentiate between the E8 = 0 and E8 = 1 halves of the 

8-bit code table, as shown in Fig. 16.22. If a distinguishing punch (or 

punches) was desirable for control characters, then the 12-11 combina- 

tion could serve as well as the 9 proposed by Plomondon. This suggestion 

Hole 

Pat.   
Hole Patterns: 

  

  

  

  

  

oH [a 781 
2] E81 Block | Hole Patterns at: 

[3] No Pch [9] TEZ81 [is] 1281 1 | Top and Left 

[4] z TES81 EZ81 1 2 

[5] [1] 281 2 | Top and Right 

Es) [i] 81               
Fig. 16.22 Decimal ASCII-256, Version 2
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seemed good, and was accepted by the standards committee. The result 

was Version 1, 128 characters (Fig. 16.21) and Version 2, 256 characters 

(Fig. 16.22). 
Versions 1 and 2 were superior to the initial Plomondon proposal in 

one respect. The translation equations (which are shown later in this 
chapter), card code to/from bit code, are less complex. 

16.16 THE NULL/SPACE/BLANK PROBLEM (AGAIN) 

For Version 1, as for the IBM 128-character proposal, the No punches 
hole pattern was assigned to code position 2/0 (the Space character), and 
the Zero hole pattern was assigned to code position 3/0 (the zero 
character). (This is a reflection of the Null/Blank/Zero Problem referred 

to previously in this chapter.) In the Plomondon proposal and in Versions 
1 and 2 the assignment of No punches to Space was made. This later 
became a matter of contention in the standards committee because, if No 

punches had been assigned instead to code position 3/0, and if Zero 
punch had been assigned instead to code position 2/0, the translation 
relationships, card code to/from bit code, would have been simpler. And 
simplicity of translation relationships was desirable. The assignment, 
however, was ultimately accepted by the committee. 

It should be borne in mind that, at the time Decimal ASCII was 

proposed, there were two contenders for standardization—a Binary Rep- 
resentation of one kind or another and Hollerith Representation. 

The following comparison of the merits of Decimal ASCII and of 
Binary Representation shows clearly that Decimal ASCH suffered from 

none of the defects previously described for the Binary Representations, 

and enjoyed a reasonably simple translation relationship, to/from ASCII. 
If 

A = complexity of translation, Binary card code to/from ASCII bit code, 

and if 

B = complexity of translation, Decimal ASCII card code to/from ASCII 

bit code. 

and if 

C = complexity of translation. Hollerith card code to/from ASCII bit 

code, 

then 
A<B<C, 

And in fact, A and B are very much less than C.
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Technically, then, Decimal ASCII appeared to the standards com- 
mittee as superior to Binary Representations. Indeed, the standards com- 

mittee soon dropped Binary Representations from further consideration. 

(Recall that the Null/Blank/Zero Problem and the Plus and Minus Zero 

Problem were previously stated not to have been resolved for Binary 
Representations. The reason, of course, is because the Binary Represen- 
tation card codes were themselves dropped from further consideration.) 

16.17 EUROPEAN CARD CODES 

There was another important point in favor of Decimal ASCII. In 
Europe, three manufacturers of punched card equipment, IBM, ICT 

(now ICL), and Bull, employed card codes in their equipment radically 
different one from another (see Fig. 16.23). In the European standards 

committee responsible for codes, ECMA/TC1, card code standardization 

was at an impasse. 
Each of the three manufacturers advocated his own code as a 

candidate for standardization. More significantly, if the punched card code 

of one manufacturer was accepted for standardization, then that manufac- 
turer could enjoy an advantage in the market place. The other members 

of ECMA/TC1 felt that, until the three punched card manufacturers 

came into agreement on some proposal, it was useless to try to arrive at a 
consensus on a standard card code. 

These European card codes deserve comment. Their common area of 
agreement is the original Hollerith numerics. The card codes used by 
IBM and by ICT also agreed on alphabetics. But the method of extending 
the repertoire of hole patterns beyond this point was different. For the 
IBM card code, the extension was achieved by using the 8-punch as a 
zone punch. As has been described elsewhere in this book, this had the 
merit of preserving the BCD characteristic of the code. By contrast, the 
ICT card code was extended by using the 1-punch as a zone punch. 

And for the Bull code, to extend the repertoire of hole patterns 
beyond the numerics, the 7-, 8-, and 9-punches were used as zone 
punches. This undoubtedly had to do with the method of feeding a card 
through a card reader. If a card is fed 12-edge first (IBM), then punches 

toward that edge of the card (12, 11, 0) serve best as zone punches. But if 

the card is fed 9-edge first (ICT), then punches toward that edge of the 
card (7, 8, 9) serve best as zone punches. 

Not long after E. Plomondon proposed Decimal ASCII to X3.2.3, 
W. F. Bohn proposed it to ECMA/TCI1. It was perceived that Decimal 
ASCII was not implemented on any equipment. In consequence, all three
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IcT BULL 

NEW HOLLERITH 300 SERIES   
Fig. 16.23 European card codes 

manufacturers could begin to design and develop Decimal ASCII card 
equipment from an equal start. Decimal ASCII was seen by ECMA/TC1 
as a proposal which would remove the impasse, and Decimal ASCII was 
accepted. Decimal ASCII was now accepted in principle both by 
ECMA/TCI and by ASA X3.2. 

16.18 THE PLUS AND MINUS ZERO PROBLEM (AGAIN) 

The Plus and Minus Zero Problem now arose to plague the committees. 
It will be observed in the original Plomondon proposals (Figs. 16.19 and
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16.20) that, although the general translation relationship for the code 
table would have prescribed T, E, TZ, and EZ for code positions 4/0, 5/0 
6/0, and 7/0, respectively, hole patterns TZ, EZ, T, and E, respectively, 

were assigned instead. 
It will further be observed that in the Decimal ASCII Version 1 

proposals (Figs. 16.21 and 16.22) these translation exceptions were 
removed. What was behind this? 

The intent behind the Plomondon proposals was to provide the 
overpunched numeric capability in Decimal ASCII. Hole patterns T1 
through T9 are assigned to code table positions 4/1 through 4/9, and E1 
through E9 to 5/1 through 5/9. Assuming that the overpunched numeric 
convention prevalent with Hollerith punched card applications would be 
continued by users in Decimal ASCII punched card applications, it would 
be necessary also to provide for plus zero and for minus zero. And the TZ 
hole pattern must correspond to the same ASCII bit code table column as 
T1 through T9, and the EZ hole pattern must correspond to the same 
table column as El through E9. This would displace, in the 0-row of the 
code table, T and E, which would be moved to code positions 6/0 and 

7/0. 
These four translation exceptions were the solution to the Plus and 

Minus Problem in the Plomondon proposals. But they were not provided 

in the Decimal ASCII Version 1 Proposals. Why not? 
They were not provided precisely because they were translation 

exceptions. For those members of the standards committees who felt that 
translation simplicity was the primary criterion, it had been hard to accept 
the two previously mentioned translation exceptions to solve the 
Null/Blank/Zero Problem. And these members would not accept four 
more translation exceptions, as proposed by IBM to resolve the Plus and 
Minus Zero Problem. 

16.19 DECIMAL ASCII, VERSIONS 3 AND 4 

Representatives to the standards committee did urge the solution of the 

Plus and Minus Zero Problem, and submitted proposals incorporating the 

solutions, Decimal ASCII Version 3 (128 characters) and Version 4 (256 

characters), as shown in Figs. 16.24 and 16.25, respectively. 

The arguments for Versions 1 and 2 versus Versions 3 and 4 then 
centered on the relative importance of translation simplicity versus provi- 

sion for Plus and Minus Zero.
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Column 

Hole 
Pat.   

Hole Patterns: 

(2) T 
2] E 
[3] No Pch 

{a} z 

TZ 

[es] Ez 

Fig. 16.24 Decimal ASCII-128, Version 3
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Column 0 1 2 3 4 

00 

00 o1 10 11 00 

T T T 

E 

Hole 

Pat.   
Hole Patterns: 

  

  

  

  

  

[t] T [13] T81 

{2] E E81 Block | Hole Patterns at: 

[3] No Pch [2] tTEz81 [is] 1281 1 | Top and Left 

[4] z TE81 EZ81 l 2 

[3] TZ fi] 281 2 | Top and Right 

[e] Ez [v2] 81               
Fig. 16.25 Decimal ASCII-256, Version 4 

16.20 DECIMAL ASCII PRIME 

In order to assess the relative translation complexity/simplicity of Ver- 
sions 1 and 2 versus Versions 3 and 4, Boolean equations are derived. To 

have a base against which comparisons can be made, Decimal ASCII,
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Columa Q 1 2 3 4 5 6 7 

000) 001] 010} 011] 100] 707 | 110 | 71171 

Hole 
Pat.   

Hole Patterns: 

G] 
@] 
G] 
(4) 
(3) 

[e] 

Fig. 16.26 Decimal ASCII-128, Prime 

Prime (128 characters) and Decimal ASCII, Prime (256 characters) are 

shown in Figs. 16.26 and 16.27, respectively. There are no translation 

exceptions in these latter two card codes, neither the exceptions to solve 

the Null/Blank/Zero Problem nor the exceptions to solve the Plus and 

Minus Zero Problem.
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Hole 

Pat.   
Hole Patterns: 

  

Block | Hole Patterns at: 
  

1 Top and Left 
  

ll
 E
E
)
 

  
2 Top and Right 
  

B
E
E
 
E
E
L
 G) 

[2] 
[3] 
[4] 
(3] 
[s]               

Fig. 16.27 Decimal ASCII-256, Prime 

16.21 TRANSLATION EQUATIONS 

The translation equations for Decimal ASCII Prime, the original Plomon- 
don proposal, Versions 1 and 2, and Versions 3 and 4, for both 128 

characters and 256 characters are set down in Figs. 16.28 through 16.35.
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Using the three simplifying assumptions previously noted, Boolean 
operators are counted for these equations. The results are summarized in 
Fig. 16.36. Results for EBCDIC are also shown for purposes of 
comparison. 

Common expressions 

A=2¥3 F=AvJIvC 

J=4y¥5 H=TvE 

C=6v7 P=QOAD¥ [FAR AO¥ 1] 

Equations 

A7=H»”P 

A6=[((TA EB) v (Ha Z)]AP 

AS ={(T a Z) ¥ [((T¥ Z) a E}}a P 

AZ4=TALOA8 AQABA PF] 
A3=Jv Cc 

A2=Av¥C 

AL=B75v77)¥ [BAO ¥ 1)] 

Fig. 16.28 Decimal ASCH-128, Prime 

Common expressions 

A=2¥3 K=TveE 

J=4¥%5 R=9A(8=1)AF 

C=6¥7 U=1AF 

F=AvJIvC W=FvU 

Equations 

AS =[AAPF)AOv8)] ¥ ada (8v FP] 

A7 = K”aW 

A6=[((TA BE) v (Ka Z)]AW 

A5 = {Ta Z) v [((Tv Z) a E} a W 

A4=(8A1)vR 

A38 =JvC 

A2=A¥C 

A1l=[B v5 7] v {Fa {8a 1 v 9) v {1 a OFF 

Fig. 16.29 Decimal ASCII-256, Prime
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A=2¥3 P=(Q9A 

J=4¥%5 S=FAD 

C=6¥77 U=1AF 

D=9A8a1 K=TaAE 

F=AvJIvC X=Kv(9~AH) 

H=TveE 

Equations 

A7=HaAP 

A6 =[K¥ (HA Z)ACFAD AB DI¥ OAB8a I} vy (FA 9} 

v {KK v (H A Z)] A S} 

AS ={KA{(Z =D)a Flv (Za UP v {TA E~ P} 

A4=(KA9OA8) ¥ (TAB) ATA[(On 8) ¥ OA8A FI] 

A3 =X A(KvC) 

A2=Xa(AvC) 

AL ={X a[1a8v Bv5v 7) 

¥f9OARAAA8a Kv (Aa8a(Ta B)} 

Fig. 16.30 Decimal ASCII-128, Plomondon Proposal 

Common expressions 

A=2¥3 N = [9 v 8) a 1] ¥ Oa 8) 

J=4+¥75 R=9A(8=1)AF 

C=6¥7 U=1AF 

F=ArvJIvC W=FvU 

K=TveE D=9A8al 

L=[9¥v 8)a 1] v Oa 8) 

Equations 

A8 =(TAEAW) ¥{Ka[(Fa L) ¥ 9a UD} 

A7T=K”aAW 

A6 ={KA[(FAN)¥ Oa UD} v (Ka {LF a (Z¥ D)] ¥ (Za UB 

AS =(TAB)A (Fa (Z =D) ¥ [ZA U} v {Ea (TAZ) AW 

A4=(8A1)vR 

A3=JI¥C 

A2=AvC 

Al =[Bv5v7)v¥ R]v¥ BALAF) 

Fig. 16.31 Decimal ASCII-256, Plomondon Proposal 

7a0a9
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Common expressions 

A=2v¥3 Q=9al 

J=4¥%5 B=(FA8A90v1) 

C=6v7 P=QvB 

F=AvJv¥C G=[Oa(Fv8)|vB 

H=TvE S=FA9A8A1 

Equations 

A7 =HaP 

A6=[(Ta BE) v (Ha Z)] AP 

AS5={((TaA Z)v (Ea Z)aSbv (Ta Z) v (Tv Z) a Ea GS 

A4=1A[OA8)AQ0A 8a FI] 

A3=JvC 

A2Q=AvC 

Al=B375¥7)¥[8BA(9 ¥ 1)] 

Fig. 16.32 Decimal ASCII-128, Version 1 

Common expressions 

A=2¥3 R=9A8=1AF 

J=4¥%5 U=1AF 

C=6v7 W=FvU 

F=AvJIvC K=TveE 

D=9A8a1 

Equations 

A8=[L1A PF) AGOv8]¥ Mada bv PJ 

A7=K”AW 

A6=[(TA EB) ¥ (KA Z)] AW 

AS =[EA(TAZ) A(Fv Uv {TAB} a {Fa (Z=D)]v (ZA UD} 

A4=(8A1)¥R 

A3=JvC 

A2=AvC 

AL=Bv5v 7] v {FA (8a 1 v OR v {10 9} 

Fig. 16.33 Decimal ASCII-256, Version 2
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Common Expressions 

A=2¥3 

J=4y¥5 

C=6v¥7 

F=AvJ¥C 

H=TveE 

Equations 

AT=HaP 

Q=9al 

B=(FA8)aA(Q9 v1) 

P=QvB 

G=[QaA(Fv8)|v B 

S=FA9A8AI 

AGB =(TAE AP) v{Hal((Za S) v (ZA GJ} 

AS ={(TAZ) v (Ea Za Sbv (Ta Z)v (Tv Za Ea G 

A4=TaAl[Oa 8a 9a 8a F)] 

AZ =JIvC 

A2=AvC 

Al=B3 7577) ¥[BAQO¥ 1] 

Fig. 16.34 Decimal ASCII-128, Version 3 

Common expressions 

A=2¥3 

J=4yv¥5 

C=6¥77 

F=AvJIvC 

D=9aA8al 

Equations 

R=9A(8=1)AF 

U=1aAF 

W=FvU 

H=TvE 

A8=[{A1aAPF)aA Ov] v[La9a Bv FP] 

AT=KAW 

A6=(TAE AW) v¥{KAZa Ul] v[Fa(Zv D)}} 

AS =[EA(TAZ)A(F¥ Uv {TA BJ a[Fa(Z=D)]v (Za UD} 

A4=(8al)vR 

A3=JIvC 

A2=AvC 

Al =[3Bv5v7 7] v {Faia v Dv {1 a 9H 

Fig. 16.35 Decimal ASCII-256, Version 4
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Common 

Proposal Size _ | expressions | Equations} Total 

Prime 128 11 22 32 

256 11 29 40 

Plomondon 128 18 52 70 

Proposal 256 21 38 59 

Version 1 128 17 27 44 

Version 2 256 13 35 48 

Version 3 128 17 30 47 

Version 4 256 13 39 52 

EBCDIC 256 43 110 153           

Fig. 16.36 Counts of Boolean operators 

16.22 ANOMALY OF BOOLEAN EQUATIONS 

Before discussing the comparative complexities, what seems to be an 
anomaly should be explained. For the Plomondon proposals, for Versions 
L and 2, and for Versions 3 and 4, the count of Boolean operators for the 

256-character version is less than the count for the 128-character version, 

whereas the opposite might have been expected. One aspect of the 
optimization of Boolean expressions is that very often the more terms 
‘there are initially, the more combinations and condensations will result. 

And there are more terms initially in the 256-character cases than in the 
128-character cases. 

In the routine work of simplifying Boolean expressions, it is quite 
valid to 

a) treat A A B as AB, 

b) treat Av Bas A+ B, 

c) manipulate the Boolean variables as if they were algebraic variables 
with algebraic operations. 

Thus A v (B A C) can be treated as if it were A + BC. 

Example 

[n the derivation of Version 1 and Version 2, certain terms are found in 

conjunction with T E Z and TE Z.
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Version 1 

(TEZ + TEZ)(F981 + F981 + F981 + F981 + F981 + F981) 

= (T + T)EZ[F(981 + 981 + 981 + 981) + F(981 + 981)] 

= EZ[(F + F)(981 + 981) + F(981 + 981)] 

= EZ[(9 + 9)81 + F9(81 + 81)] 

= EZ[81 + FO(8 + 1)] 

=(ENZ)A(8a Iv (FAI aABbv DI 

to put it back into Boolean form. 

Version 2 

(TEZ + TEZ)(F981 + FO81 + F081 + FO8T + FO81 + FORT 
+ F981 + F981 + F981 + F981 + F981 + F981) 

Inspection reveals that of the 16 possible terms involving F, 9, 8, 1, four 

are absent: 

F981 + F981 + F981 + F981 

We have 
  

(T + T)EZ(F981 + F981 + F981 + F981) 

= EZ[F1(98 + 98 + 98 + 98)] 

= EZ(F1) 

= (E ~ Z) a (FA 1) to put it back into Boolean form. 

  

We see therefore that, although we started with more terms in Version 2 

than in Version 1, after combination and condensation, this part of 

Version 2 requires only three Boolean operators, whereas Version 1 

requires six. 
It is clear that Versions 1, 2, 3, and 4 are less complex than the 

initial Plomondon proposals, and therefore preferable. 
The increments from Decimal ASCII Prime are revealing: 

128 Characters 256 Characters 
  

Prime 32 | Prime 40 

Version 1 44 | Version 2 48 

Version 3 47 | Version 4 52 

For the 128-character versions, the perturbation from Prime to solve the 

Null/Blank/Zero Problem, an increment of 12, was greater than the
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perturbation to solve the Plus and Minus Zero Problem, an increment of 

4. For the 256-character versions, the perturbation to solve the 

Null/Blank/Zero Problem was an increment of 7, while the perturbation 

to solve the Plus and Minus Zero Problem was an increment of 5. And, of 

course, compared to EBCDIC with a Boolean count of 153, these 
increments were really negligible. . 

However, the positions on the standards committees hardened; the 

issue being between minimum complexity versus provision for Plus and 

Minus Zero. 

Plus and minus zero proponents. The increase in complexity to provide 
for Plus and Minus Zero is very small. 

Minimum complexity proponents. Since positive and negative numeric 
fields on punched cards can be provided in other ways than overpunching 

(namely, carry the algebraic sign in a separate card column), no increase 
in complexity is justified, however small. 

Technical issues on standards committees are resolved by the demo- 
cratic process of a majority vote. In this case, the minimum-complexity 
group had more votes, and Version 1 and 2 became the draft American 
National Standard. Version 1 became an approved ECMA Standard. 

16.23 SIC TRANSIT GLORIA DECIMAL ASCII 

As the draft American National Standard moved through the various 
committee levels, users became very concerned. As they saw it, the 
consequences of Decimal ASCII becoming an approved American Na- 
tional Standard were that 

# existing card files would have to be converted to the new card code; 

s §€existing card equipment would have to be modified or replaced with 

new Decimal ASCII card equipment. 

These two consequences would be immensely costly to users and they 
rose in opposition. IBM felt it must support its customers in this matter, 
reversed its position, and also came out in opposition. 

At the X3 level, Decimal ASCII failed to obtain a majority, and was 
deemed to have failed. Ultimately, the ECMA Standard was withdrawn. 

The standards committee turned back to a consideration of the Hollerith 
card code, as will be related in Chapters 17, 18, and 20.





17 
Which 
Hollerith? 

\s described in Chapter 16, the Decimal ASCII Card Code was proposed 
or study at the end of 1963 to ASA Subcommittee X3.2 (now ANSI 
¢3L2). It was initially very successful in the standards committees, but 
echnical controversies arose which delayed its final acceptance. In April 
964, opposition to the draft standard arose in Subcommittee because of 
ts substantial incompatibility with the Hollerith card code in common 
ise. Support for a standard based on the Hollerith card code increased, 
nd in September 1964, Subcommittee X3L2 voted to prepare a draft 

American Standard Hollerith card code. 

While it is correct to say that “the” Hollerith card code was in 
‘common use, in fact there were many versions in actual use, versions 

lifferent between different manufacturer’s equipment, and even different 

rersions on different equipments of the same manufacturers. Which 

tollerith card code to incorporate into the draft American Standard 

yecame the question which vexed Subcommittee X3.2. It took four years 

ind many proposals, submitted by members of Subcommittee X3.2, to 

‘esolve this question. . 

Since there were many versions in common use, it was clear that the 

inal ‘“‘standard”’ version, whatever it was, would necessarily be different 

rom most versions in common use, very possibly different from all of 

hem. It was realized, therefore, that the final standard version would 

mply economic impact both to users and manufacturers of punched card 
squipment. One or another of three economic principles was considered 
»y the members of the standards committee: 

1. To minimize the impact across all users and manufacturers. 

2. To equalize the impact between all users and manufacturers. 

299
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3. To minimize the impact on the users of equipment of a particular 
manufacturer. 

It was clear to the standards committee that no single solution could 

satisfy all principles. 
It should be realized that these economic principles, although they 

undoubtedly influenced the judgments of individual members, were not a 

subject of discussion at the meetings of the committee. Technical factors 
were the subject of discussion. 

17.1 TECHNICAL CRITERIA 

During the earlier committee discussions on candidate card code stan- 
dards, which considered various binary representations as well as versions 
of Hollerith, technical criteria emerged and were formalized by the 
committee. Since some of these criteria were conflicting, no candidate 
card code could satisfy all of them. The criteria that are grouped below 
accordingly as Binary Representation, Decimal ASCU, or Hollerith did 
or did not satisfy the criteria. The word ‘“Hollerith,” in the discussion 
below, is used generically, and covers any or all versions of Hollerith then 

is use. 

17.1.1 Satisfied by Binary Representation, Decimal ASCII, 

and Hollerith 

Criterion 1. The code should represent the full ASCII character set. 
(Note: Some of the Hollerith proposals put before the standards commit- 

tee did not, in fact, satisfy this criterion.) 

Criterion 2. The code should provide for logical and orderly expansion 

to larger sets. 

Comment. Eventually the standards committee realized that until “logical 
and orderly expansion” was defined, this criterion was not useful. It was 

claimed for all candidates that they did satisfy this criterion, but they 

clearly satisfied it in different ways, and according to some particular 
interpretation of the criterion. 

Criterion 3. The code should not decrease the present character storage 
capacity of the card. 

Comment. In fact, no candidate was proposed which violated this criter- 
ion. This criterion was a carryover from codes for other kinds of media, 

where what were called shifted or precedence codes required more than 
one consecutive bit pattern per character. Such a code would decrease the 
character storage capacity of a card, but none such were proposed.
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This criterion would have ruled out the UNIVAC card code which 
had 45 card columns, but actually two tiers per card column, giving a card 
capacity of 90 characters. However, this code was a six-row code, and 
could accommodate a maximum of 64 characters. To extend it to 128 
characters (for ASCII) would have resulted in a twelve-row code, but 

then it would have a capacity of only 45 characters per card. 

Criterion 4. No more than one card column should be used to represent 

one character. 

Comment. This was a criterion intended to rule out shifted or precedence 
codes. 

Criterion 5. Character representation should be independent of card 
column locations. 

Comment. All proposals satisfied this criterion. 

Criterion 6. All hole patterns in the set should require the same number 
of punchable positions. 

Comment. Again, this was a criterion intended to rule out a shifted or 
precedence code. 

Criterion 7. The code must be capable of being implemented in the 
standard card. 

Comment. The “standard card” was (nominally) 3% inches by 73 inches. A 
standards proposal at that time under study by a different standards 
committee implied a card of 33 inches by 83 inches, a size which would 
not have satisfied this criterion. 

17.1.2 Satisfied by Decimal ASCII and Hollerith; 

' Not Satisfied by Binary Representation 

Criterion 8. The code, when punched in a card, should not appreciably 

weaken the card; that is, the code should cause a minimum number of 

holes to be punched. Another way of stating. this is that the code should 
be designed for 

a) minimum hole density per unit area of the card, 

b) minimum hole density per column, and 

c) minimum hole density per row. 

Comment. This is a relative criterion, not an absolute criterion. That is to 
say, it is always possible to consider two candidate card codes and decide 
which satisfies the criterion better. For example, Decimal ASCII and 

Hollerith certainly satisfy it better than a Binary Representation. As is



302 Which Hollerith ? 

discussed in Chapter 16, the Modified Binary Representation satisfied it 

better than the Direct Binary Representation, with respect to the special, 

numeric, and alphabetic characters in columns 2, 3, 4, and 5 of ASCII. 

Criterion 9. The code should be capable of being used with existing 
equipment. 

Comment. “Existing equipment,” of course, accommodated the Hollerith 
card code. The set of 64 hole patterns assigned to columns 2, 3, 4, and 5 

of ASCII (the so-called graphic subset) for Decimal ASCII were the same 
set of hole patterns accommodated by much punched card equipment of 

the time, albeit with different graphic meanings. Thus if care was exer- 
cised within a punched card application to bear in mind the differently 

mapped graphic meanings of Decimal ASCII and Hollerith, it was 

contended that Decimal ASCII could ‘use’? some of the punched card 

equipment of the time. 

Criterion 10. The codes for the numerics should be readily sight 

readable. 

The phrase “readily sight readable” in the above criterion is an 

example of jargon, with a well-understood meaning to members of the 

X3.2 Subcommittee. The phrase “‘sight readable” conveys the meaning of 

readability by human beings, as contrasted with readability by 

input/output card readers. The adverb ‘“‘readily” conveys a qualification, 

as covered in the two examples below: 

Example 1 

The hole patterns assigned to numerics in the Decimal ASCII card code 
were the same as those in the Hollerith card code; that is, punches in card 

rows 0, 1, 2,...,9 for numerics 0, 1, 2,...,9. These would be held to be 

“readily sight readable”’. 

Example 2 

The hole patterns for numerics in the Direct Binary Representation card 

code were as follows: 

Numeric Hole Pattern 
  

0 No punches 

1 1 

2 2 

3 2-1 

4 3 

5 3-1 

6 3-2 

7 3-2-1 

8 4 

9 4-1
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‘hese hole patterns, while certainly “sight readable,” would require 

ither training or mental calculation on the part of the human to associate 

yem with the numerics, so they were held not to be “readily” sight 

eadable. 

7.1.3 Satisfied by Decimal ASCII and Binary Representation; 

Not Satisfied by Hollerith 

‘riterion 11. The code should require minimum translation to and from 

\SCII. 

“omment. This also was a relative criterion, not an absolute criterion. 

“he essential design feature of Decimal ASCII was minimum translation 

o/from ASCII, but in the sense of being less than the translation of 

{ollerith to/from ASCII. Clearly the Direct Binary Representation would 

equire even less translation than Decimal ASCII to/from ASCII. 

17.1.4 Satisfied by Binary Representation; 

Not Satisfied by Decimal ASCII or Hollerith 

Sviterion 12. The code should provide for error detection (parity). 

Comment. In the concept of the Direct Binary Representation where bits 

| through 7 of ASCII would be punched in card-rows 1 through 7 of the 

card, card-rows 12, 11, 0, 8, and 9 would then be available, if needed, for 

yarity-row schemes. With Decimal ASCII and Hollerith, since all 12 card 

‘ows of the card are required for hole patterns of the code, no card rows 

are available for parity schemes. 

17.1.5 Satisfied by Hollerith; 
Not Satisfied by Decimal ASCII or Binary Representation 

Criterion 13. The code should be compatible with the common existing 

standard domestic code (Hollerith). 

Criterion 14. The code should be such as to require the minimum 

1umber of passes in mechanical sorting. 

Comment. By “‘mechanical sorting” was meant the mechanical sorters of 

the day without logic circuitry. Schemes were devised, involving multiple 

passes per card column, to sort Decimcal ASCII and to sort Binary 

Representation, but such schemes would clearly require more than the 

minimum number of passes required by Hollerith. 

Criterion 15. The code should be compatible with international card 

standards. 

Comment. This criterion was not really applicable because, at the time, 

there were no international card standards.
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Criterion 16. The code should preserve the logical arrangement of the 
ASCII columns. 

Comment. The standards committee was never able to agree what, if 

anything, this criterion meant. 

The 16 criteria above, while meaningful in inter-code discussions on 
Hollerith, Decimal ASCII, and Binary Representation, were of no use in 
trying to decide “which Hollerith?’” A survey conducted in November 
1964 of various card equipments provided by eight manufacturers (Bur- 

roughs, CDC, GE, Honeywell, IBM, NCR, RCA, and UNIVAC) showed 

there was complete unanimity on the hole patterns for the alphabetics, 

numerics, the Space character, and six specials . , * / — $ but, for other 

special graphics, there were 21 versions of Hollerith, different to a greater 

or lesser degree. 

The time frame in which the Hollerith discussion began and con- 

tinued is significant. In April 1964, the IBM System/360 computing 

systems were announced, with an 8-bit architecture. Up to that time, 

computing systems had prevailingly been of 6-bit (or homomorphically 

6-bit) architecture. Card-code sets that had consisted of up to 64 charac- 
ters would need to be extended to 128 characters for ASCII, and had 

been extended to 256 characters by the System/360’s code, EBCDIC. 
As well as the problem of different versions of Hollerith, there was 

also the problem that there were no “common existing standard Hollerith 
codes” (Criterion 13) for the control characters of ASCII, and for the 

lower-case alphabetic characters of ASCII. Indeed, ASCII as then pub- 

lished (ASA X3.4-1963) did not have the lower-case alphabetics assigned 

to columns 6 and 7, and many of the control characters were not defined 

specifically. 
However, when the first proposed American Standard Hollerith 

Representation of ASCII was drafted in September 1964, ASA Subcom- 
mittee X3.2 had agreed internally on specific definitions for all 32 control 
characters of ASCII, and had assigned the lower-case alphabetics and five 
special graphics to columns 6 and 7 of ASCII. 

17.2 PROBLEMS OF DECISION 

At this time, or before final approval in 1968, there were eight problems 
(apart from the many extant versions of Hollerith) that made consensus 

on “which Hollerith?” difficult. 

Problem 1 

No commonly used card hole patterns for lower-case alphabetics (al- 
though assignments had been made in EBCDIC for the System/360).
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’roblem 2 

Jo commonly used card hole patterns for the control characters of ASCII 

although about half of these control characters had been assigned in 

4BCDIC). 

7roblem 3 

[wo special graphics, @ (Commercial At) and , (Grave Accent) seesawed 

yack and forth between code positions 4/0 and 6/0 of ASCII at successive 

neetings of ISO/TC97/SC2. A hole pattern for Commercial At was in 

‘common use. The question was whether this hole pattern should be 

issigned to code position 4/0 or 6/0. 

Problem 4 

Graphics for code positions 5/12, 7/12, and 7/14 changed and inter- 

hanged. While none of the various graphics had commonly used card 

10le patterns, two of them were assigned in EBCDIC. 

Problem 5 

There was a continuing debate on whether the final Hollerith card code 

and the EBCDIC card code should or should not be compatible. This was 

complicated by the fact that ASCII had graphics not in EBCDIC, and 

EBCDIC had graphics not in ASCII. 

Problem 6 

Two graphics, — (Logical NOT) and | (Logical OR), were in and out of 

ASCII, and in different code positions of ASCII, at different times 

between 1963 and 1967. Both these graphics had assigned hole patterns 

in EBCDIC. 

Problem 7 

Code position 1/10 at the inception of the Hollerith debate was SS (Start 
of Special), but was subsequently changed to SUB (Substitute). This was 
really an administrative problem, not a code problem, but it did lead to 

different looking code charts. 

Problem 8 

As described in Chapters 4, and 9, the so-called A- and H- duals were 

broadly implemented in different punched card equipment as shown 

below: 

Hole pattern 8-4 8-3 12 12-8-2 0-8-4 
  

A-graphic @ ff & Hf % 
    H-graphic ' = + ) (
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In EBCDIC, the decision had been made to provide unique bit patterns 
and hole patterns for all ten of these graphics, and to replace the 
(lozenge) with the < (less than), as follows: 

Graphic Hole pattern 
  

  

  

  

  

@ 8-4 
# 8-3 

& 12 

< 12-8-4 

% 0-8-4 

‘ 8-5 

= 8-6 

+ 12-8-6 

) 11-8-5 

( 12-8-5 
  

That is to say, the A-graphics (but replacing 4 with <) were assigned 

their existing hole patterns, but the H-graphics were assigned new hole 

patterns. On the standards committee, the same question arose: 

Should the A-graphics retain existing hole patterns and the H- 
graphics receive new hole patterns, or should the H-graphics retain 
existing hole patterns and the A-graphics receive new hole patterns? 

On the standards committee, there were protagonists for the former, and 

protagonists for the latter. Problem 1 was soon resolved (hole patterns for 
lower-case alphabetics), but the other problems were resolved only after 
many discussions and ballots, and were the source of many different 

proposals for a standard Hollerith card code. 

Resolution of Problem 1. In deciding on hole patterns for the lower- 
case alphabetics, two principles were applied: 

A) Each lower-case alphabetic hole pattern should bear some logical 

relationship to the corresponding upper-class alphabetic hole pattern. 

B) The number of holes in lower-case alphabetic hole patterns should 

be minimum.
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The obvious way to apply Principle A was to include the hole pattern for 
the upper-case alphabetic in the hole pattern for the lower-case alphabe- 

tic, and then to distinguish between them by adding a zone punch. 
Indeed, there is no other solution than the addition of a zone punch 

either 0, 11, or 12. In the full set of 256 hole patterns, both the 8-punch 
and 9-punch act as zone punches in some hole patterns. But neither they 
nor indeed any numeric punch 1 through 9 could act as zone punches for 
the alphabetics, since they act as digit punches for the alphabetics. 
Ideally, it would be nice if the additional zone punch could be the same 
additional zone punch forall letters. But this was not possible. We know 

that 

upper-case alphabetics A to I had zone punch 12, 

upper-case alphabetics J to R had zone punch 11, 

upper-case alphabetics S to Z had zone punch 0. 

Available as new zone-punch hole patterns were 12-0, 12-11, 11-0, and 

12-11-0. There were four possible hole patterns, from which three had to 
be chosen. No choice of three would satisfy the ideal condition. 

However, Principle B clearly implied that the three choices should be 
12-0, 12-11, 11-0, and not 12-11-0. The possible choices were 

a toi 12-11 or 12-0, 

jtor 11-0 or 12-11, 

s to Zz 12-0 or 11-0. 

Between these two sets of choices, the actual choice appeared to be quite 

arbitrary—with no technical reasons for or against either choice. 

It was observed on the standards committee that the same choice 

must have been available when designing the card code for EBCDIC. The 

choice for EBCDIC had had to be made, and it was made, admittedly 

arbitrarily, for 

a toi 12-0, 

jtor 12-11, 

s to z 11-0. 

The standards committee decided that, since there was no technical 

reason against this choice for the Hollerith card code, there was no reason 

not to accept the same decision that had been made for EBCDIC. The 
decision was so made by the committee.
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17.3. PROPOSALS 

During the deliberations of the committee, seventeen proposals were 
submitted by various committee members. These proposals were submit- 
ted in the form of committee documents. 

Proposal 1 

On September 11, 1964, the first Proposed American Standard Hollerith 
Representation of ASCII was drafted (document X3.2.3/53). It specified 

hole patterns for all 128 characters* (see Fig. 17.1). What solutions did 

this proposal provide for the eight problems? 

Lower-case alphabetics 

Hole patterns matched EBCDIC hole patterns, as previously described. 
(This problem will not be referred to subsequently in this chapter.) 

Control characters 

The draft standard says 

The de facto Hollerith had not contained the ASCII control charac- 

ters. Since new hole patterns had to be devised for all characters in 
ASCII columns 0 and 1, the hole patterns for these two columns 

were developed with a logical relationship to the ASCII Code. 

Examination of the hole patterns for columns 0 and 1 shows this to 
be true: 

i) Zone-punches 9-12 apply to all of column 0. 

ii) Zone-punches 9-11 apply to all of column 1. 

iii) With the exception of row 0 of columns 0 and 1, all digit-punch hole 
patterns translate to the ASCII low-order four bits on a precise and 

exact BCD basis. 

There was a little problem for row 0 of columns 0 and 1. The “‘logical’’ 

hole patterns to correspond to part (iii) above would have been 9-12 and 

9-11. But these hole patterns were already preempted for graphics I and 
R. As is observed in other sections of this book, this kind of preemption 
(for example 0-9, 12-0-9, 12-11-9, 11-0-9 are also preempted) led to the 

* For a reason that will be given later, some subsequent Hollerith proposals 
specified fewer than 128 hole patterns. One, for example, specified only 43 hole 
patterns!
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b7| 0 9 0 0 1 1 1 1 

  

  

          

    

  

  

  

  

  

  

  

        

        

  

  

b6 0 i) 1 1 0 0 1 1 
b5 0 1 0 1{. Oo]. 1 0 1 

Col 
0 1 2 3 4 5 6 7 

b4b3b2b1 | Row 

NUL DLE SP 0 \O P @ P 
0000 QO $9-12-0 |9-12-11 

8-1 8-1 No Pch 0 8-1 11-7 8-4 |12-11-7 
SOH DC1 ! 1 A Q a q 

0001 1 . 
9-12-1 |9-11-1 1 12-1 11-8 |12-0-1 }12-11-8 
STX DC2 2 B R b r 

0010 2 
9-12-2 |9-11-2 |. & 2 12-2 11-9 |12-0-2 |12-11-9 
ETX DC3 3 C s c 8 

0011 3 , 
9-12~3 |9-11-3 8-3 3 12-3 0-2 |12-0-3 |11-0-2 
EOT DC4 $ TS D T d t 

0100 4 
9-12-4 |9-11-4 | 11-8-3 4 12-4 0-3 |12-0-4 {11-0-3 
ENQ NAK % 5 E U e u 

0101 5 
9-12—5 |9-11-5 | 0-8-4 5 12-5 0-4 | 12-0-5 |11-0-4 
ACK SYN & 6 F v f Vv 

0110 6 
9-12-6 | 9-11-6 12 6 12-6 0-5 |12-0-6 |11-0-5 
BEL ETB ' 7 G W g WwW 

0111 7 
9-12-7 | 9-11-7 8-5 7 12-7 0-6 | 12-0-7 |11-0-6 
BS CAN ( 8 _ # — xX h x 

1000 8 9-12 9-11 
8 8 12-8-5 8 
HT EM ) 9 

1001 9 9-12 9-11 - 
8-1 8-1 11-8-5 9 
LF ss * ; 

10101 10 9-12 9—11 
8-2 8-2 11-8-4 8-2 
VT ESC + ; 

104 17 11 9-12 9-11 
8-3 8-3 12~-8-6 | 11-8-6 
FF FS > < 

11007; 12 9-12 9-11 
8-4 8-4 0-8-3 | 12-8-4 
CR Gs - = 

110174 13 9-12 9-11 
8-5 8-5 11 8-6 
sO RS . > 

11707) 14 9-12 9-11 
8-6 8-6 12~8-3 | 0-8-6 
SL US / ? 

1111 15 9-12 9-11 
8-7 8-7 O-1 8-7               

  

  

Fig. 17.1. Hollerith, Version 1 

hole pattern 8-1 in combination with zone-punch hole patterns also being 
displaced, and these (in both EBCDIC and Hollerith) usually ended up in 
row 0 because they were the hole patterns left over to fill up the code 
positions in row 0. Following this line of reasoning, 9-12-0-8-1 and 9-12- 
11-8-1 were chosen for row 0, columns 0 and 1.



310 Which Hollerith? 

@ and ' 

At this time, in ASCII, ~ (Grave Accent) was in code position 4/0 and @ 
(Commercial At) in 6/0. It is to be noted that @ received its de facto 8-4 

hole pattern. 

5/12, 7/12, 7/14 

At this time graphics ~ | and ~ were in code positions 5/12, 7/12, 7/14, 

respectively. 

EBCDIC/Hollerith compatibility 

This proposal was evidently drafted by a proponent of EBCDIC Hollerith 
compatibility. Except for columns 0 and 1 (see above) all hole patterns 
were compatible, except those shown shaded in Fig. 17.1. The graphics [ " 
|* {} were not incorporated into EBCDIC at that time. Looking back, it 

is not clear why the hole patterns of graphics "— ™ were not chosen to 

be compatible with those of EBCDIC. 

Logical OR, Logical NOT 

The Logical OR, Logical NOT problem (to be described later) had not 

yet surfaced. 

Position 1/10 

Control character SS (Start of Special) was at that time in code position 
1/10 in ASCII. (This problem will not be discussed again until the 
problem actually surfaces.) 

A versus H 

Since the drafter was evidently a proponent for EBCDIC/Hollerith 
compatibility, and since EBCDIC had chosen existing hole patterns for 

the A-graphics, this proposal also did so. 

Comment. At this time, only two criteria were being applied: 

i) Simple translation relationship, Hollerith to/from ASCII, for the 

control characters. 

ii) EBCDIC/Hollerith compatibility as much as possible. 

Proposal 2 

On November 10, 1964, the second proposal was made (document 

X3.2.3/69) by Mr. J. L. Tobin. The proposer chose not to make any
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suggestions with respect to control characters, so he suggested hole 
patterns only for the 94 graphics, and Space. The proposer had analyzed 
the different versions of Hollerith previously referred to, and had counted 

up the number of companies (out of 8) who agreed on a particular hole 
pattern. He had then proposed a “‘consensus” approach as follows: 

Unanimous 8 companies 

Overwhelming 6 or 7 companies 

Substantial 4 or 5 companies 

Little or none 3 or less 

Based on this analysis, the proposer chose the hole patterns shown in 

Fig. 17.2. 

Comments. As might be supposed from the selection scheme, there was 
considerable incompatibility with EBCDIC among the specials. 

This proposal did not receive support in the standards committee. 
At the January 28, 1965 meeting, ASA Task Group X3.2.3 formally 

voted to accept the existing Hollerith hole patterns for Space, the 
alphabetics, 10 numerics, and 6 specials: 

.»*/-$ 

All manufacturers’ equipments provided these. It was at this meeting, 
therefore, that the concept of the “hard-core 43 graphics” emerged and 
was never subsequently objected to. 

Proposal 3 

On November 23, 1964, another proposal was made. The proposer was, 

as in the previous case, wrestling with the problem of criteria. This 
proposer restricted himself to 64 hole patterns, since the maximum 

existing implementation (except for EBCDIC on the System/360) had 
64 hole patterns. The proposer, Mr. E. H. Clamons, presented a rather 

pragmatic set of criteria, as follows: 

Old established codes, IBM 407. 1. 

2. New established codes, IBM BCD. 

3. New established codes, UNIVAC 1004. 

4. Suggested for adoption. 

The proposal is shown in Fig. 17.3. It did not receive support in the 
standards committee.
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b7[ 0 0 0 0 1 1 1 1 
b6 0 0 1 1 0 0 1 1 
bS 0 1 0 1 0 1 0 1 

Col 
0 1 2 3 4 5 6 7 

b4b3b2b1 | Row 

NUL DLE SP 0 @ P \ P 
0000 0 

No Pch 0 8-4 11-7 0-8-1 |12-11-7 
SOH DCL ! 1 A Q a q 

0001 1 
11-8~2 1 12-1 11-8 {12-0-1 112-11-8 

STX pc2 " 2 B R b r 
0010 2 

0-8-7 2 12-2 11-9 |12-0-2 ]12-11-9 
ETX DC3 # 3 Cc S c 8 

0011 3 
8-3 3 12-3 0-2 |12-0-3 }11-0-2 

EOT DCA $ 4 D T d t 
0100 4 

11-8-3 4 12-4 0-3 |12-0-4 |11-0-3 
ENQ NAK % 5 E U e u 

0101 5 
0-8-4 5 12-5 0-4 |12-0-5 |11-0-4 

ACK SYN & 6 F Vv £ v 
01410 6 

12 6 12-6 0-5 |12-0-6 }11-0-5 
BEL ETB ' 7 G W g w 

0111 7 
8-2 7 12-7 0-6 |12-0-7 |11-0-6 

BS CAN ( 8 H x h x 
1000 8 

12-8-5 8 12-8 0-7 |12-0-8 |11-0-7 
HT EM ) 9 I Y i y 

1001 9 
11-8-5 9 12~9 0-8 |12-0-9 |11-0-8 

LF SS * : J Zz 4 Zz 
1010] 10 

11-8-4 8-5 L1l-1 0-9 |12-11-1]11-0-9 

VT ESC + 3 K { k { 
ror] 

12-8-2 |11-8-6 | 11-2 |12-8-7 |12-11-2] 12-0 

FF FS > < L ~ 1 | 

0-8-3 | 12~8-6 11-3 12-8-4 | 12-11-3] 12-8-1   

  

CR GS - = M 7 m } 
1101 13 

11 0-8-6 | 11-4 |11-8-7 | 12-11-4] 11-0 

SO RS . > N A n a 

12-8-3 8-6 11-5 11-8-1 | 12-11-5 8-7   
SI US / ? 0 ° DEL 

0-1 0-8-2 11-6 0-8-5 | 12-11-6                         

Fig. 17.2 Hollerith, Version 2
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b7| 0 0 0 0 1 1 1 1 

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

b6 0 0 1 1 0 0 1 1 
b5 0 1 0 1 0 1 0 1 

Col 
0 1 2 3 4 5 6 7 

b4 b3 b2b1 | Row 

NUL DLE SP 0 @ P \ p 
0000 0 

No Pch 0 8-4 11-7 

SOH DC1 | 1 A Q a q 
0001 1 

11-0 1 12-1 11-8 

STX Dc2 " 2 B R b rt 
0010 2 

| 12-8-4 2 12-2 | 11-9 
ETX DC3 # 3 Cc S c 8 

0011 3 
8-3 3 12-3 0-2 

EOT DC4 $ 4 D T d t 
0100 4 

11-8~3 4 12=4 0-3 

ENQ NAK %, 5 E U e u 
0101 5 

0-8-4 5 12-5 0-4 

ACK SYN & 6 F V f£ v 
01710 6 

12 6 12-6 0-5 

BEL ETB ' 7 G W g w 
0111 7 

8-7 7 12-7 0-6 

BS CAN ¢ 8 H x h x 
1000 8 

0-8-5 8 12-8 0-7 

HT EM ) 9 I Y i y 
1001 9 

0-8-7 9 129 0-8 

LF Ss * : J Zz j Zz 
1010] 10 

11-8-4 8-5 11-1 0-9 

VI ESC + ; K [ k { 
1011/11 

8-2 11-8~-6 11-2 12~8-5 

FF FS >. < L ~ 1 | 
1100] 12 

0-8-3 | 12-8-6 11-3 0~8-6 

CR Gs ~ = M J m } 
1711014 13 

11 12-8-7 11-4 11~8-5 

so RS : > N A n 7 
1410 14 

12-8-3 8-6 11-5 | 11~8-7 

SI US / ? 0 Oo DEL 
117177] 15 > 

0-1 12-0 11-~6 0-8-2                       
  

Fig. 17.3 Hollerith, Version 3
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b7[ 0 0 0 0 1 1 1 1 
b6 0 0 1 1 0 0 1 1 
bS 0 1 0 1 0 1 0 1 

Col 
0 1 2 3 4 5 6 7 

b4 b3 b2b1 | Row 

NUL DLE SP 0 P @ P 
oooo0 O J9-12-0 |9-12-11 

8-1 8~1 No Pch 0 11-7 12-11-7 
SOH Del ! 1 A Q a qd 

0001 1 
9~12—1 |9-11-1 | 11-8-2 1 12-1 11-8 |12-0-1 |12-11-8 
STX DC2 " 2 B R b r 

0010 2 
9-12-2 |9-11-2 8-7 2 12-2 11-9 |12-0-2 |12-11-9 
ETX pc3 # 3 c s c s 

001711 3 
9-12~3 | 9-11-3 8-3 3 12-3 Q-2 |12-0-3 |11-0-2 

EOT pe4 $ 4 D T d t 
0100 4 

9-12-4 | 9-11=4 | 11-8-3 4 12-4 0-3 |12-0-4 |11-0-3 

ENQ NAK % 5 E U e u 
0101 5 

9-12-5 |9-11-5 | 0-8-4 5 12-5 0-4 |12-0-5 |11-0-4 
ACK SYN & 6 F Vv f v 

0110 6 
9-12-6 | 9~11-6 12 6 12-6 0-5 | 12-0-6 ;11-0-5 
BEL ETB ’ 7 G Ww g w 

0111 7 
9~12-7 | 9-11-7 8-5 7 12-7 0-6 |12-0-7 |11-0-6 

BS CAN C 8 H x h x 
1000 8 9-12 9~11 

8 8 12~-8-5 8 12-8 0-7 | 12-0-8 | 11-0-7 

HT EM ) 9 I Y i y 
ioo1;) 9 9-12 | 9-11 

8-1 8-1 11-8-5 9 12-9 0-8 |12-0-9 | 11-0-8 

LF 8S * J Zz 5 z 
1010) 10 9-12 9-11 

8-2 8-2 11-8-4 8-2 11-1 0-9 | 12-11-1] 11-0-9 
Vr ESC + ; K C k { 

tori] 9-12 | 9-11 
8-3 8-3 12-8-6 | 11-8-6 | 11-2 | 12-8-1 | 12-11-2} 11-0 

FF FS : < L ~ 1 7 
1100) 12 7 9-12 | 9-11 

8-4 8-4 0-8-3 | 12-8-4 | 11-3 | 12-8-2 | 12-11-3] 11-8-7 

CR Gs - = M ] m } 
1101!) 13 9-12 9-11 

8-5 8-5 11 8-6 11-4 8-1 | 12-11-4| 12-0 
so RS > N A n | 

117107) 14 9-12 9-11 
8-6 8-6 12-8-3 | 0-8-6 | 11-5 0-8-2 | 12-11-5} 12-8~7 

ST US / 2 0 _ ° DEL 
14474 15 9-12 9-11 12-11-0 

8-7 8-7 0-1 0-8-7 | 11-6 0-8-5 | 12-11-6| 7-8-9     
Fig. 17.4 Hollerith, Version 4 

Proposal 4 

In January, 1965 the fourth proposal was made. It was made by the IBM 

representative, and specified 256 hole patterns. It is shown in Fig. 17.4 in 
ASCII format, and in Fig. 17.5 in EBCDIC format. It was essentially
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Column 0 

G0 

Hole 

Pat.   
Hole Patterns: 

9-12~0-8-1 11 ~— fi3] 0-1 
  

  

  
  

  

  

[2] 9-12-11-8-1 12-11-0 9-11-0-1 Block | Hole Patterns at: 

[3] 9-11-0-8-1 [9] 12-0 [5] 12-11 1 3 1 | Top and Left 

[4] 9-12-11~0-8-1 11-0 2 | Bottom and Left 

[5] No Pch [i] 0-8-2 2 4 3. | Top and Right 

[e]} 12 . [22] 0 4 | Bottom and Right               

Fig. 17.5 EBCDIC (from Hollerith, Version 4) 

EBCDIC, but with the 32 control characters of ASCII assigned to 

columns 0 and 1 of the 8-bit code table. Incidentally, this assignment of 

control characters agreed with that of Proposal 1 (Fig. 17.1).
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EBCDIC at that time had 88 assigned graphics, while ASCII had 94. 
This proposal substituted the ASCII ~ for the EBCDIC ¢ in position 
4/10,* and positioned the six additional ASCII graphics [ ~ ] } { ~ in 
positions 4/9, 6/9, 7/9, 12/0, 13/0, 14/0, respectively, of Fig. 17.5. 

This proposal was accepted (at the time) by ASA Task Group 
X3.2.3, and drafted into a Proposed American Standard Hollerith Rep- 
resentation of ASCII (document X3.2.3/85, 1965 April 14). 

Although ASA Task Group X3.2.3 was by now committed to 

development of a Hollerith standard, the parent ASA Subcommittee 
X3.2 had not relinquished its support for Decimal ASCII, and, at its 
meeting on March 4, 1965, the following motion was passed (10 yes, 

2 no, 6 abstain): 

X3.2 directs X3.2.3 to develop a Decimal ASCII standard, which is 
to be the punched card code for information interchange, and to 
recommend a method of accommodating a 64-character Hollerith 
card code. 

The instruction to find a method to accommodate 64 Hollerith 
characters led to a variety of proposals in Task Group X3.2.3. At the 

subsequent meeting on April 27, 28, 1965, Task Group X3.2.3, wrestling 
with the instruction given by X3.2, passed two motions; one motion 
stating X3.2.3’s judgment that two standards, Decimal ASCII and Hol- 
lerith, are required; the other motion stating X3.2.3’s judgment that both 
these standards should encompass all 128 ASCII characters. Both these 
motions were felt by X3.2.3 to be in consonance with the X3.2 motion. 

However, at the subsequent X3.2 meeting, on April 29, 1965, a 

majority of X3.2 members were either opposed to two standards, or 
opposed to an “‘extended” Hollerith standard (128 characters) per se. 

Proposal 5 

On July 1, 1965, a fifth Hollerith proposal was made by Mr. R. H. Brown 
(see Fig. 17.6). The proposer restricted the set to 64 hole patterns (in the 
spirit of the above-mentioned X3.2 motion). The proposer was a propo- 
nent of assigning existing hole patterns to the H-graphics. 

*The standards committee had not adopted (and still has not adopted) the 
hexadecimal notation for naming the sixteen rows and columns of an 8-bit code 
table. Instead, rows and columns were numbers 0, 1, 2, 3,...,13, 14, 15 and the 
columns/row notation was used for designating code-table positions. In this 
chapter, since in most instances the 8-bit code tables are copies from actual 
standards committee documents, the author also uses the column/row notation, 

instead of the hexadecimal notation.



  

  

    

    

  

    

            

    

    

    

                  

    

    

    

    

17.3 Proposals 

b7 1 1 
b6 0 0 1 1 
b5 0 0 1 

Col 
° 0 1 6 7 

b4b3b2b1 | Row 

NUL DLE @ Pp 
0000 0 

SOH DCcl a q 
0001 1 

STX DC2 b r 
0070 2 

ETX DC3 c 8 
0011 3 

EOT  DC4 d t 
0100 4 

ENQ NAK e u 
0101 5 

ACK SYN £ v 
0110 6 

BEL ETB g w 
0111 7 

BS CAN h x 
1000 8 

HT EM. i y 

1001 9 

LF Ss j Zz 
10101] 10 

VT ESC k { 
7011/11 

FF FS 1 —_ 
1100 12 over- 

line 

cR GS m } 
1101/1] 13 

so RS n | 
1110{ 14 

SL US 0 DEL 
111417 15               

Fig. 17.6 Hollerith, Version 5 

@ and 

      

The graphic for grave accent was at that time in position 4/0. 

5/7, 7/12, 7/14 

The graphics for tilde, overline, and vertical line were at that time in 

positions 5/7, 7/12, 7/14, respectively. 

317
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EBCDIC/Hollerith compatibility 

Because the proposal assigned existing hole patterns to the H-graphics, 

there were many incompatibilities with EBCDIC, as shown by the shaded 
areas in Fig. 17.6. 

Logical OR Logical NOT 

The operations Logical OR and Logical NOT, previously in positions 
7/12 and 7/14, had been replaced by the graphics for overline and vertical 

line. 

1/10 

Control character SS (Start of Special) was still in vogue for position 1/10. 

A versus H 

Existing hole patterns were assigned in this proposal to the H-graphics. 

This proposal was neither rejected nor accepted by Task Group 

X3.2.3 at this time, but was kept under study. It was at this time that the 
A versus H controversy surfaced. 

Proposal 6 

On September 7, 1965, Proposal 6 was made by Mr. L. L. Griffin, 

Chairman of Subcommittee X3.2. 

The proposal embodied the Decimal ASCII Card Code but addi- 

tionally proposed a “Translation Table’? to the hard-core 43 Hollerith 

characters (shown in Fig. 17.7). 

Proposal 7 

On September 14, 1965, Proposal 7 was made by Mr. R. M. Brown. It 
was substantially the same as Proposal 5, but with a difference considered 
to be important by the proposer. The hole patterns of 12-8-2 and 11-8-2 
of Proposal 5 had been replaced by hole patterns 12-0 and 11-0 in 
Proposal 7 (see Fig. 17.8). The widespread practice of overpunching 
numerics by a 12-punch or 11-punch to indicate positive or negative 

numeric fields naturally required that the hole patterns 12-0 and 11-0 be 

included in the set of 64 hole patterns. The proposer pointed out that this 
particular card code was, at that time, a Draft Military Standard. 

As with Proposal 5, Proposal 7 was kept for study by Task Group 
X3.2.3. 

Proposal 8 

On September 15, 1965, Proposal 8 was submitted by Mr. J. L. Tobin. 

Proposal 8 was, in fact, the same as Proposal 7.



  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

17.3 Proposals 

b7 0 1 1 1 1 
b6 0 0 1 0 0 1 4 
b5 0 0 0 1 

Col 
0 1 2 4 5 6 7 

b4b3 b2b1 | Row 

NUL DLE SP ‘ P @ P 
0000 0 

No’ Pch 11-7 
SOH DCI ! A Q a q 

0001 1 
12-1 11-8 

STX DC2 wr B R D r 
0010 2 

12-2 11-9 
ETX DC3 # C 8 C 8 

0011 3 
12-3 0-2 

EOT DC4 $ D T d t 
0100 4 

11-8-3 12-4 0-3 
ENQ NAK % E U e u 

0101 5 
12-5 0-4 

ACK SYN & F Vv f v 
0110 6 

12-6 0-5 
BEL ETB ' G W g w 

0111 7 
12-7 0-6 

BS CAN ( H x h x 
1000 8 

12-8 0-7 
HT EM ) T Y t _y 

1001 9 
12-9 0-8 

LF ss * J Z j Zz 
10101} 10 

11-8-4 11-1 0-9 
VT ESC + K [ k { 

1074141] 11 
11-2 

FF FS ; L ~ 1 _ 
1100 12 over- 

0-8-3 11-3 line 

CR GS = M 7 m } 
14101| 13 

LL 11-4 
so RS N A n | 

1110] 14 
12-8-3 L1-5 

SI US / oO ° DEL 
11444 15 - 

0-1 11-6                         

Fig. 17.7. Hollerith, Version 6 

319 

At the September 14, 15, 1965 meeting of Task Group X3.2.3, 
Decimal ASCII was forwarded to Subcommittee X3.2 as a recommended 

American Standard. Task Group X3.2.3’s opinion was about evenly 
divided between an H-based Hollerith and an A-based Hollerith.
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b7[ 0 0 0 0 1 1 1 1 
b6 0 0 1 1 0 0 1 1 
b5 0 1 0 1 0 1 0 1 

Col 
0 1 2 3 4 5 6 7 

b4 b3 b2b1 | Row 

NUL DLE SP 0 ‘ P @ P 
0000 0 

No Pch 0 0-8-7 | 11-7 
SOH DCl ! 1 A Q a q 

0001 1 
11-0 1 12-1 11-8 

STX DC2 " 2 B R b r 

0010 2 
8-7 2 12-2 11-9 

ETX DC3 # 3 Cc s c 8 
0011 3 

12-8-7 3 12-3 0-2 

EOT DC4 $ 4 D T d t 
07100 4 

11-8-3 4 12-4 0-3 
ENQ NAK % 5 E U e u 

0101 5 
0-8-5 5 12-5 0-4 

ACK SYN & 6 F Vv £ Vv 
0110 6 

8-2 6 12-6 0-5 
BEL ETB ' 7 G W g Ww 

07111 7 
8-4 7 12-7 0-6 

BS CAN ( 8 H X h x 
1000 8 

0-8-4 8 12-8 0-7 

HT EM ) i) I Y i y 
1001 9 

12-8~4 9 12-9 0-8 

LF ss * : J Zz j Zz 
1010] 10 

11-8-4 8-5 li-1 0-9 

VT ESC + 3 K [ k { 
1011 1 

12 11-8-6 | 11-2 | 12-8-5 

FF FS > < L ~ L _— 
1100 12 over~- 

0-8-3 |12-8-6 | 11-3 0~8~6 line 

CR GS - = M ] m } 
1101 13 

il 8-3 11-4 | 11-8-5 

S0 RS . > N A n | 
111710] 14 

12-8-3 8-6 11-5 | 11-8-7 

SI US / ? 0 _ 0 DEL 
1111 15 

0-1 12-0 11-6 0-8-2       
Fig. 17.8 Hollerith, Versions 7 and 8 

Proposal 9 

At the November 3, 4, 5, 1965 meeting of Task Group X3.2.3, an 

attempt was made to appease Decimal ASCII proponents (Hollerith-H 
proponents and Hollerith-A proponents) by incorporating all three card 

codes into a draft American Standards.
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b7{ 0 0 0 0 1 1 1 1 
b6 0 0 1 1 0 0 1 1 
bS 0 1 0 1 0 1 0 1 

Col 0 1 2 3 4 5 6 7 
b4 b3 62 b1 | Row 

NUL DLE SP 0 - P @ P 
0000 0 8-4 

No Pch 0 0-8~7 | 11-7 SYS 
SOH DCL ! 1 A Q a q 

0001 1 12-8-7 
11-0 1 12-1 11-8 

STX DC2 " 2 B R b r 
0010 2 

8-7 2 12-2 11-9 
ETX DC3 #f 3 Cc S c s 

0011 3 8-3 
12-8-7 3 12-3 Q-2 

EOT DC4 $ 4 D T d t 
0100 4 

11-8-3 4 12-4 0-3 
ENQ NAK % 5 E U e u 

0101 5 0-8-4 
0-8-5 5 12-5 0-4 

ACK SYN & 6 F V f v 
0110 6 12 

8-2 6 12-6 0-5 
BEL ETB ' 7 G W g w 

0111 7 8-5 
8-4 7 12-7 0-6 

BS CAN ( 8 H X h x 
1000 8 12-8-5 

0-8-4 8 12-8 0-7 
HT EM ) 9 I Y i y 

1001 9 11-8-5 
12-8-4 9 12-9 0-8 

LF * : J Z j Zz 
1010 10 8~2 

11-8-4 8-5 11-1 0-9 
VT ESC + ; K [ k { 

TOV, 1 12-8-6 11-8-2 
12 11-8-6 | 11-2 | 12-8-5 

FF FS > < L ~ 1 _ 
1100) 12 12-8-4 12-8-2 over- 

0-8-3 | 12-8-6 | 11-3 0-8-6 line 
CR GS - = M J m } 

1101); 13 8-6 0-8-2 
ll 8-3 11-4 | 11-8-5 

SO RS . > N A n | 
11740] 14 0-8-6 

12-8-3 | 12-0 11-5 | 11~8-7 
SI us / 2 0 _ re) DEL 

117211 15 0-8-7 0-8-5 

0-1 12-0 11-6 0-8-6 

A 

H       

Fig. 17.9 Hollerith, Version 9 

The two Hollerith proposals, both specifying 64 hole patterns to 
satisfy the dictate of Subcommittee X3.2, are shown in Fig. 17.9. The 
A-Hollerith version was substantially compatible with EBCDIC.
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The philosophy of appeasing Decimal ASCII, Hollerith-A, and 
Hollerith-H proponents by combining all three card codes into a single 
draft American Standard did not survive. As a result of an X3.2 letter 

ballot on the draft American Standard, Subcommittee X3.2 pared the two 

64-character Hollerith card codes into a single Hollerith card code 
consisting of the “hard core 43” (Fig. 17.7). This Hollerith card code was 
then combined with the Decimal ASCII card code into a single draft 
American Standard. The Hollerith Card Code Table was qualified as an 
“interim representation,” although no time limits were expressed with 
respect to the interim. At the December 7, 8, 9, 1965 meeting of Sub- 

committee X3.2, a recorded vote was taken to forward this draft Ameri- 

can Standard to Committee X3 for further processing. 

In 1965, Decimal ASCII had been approved as an ECMA Standard, 

and in May, 1965, ISO/TC97/SC2 prepared a draft ISO Proposal on 
Decimal ASCII, which was circulated for review and comment. 

In December 1965, Committee X3 issued an X3 letter ballot on 

Decimal ASCII. In June 1966, the X3 ballot result was reported: 

15 affirmative, 

13 negative, 

17 not yet responded. 

X3 declared that it appeared there would not be a consensus for approval 

of Decimal ASCII. An ad hoc committee was established to recommend a 

course of action. The ad hoc committee met on July 28, 1966, and, after 

discussion, recommended the preparation of an American Standard 

“BCD Card Code” (their nomenclature) based on existing Hollerith 

practices, and that 128 hole patterns be assigned. Task Group X3.2.3, 
therefore, once again approached the problem of ‘which Hollerith?” 

Proposal 10 

On August 15, 1966, Proposal 10 (Fig. 17.10) shows the Hollerith Card 

Code prepared in X3.2.3 in response to the X3 directive. It was a 
Proposed American Standard BCD Card Code (document X3.2.3/141). 

Control characters 

For the first time, Hollerith hole patterns compatible with EBCDIC hole 
patterns were assigned in columns 0 and 1. 

@ and~ 

The graphic @ (Commercial At) was now firmly in position 4/0, and 
remained there thereafter. This problem will not be referred to again.
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b70 0 0 0 1 1 1 1 
b6 0 0 1 1 0 0 1 1 
bS 0 1 0 1 0 1 0 1 

Col 0 1 2 3 4 5 6 7 
b4b3b2b1 | Row 

NUL DLE SP 0 @ P = P 
0000 0 §9-12-0 |9-12-11 

8-1 8-1 0 8-4 11-7 8-1 }12~11-7 
SOH pel 1 A Q a q 

0001 1 
9-12-1 |9-11-1 1 12-1 11-8 |12-0-1 |12~11-8 
STX DC2 B R b r 

0010 2 
9-12-2 |9~11-2 8-7 2 12-2 11-9 |12-0-2 |12~11-9 
ETX DC3 # 3 Cc S c 8 

0011 3 
9-12-3 |9-11-3 8-3 3 12-3 O-2_ | 12-0-3 |11-0-2 
EOT DC4 $ 4 D T d t 

0100 4 
9-7 9-8-4 | 11-8~3 4 12-4 0-3 |12-0-4 |[11-0-3 
ENQ NAK 4 5 E U e u 

0101 5 9-0 
8-5 9-8-5 | 0-8-4 5 12-5 0-4 | 12~0-5 |11-0-4 
ACK SYN & 6 F Vv £ Vv 

0170 6 9-0 
8-6 9-2 12 6 12-6 0-5 |12-0-6 |11-0-5 
BEL ETB ‘ 7 G W gz Ww 

0111 7 9-0 
8~7 9-0-6 8-5 7 12-7 0-6 |12-0-7 |11-0-6 
BS CAN C 8 H x h x 

1000 8 
9-11-6 {9-11-8 | 12-8-5 8 12-8 0-7 | 12-0-8 }11-0-7 
HI EM ) 9 T Y i y 

1001 9 9-11 
9-12-5 | 8-1 11-8-5 9 12-9 0-8 |12-0-9 |11~-0-8 
LF SUB * J Z 4 Zz 

1010] 10 
9-0-5 | 9-8-7 | 11-8-4 8-2 12-11-1 
VT ESC + 3 k : 

1011/1 9~12 : 
8-3 9-0-7 | 12-8-6 | 11-8-6 5°] 12-11-2 
FF FS > < 1 

1100] 12 9~12 9-11 
8-4 8-4 0-8-3 | 12-8-4 | 12-11-3 
CR Gs - = 

171017] 13 9~12 9-11 
8-5 8-5 1l 8-6 
so RS > 

1110] 14 9~12 9-11 
8~6 8-6 12-8-3 | 0-8-6 | 11-5 [| 11-8-7 | 12-11-5 
Si US / ? 0 ° DEL 

1177) 15 9~12 9-11 . 7 
8~7 8~7 0-1 0-8-7 | 11-6 0-8-5 | 12-11-6] 9-12-7                         

Fig. 17.10 Hollerith, Version 10 

9/12, 7/12, 7/14 

3raphics \ | and ~ were currently in code positions 5/12, 7/12, 7/14, 
espectively.
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Column 

Hole 
Pat.   

Hole Patterns: 

  

  

  

  

  

  

[1] 9-12-0-8-1 il (i3] 0-1 

[2] 9-12-11-8-1 12-11-0 9-11-0~1 Block | Hole Patterns at: 

[3] 9-11-0-8-1  [e] 12-0 [ts] 12-11 1 3 1 | Top and Left 

[4] 9-12-11-0-8-1 11-0 2 | Bottom and Left 

[s] No Pch [ia] 0-8-2 2 4 3. | Top and Right 

fs] 12 [iz] 9 4 | Bottom and Right               
Fig. 17.11 EBCDIC (from Hollerith, Version 10) 

EBCDIC/Hollerith compatibility 

Although a number of code positions are shown shaded in Fig. 17.10, this 
Hollerith proposal was in fact intended to be entirely compatible with the 

EBCDIC then current. In an Appendix to this Proposed American 

Standard, an EBCDIC code table was shown “to accommodate the
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requirements of 8-bit environments to provide 256 hole patterns.” This 
chart is reproduced in Fig. 17.11. It is to be noted that the columns and 
rows were numbered 0, 1, 2, 3,..., 7, 8, 9, 10, 11, 12, 13, 14, 15, instead 

of the hex notation 0, 1, 2, 3,:..,7, 8, 9, A, B, C, D, E, F. 

a) Graphics [ ]{ and } were shown in Fig. 17.11 in code positions 11/13, 

11/14, 8/11, 9/11, respectively, because they were at that time given 

those EBCDIC code positions in a System/360 programming product 

called Text/360, a text processing program. 

b) Although not at that time actually assigned in EBCDIC, graphics \ ~ 
~ and ~ were shown assigned in Fig. 17.11 in code positions 12/0, 

13/0, and 7/9, respectively. 

Logical OR, Logical NOT 

At this time, Logical OR was in ASCII code position 7/12, and committee 

members were considering that ~ might serve as, or replace, the Logical 
NOT graphic * in PL/I. 

However, a representative of SHARE had stated in a letter that this 

was unsatisfactory. SHARE had stated a requirement that the graphics 
for Logical OR and Logical NOT 

a) be in columns 2, 3, 4, or 5 of ASCII; 

b) not be in any National Use code position. 

A versus H 

The A-graphics were assigned to de facto hole patterns in Proposal 10. 

Position 1/10 

The Substitute character, SUB, had now replaced the Start of Special 

character, SS, in position 1/10 of ASCII. 

Proposal 11 

In August 1966, Proposal 11 was made by the UNIVAC member of 
X3.2.3. It is shown in Fig. 17.12. This proposal was intended to achieve 

EBCDIC compatibility, except for columns 0 and 1. It was proposed that 

the control characters of ASCII be assigned identically in columns 0 and 
1 of EBCDIC as in columns 0 and 1 of ASCII. 

It was recognized that the following graphics were not, at that time, 
assigned in EBCDIC: 

L]i}\>*
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b7f0 0 0 0 1 1 1 1 
b6 0 0 1 1 0 0 1 1 
bS 0 1 0 1 0 1 0 1 

Col 
0 1 2 3 4 5 6 7 

b4 b3 b2 bt | Row 

NUL DLE SP i) @ 
0000 O [9-12-0 |9-12-11 

8-1 8-1 No Pch 0 8-4 
SOH DC1 ! 1 A 

0001 1 
9-12-1 |9-11-1 | 12-8-7 1 12-1 
STX DC2 " 2 B 

0010 2 
9-12-2 | 9-11-2 8-7 2 12-2 
ETX DC3 if 3 Cc 

0011 3 
9-12-3 | 9-11-3 8-3 3 12-3 
EOT DC4 $ 4 D 

0100 4 
9-12-4. | 9-11-4 | 11-8-3 4 12=4 0-3 | 12-0-4 |11-0-3 
ENQ NAK % 5 E U e u 

0101 5 
9-12-~5 | 9-11-5 | 0-8-4 5 12-5 0-4 | 12-0-5 |11-0-4 
ACK SYN & 6 F V £ v 

0110 6 
9-12-6 | 9-11~6 12 6 12-6 0-5 | 12-0-6 |11-~0-5 
BEL ETB ’ 7 G W g W 

0111 7 
-9-12-7 | 9-11-7 8-5 7 12-7 0-6 | 12-0-7 | 11-0-6 

BS CAN ( 8 H X h x 
1000 8 9-12 9=11 

8 8 12-8-5 8 12-8 0-7 | 12-0-8 | 11-0~7 
HT EM ) 9 I Y i y 

100 1 9 9-12 9-11 
8-1 8-1 11-8~5 9 
LF SUB * : 

1010! 10 9-12 9-11 
8-2 8-2 11-8~4 8-2 
VT ESC + 3 

tots) 9-12 9-11 
8-3 8-3 12-8~6 | 11-8-6 
FF FS > < 

1100] 12 9-12 9-11 
8-4 8-4 0-8-3 | 12-8-4 
CR GS - = 

1101 13 9-12 9-11 
8-5 8-5 11 8-6 
sO RS . > 

1410] 14 9-12 9-11 
8-6 8-6 12-8-3 | 0-8-6 
SI us / ? 

TV 1d] 15 9-12 9-11 
8-7 8-7 0-1 0-8-7 | 11-6 0-8~5 | 12-11-6] 7-8-9         

Fig. 17.12 Hollerith, Version 11 

The proposer proposed the following: 

a) Replace ¢ and ! with [ and ] in EBCDIC, that is, assign them to 
EBCDIC code positions 4/10 and 5/10 (see Fig. 17.11). The princi- 
ple proposed here was that the 64 hole patterns assigned to the 
graphics of columns 2, 3, 4, and 5 of ASCII (the so-called basic 

subset) should be the set of hole patterns implemented on IBM’s 029
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Keypunch. EBCDIC code positions 4/10 and 5/10 had assigned hole 
patterns 12-8-2 and 11-8-2. Hence [ and ] should be assigned to 
these EBCDIC code positions. 

b) To resolve the Logical OR, Logical NOT problem, let them retain 
their existing hole patterns 12-8-7 and 11-8-7, but substitute the 
ASCII graphics ! and * for | and ~. Therefore, assign ! and * to 
EBCDIC code positions 4/15 and 5/15, respectively. 

c) Assign \ in EBCDIC code position 6/10 “to fill up the block of 
specials in Quadrant 2 of EBCDIC.” 

d) Since {}|~* and ~ were “paired” (that is, in the same rows) in ASCII 
with [ ] \ @ and * they should be similarly “paired” in EBCDIC, that 
is, assigned to code positions as shown in Fig. 17.13. The concept of 
““pairing’’ here was that, just as there was a single-bit difference for 

“paired” graphics in ASCII, so there should be a single-bit difference 
in EBCDIC. The practical utility of this concept was not revealed by 
the proposer. 

*roposal 12 

\t the same time, the representative of the Department of Defense 
resented Proposal 12, which assigned the H-graphics to the existing hole 
atterns. It is shown in Fig. 17.14. 

Also raised in this proposal was a requirement that hole patterns 
2-0 and 11-0 (to allow for overpunched numerics) be assigned in 
olumns 2, 3, 4, or 5 of ASCII, rather than hole patterns 12-8-2 and 11- 

-2. This created a dilemma. The 12-0 and 11-0 had not been provided 
n IBM’s Keypunch (the 029) because of mechanical problems. So this 
equirement of the Department of Defense would be in conflict with the 
equirement (stated by the UNIVAC representative in Proposal 11 

bove) that the 64 hole patterns assigned to columns 2, 3, 4, and 5 of 

\SCII should be those implemented on the 029. 

‘roposal 13 

Mn October 14, 1966, Proposal 13 was made, a proposed American 
tandard BCD Card Code. It is shown in Fig. 17.15. As with Proposal 10 
bove, it was designed for compatibility with EBCDIC (see Fig. 17.16). 
ilso, an attempt was made to resolve the Logical OR, Logical NOT 
roblem, and the problem of 12-0 and 11-0 raised in Proposal 12 above. 

a) As shown in Fig. 17.16, graphics \ [ and ] were assigned in EBCDIC 
code positions 12/0, 13/0, 14/0, respectively. Since hole patterns 

12-0 and 11-0 are assigned in EBCDIC to positions 12/0 and 13/0,
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Hola 

Pat.   
Hole Patterns: 

[+] 9-12-0-8-1 ll [i3] 0-1 
  

  

  

  

  

  

[2] 9-12-11-8-1 12-11-0 9-11-0-1 Block | Hole Patterns at: 

[3] 9-11-0-8-1 = [9] 12-0 [15] 12-11 1 3 1 | Top and Left 

{4} 9-12-11-0-8-1 11-0 2 | Bottom and Left 

(s] No Pch {a7] 0-8-2 2 4 3. | Top and Right 

{e] 12 {12] 0 4 | Bottom and Right               
Fig. 17.13 EBCDIC (from Hollerith, Version 11) 

this would satisfy the Department of Defense requirement (although 

it was not known how the problem of implementing hole patterns on 

the 029 Keypunch would be resolved). Code position 14/0 in EBC- 

DIC has hole pattern 0-8-2. This was implemented on the 029 

Keypunch, but with no graphic assigned at that time.
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b7[ 0 0 0 0 1 1 1 1 
b6 0 0 1 1 0 0 1 1 
bS 0 1 0 1 0 1 0 1 

Col 
0 1 2 3 4 5 6 7 

b4 53 b2b1 | Row 

NUL DLE SP 0 @ P “ P 
0000 0 {9-12-0 |9-12=11 

8-1 8-1 No Pch 0 8-5 11-7 8-1 |12-11-7 
SOH DC1 { 1 A Q a q 

0001 1 
9-12-1 |9-11-1 | 0-8-2 1 12-1 11-8 |12-0-1 |12-11-8 
STX DC2 " 2 B R B r 

0010 2 
9-12-2 |9-11-2 8-7 2 12-2 11-9 |412-0-2 |12-11-9 
ETX DC3 # 3 C S c s 

0011 3 
9~12-3 | 9-11-3 8-6 3 12-3 0-2 |12-0-3 | 11-0-2 
EOT DC4 $ 4 D T a £ 

0100 4 
9-7 9-8-4 | 11-8-3 4 12-4 0-3 |12-0-4 |11-0-3 
ENQ NAK % 5 E U e u 

0101 5 9-0 
8-5 9-8-5 | 12-8-5 5 12-5 0-4 |12-0-5 |11-0-4 
ACK SYN & 6 F V £ v 

0110 6 9-0 
8-6 9-2 12-8-6 6 12-6 0-5 |12-0-6 |11-0-5 
BEL ETB ‘ 7 G W g Ww 

0111 7 9-0 
8-7 9-0-6 8-4 7 12-7 0-6 | 12-0-7 | 11-0-6 
BS CAN ( 8 H x h x 

1000 8 
9-11~6 | 9-11-8 | 0-8-4 8 12-8 0-7 | 12-0-8 | 11-0-7 
HT EM ) 9 I Y i y 

1001 9 9-11 
9-12-5 | 8-1 12-8-4 9 12-9 0-8 | 12-0-9 | 11-0-8 
LF SUB * : J Zz 5 Z 

1010] 10 12-9 
9-0-5 | 8-2 11-8-4 8-2 11-1 0-9 | 12-11-1] 11-0-9 
VT ESC + 3 K [ k { 

1077] 11 9-12 12-0 
8-3 9-0-7 12 11-8-6 | 11-2 11-0 |12-11-2] 8-3 
FF FS > < L \ 1 | 

1100] 12 9-12 9-11 12-11-0 
8-4 8-4 0-8-3 | 11-8-6 | 11-3 12-0 | 12-11-3]) 8-5 
CR GS - = M J ™ } 

11011] 13 9-12 9-11 12-11 
8-5 8-5 il 8-3 11-4 |12-8-7 | 12-11-4| 8-3 
sO RS > N x n ~ 

1110| 14 9-12 9-11 11-0 
8-6 8-6 12-8-3 | 0-8-6 | 11-5 | 11-8-7 | 12-11-5| 8-5 
SI US [ 2 0 _ oO DEL 

11474 15 9-12 9-11 12-11-0 
8-7 8-7 Q-] Q-8-7. | 11-6 Q-8-5 | 12-11-6| 9-8-7     

Fig. 17.14 Hollerith, Version 12 
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b) The “pairing” concept was then invoked for a new graphic , (a 
broken vertical line) and for { and } to position them in EBCDIC 

code positions 8/0, 9/0, 10/0, respectively. 

c) Similarly, ~ and ~ were “paired” in EBCDIC with * and @, respec- 
tively.
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b7| 0 0 0 0 1 1 1 1 

b6 0 0 1 1 0 0 1 1 

bS 0 1 0 1 1 0 1 

Col 
0 1 2 3 4 

b4b3b2b1 | Row 

NUL DLE SP 0 @ 

0000 0 9-12-0 {9-12-11 

8-1 8-1 No Pch 0 8-4 

SOH DC1 ! | 1 A 

0001 1 

9-12-1 |9-LI-1 | 12-8-7 1 12-1 

STX DC2 " 2 B 
0010 2 

9-12-2 |9-11-2 8-7 2 12-2 11-9 12-0-2 |12-11-9 

ETX DCc3 # 3 C $ c 8 

00141 3 

9-12-3 |9-11-3 8-3 3 12-3 0-2 12-0-3 {11-0-2 

EOT DC4 $ 4 D T d- t 

0100 4 

9-7 9~8-4 | 11-8-3 4 12-4 0-3 12-0-4 | 11-0-3 

ENQ WAK % 5 E U e u 

0101 5 9-0 

8-5 9-8-5 0-8=4 5 12-5 0-4 12-0-5 | 11-0-4 

ACK SYN & 6 F Vv £ Vv 
0110 6 9-0 

8-6 9-2 12 6 12-6 Q-5 12-0-6 | 11-0-5 

BEL ETB ' 7 G W g w 
017111 7 9-0 

8-7 9-0-6 8-5 7 12-7 0-6 12-0~7 | 11-0-6 

BS CAN ( 8 H Xx h x 
1000 8 

9-11-6 | 9-11-8 | 12-8-5 8 12-8 Q-7 12-0-8 | 11-0-7 

HT EM ) 9 I Y i y 
1001 9 9-11 

9~12-5 8-1 11-8-5 9 12-9 0-8 12-0-9 {| 11-0-8 

LF SUB x : J Z j Zz 
1010 10 

9-0-5 9-8-7 | 11-8-4 8-2 11-1 

VT ESC + 3 K 
1011 11 9-12 

8-3 9-0-7 | 12-8-6 | 11-8-6 11-2 

FF FS . < L 

1100 12 9-12 9-11 

8-4 8-4 0-8-3 | 12~-8-4 1i-3 

CR GS - = M 

1101 13 9-12 9-11 

8-5 8-5 ll 8-6 11-4 

sO RS > N 
1110 14 9-12 9-11 

8-6 8-6 12-8-3 0-8-6 11-5 

SI US / ? 0 
17171771 15 9-12 9-11 

8-7 8-7 O-1 Q-8~7 11-6 0-8-5 | 12-11-6| 9-12-7           

Fig. 17.15 Hollerith, Version 13 

d) At this time, it had been proposed to resolve the Logical NOT, 

Logical Or problem in ASCII by assigning ! and | as duals in ASCII 
code position 2/1, and * and “ as duals in ASCII code position 5/14. 
Also, the new graphic | was proposed for ASCII code position 7/12, 

to avoid confusion with the Logical OR graphic |.
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Column 0 

Hole 
Pat.   

Hole Patterns: 

[7] 9-12-0-8-1 ll [13] 0-1 
  

  

  
  

  

  

[2} 9-12-11-8-1 12=11-0 9-11-0-1 Block | Hole Patterns at: 
[3] 9-11-0-8-1 [2] 12-0 [is] 12-11 1 3 1 | Top and Left 

[4] 9-12-11-0-8-1 11-0 2 .| Bottom and Left 

(s] No Pch [11] 0-8-2 2 4 3 | Top and Right 
[e] 12 [12] 0 4 | Bottom and Right               

Fig. 17.16 EBCDIC (from Hollerith, Version 13) 

Proposal 14 

On August 31, 1966, Task Group X3.2.3 met and considered Proposal 
10. Some changes were made that resulted in Proposal 14 (Fig. 17.17),
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67[ 0 0 0 0 1 1 1 1 
b6 0 0 1 1 0 0 1 3 
b& 0 1 0 1 1 0 1 

Co! 
0 1 2 3 4 5 6 7 

b4 63 b2b1 | Row 
NUL DLE SP 0 @ P 

0000 0 |9-12-0 | 9-12-11 
8-1 8-1 No Pch 0 8-4 11-7 
SOH DC1 J I A Q 

0001 1 
9-12-1 |9-11-1 | 12-8-7 1 12-1 11-8 
STX DC2 2 B R 

0010 2 
9-12-2 | 9-11-2 8-7 2 12=2 11-9 |12-0-2 |12-11-9 
ETX DC3 FF 3 Cc Ss c 3 

0011 3 
9-12-3 | 9-11-3 8-3 3 12-3 O~2 | 12-0-3 }11-0-2 
EOT DC4 $ Z D T d E 

0100 4 
9-7 9-8-4 | 11-8-3 4 12-4 O~3 | 12-0-4 | 11-0-3 

ENQ NAK % 5 E U e u 
0101 5 9-0 

8-5 9-8-5 { 0-8-4 5 125 O~4 =| 12-0-5 | 11-0-4 
ACK SYN & 6 F V f v 

01310 6 9-0 

8-6 9-2 12 6 12-6 0-5 |12-0-6 | 11-0-5 
BEL ETB ' 7 G W zg Ww 

0111 7 9-0 

8-7 9-0-6 8-5 7 12-7 O~6 | 12-0-7 | 11-0-6 
BS CAN ( 8 H x h x 

1000 8 
9-11-6 | 9-11-8 | 12-8-5 8 12~8 O-7 | 12-0-8 | 11-0-7 
HT EM } 9 T Y L ¥ 

1001 9 9-11 
9-12-5 | 81 11-8-5 9 12-9 0-8 | 12-0-9 | 11-0-~8 
LF SUB * : J Z j z 

1010] 10 
9-0-5 | 9-8-7 | 11-8-4 8-2 11-1 0-9 | 12-11-1] 11-0~9 
VT ESC + ; K E k { 

101717; 11 9-12 
8-3 9-0-7 | 12-8-6 | 11-8-6 | 11-2 | 12-8-2 | 12-11-2 
FF FS ’ < L eo l tee 

1100] 12 9-12 | 9-11 
8-4 8-4 0-8-3 | 12-8-4 | 11-3 ee | 12-11-3) pager” 
CR GS - = M J m } 

1101/1] 18 9-12 9-11 
8-5 8-5 11 8-6 11-4 
sO RS > N 

1147 07; 14 9-12 9-11 
8-6 8-6 12-8-3 | 0-8-6 | 11-5 
SI us / ? 0 

11117) 15 9-12 9-11 
8-7 8-7 Q=1 0-8-7 1 1-6                   

    

  
  

  

Fig. 17.17 Hollerith. Version 14 

which became a proposed USA Standard.” 

a) Task Group X3.2.3 decided that hole patterns 12-8-2 and 11-8-2 
(implemented on the 029 Keypunch) should be assigned in columns 

* ASA had changed its name to United States of America Standards Institute 
(USASI), and standards were now called “USA Standard...”
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Pat.   
@ Some equipment provides ¢ @May be | 

Hole Patterns: 

  

  

  
  

    

  

[7] 9-12-0-8-1 7] 1 [73] 0-1 @ Some equipment provides ! @ May be ~ 

[2] 9-12-11-8-1 12=11-0 9-11-0-1 Block | Hole Patterns at: 

[3] 9-11-0-8-1 = [2] 12-0 12-11 1 3 1 | Top and Left 

(4] 9-12-11-0-8-1 11-0 2 | Bottom and Left 

[s] No Pch [1] 0-8-2 2 4 3 | Top and Right 

[es] 12 [12] 0 4 | Bottom and Right               

Fig. 17.18 EBCDIC (from Hollerith, Version 14) 

2, 3, 4, or 5 of ASCII, rather than 12-0 and 11-0 (unimplementable 

on the 029 Keypunch). These hole patterns were therefore assigned 

to code positions 5/11 and 5/13, respectively. It was also proposed 
that they be incorporated into EBCDIC as duals for ¢ and ! (see Fig. 
17.18).
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b) It was proposed that EBCDIC show ! and * in code positions 4/15 
and 5/15, respectively, as duals for | and ~. 

c) To ensure that 12-0 and 11-0 (not assigned in columns 2, 3, 4, or 5 

of ASCII) would be assigned somewhere in the set of 128 hole 

patterns, it was proposed that they be assigned to code positions 7/11 
and 7/13. This resulted in their being proposed to be assigned in 
EBCDIC code positions 12/0 and 13/0. 

d) It was proposed that \ be assigned to EBCDIC code position 6/10, 

“to fill up the block of specials in Quadrant 2 of EBCDIC.” This 
resulted in a hole pattern of 12-11, which raised a new problem. The 
12-11 hole pattern was determined to be unimplementable on the 
029 Keypunch. It is to be noted that the implementable hole pattern 
0-8-2 was assigned to ASCII code position 7/12, which resulted in 
the | being proposed to be assigned in EBCDIC code position 14/0. 

e) A significant step was taken in this proposed USA Standard toward 

resolving the Logical OR, Logical NOT problem. It was proposed to 
place in the ASCII standard, and in this Hollerith standard, the 
following wording: 

In specific applications it may be desirable to employ distinctive 

styling of individual graphics to facilitate their use for specific pur- 

poses, as, for example, to stylize the graphics in code-table positions 
2/1 and 5/14 into those frequently associated with Logical OR (|) and 
Logical NOT (). 

This wording which specifically allowed manufacturers to provide | and ™ 

instead of ! and * was accepted as the final resolution of the Logical OR, 

Logical NOT problem. 

Proposal 15 

At the March 1967 meeting of ISO/TC97/SCZ2, it was reported that a 

ballot on Decimal ASCII had resulted in two countries voting ‘““YES,”’ six 

countries voting ‘““NO,” and three countries abstaining. Decimal ASCII 
was therefore officially terminated as an ISO Draft Proposal. 

Three countries had submitted Hollerith card-code proposals. A 
review showed agreement on 124 of the 128 hole patterns, with disagree- 
ment in hole patterns for code positions 5/12, 5/13, 7/12, and 

7/13 as shown in Fig. 17.19. The corresponding result for EBCDIC was 

as shown in Fig. 17.20.
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b7[ 0 0 0 0 1 4 1 1 
b6 0 0 1 1 ) 0 1 1 
b5 0 1 0 1 0 1 0 1 

Colt 6 1 2 3 4 5 6 7 
b4 b3 b2b1 | Row 

NUL DLE SP 0 @ P s D 
0000 0 [9-12-0 | 9-12-11 12-11-0 

8-1 8-1 No Pch 0 8-4 11-7 8-4 |12-11-7 
SOH DCcl ! 1 A Q a q 

0001 1 
9~12—=1 |9-11-1 |12-8-7 1 12-1 11-8 |12-0-1 |12-11-8 
STX DC2 " 2 B R B r 

0010 2 
9-12-2 | 9-11~2 8-7 2 12-2 11-9 |12-0-2 |12-11-9 
ETX DC3 # 3 Cc 8 ¢ Ss 

0011 3 
9-12-3 | 9-11-3 8-3 3 12-3 0-2 | 12-0-3 |11-0-2 
EOT DC4 $ 4 D T d t 

0100 4 
9-7 9-8-4 | 11-~8-3 4 12-4 0-3 [12-0-4 |11-0-3 
ENQ NAK % 5 E U e u 

0101 5 9-0 
8-5 9-8-5 | 0-8-4 5 12-5 Q-4 | 12-0-5 |11-0-4 
ACK SYN & 6 F Vv f v 

0110 6 9-0 
8-6 9-2 12 6 12-6 0-5 | 12-0-6 |11-0-5 
BEL ETB ' 7 G W g w 

01141 7 9-0 
8-7 9-0-6 8-5 7 12-7 0-6 | 12-0-7 |11-0-6 
BS CAN ( 8 H x h x 

1000 8 
9-11-6 | 9-11-8 | 12~8-5 8 12~8 0-7 | 12-0-~8 | 11-0-7 
aT EM ) 9 I Y i y 

100 1 9 9-11 

9-12-5 | 8-1 11~8-5 9 12~9 0-8 {12-0~9 | 11-0-8 
LF SUB * : J Zz j Zz 

1010] 10 
9-0-5 | 9-8-7 | 11-8-4 8-2 11~1 0-9 | 12-11-1] 11~0-9 
VT ESC + ; K [ k { 

10141] 11 9-12 
8-3 9-0-7 | 12-8-6 | 11-8-6 | 11-2 11-0 | 12-11-2] 12-0 
FE FS > < L \ 1 \ 

1100) 12 9-12 9-11 
8-4 8-4 0-8-3 | 12-8-4 | 11-3 12-11-3 
CR GS - = M J m } 

1710 1) 13 9-12 9-11 
8-5 8-5 il 8-6 11-4 12-11~4 
so RS . > N “ n ~ 

1110 14 9-12 9-11 12-11 

8-6 8-6 12-8-3 | 0-8-6 | 11-5 | 11-8~7 | 12-11-5| 8-7 
$I us / 2 0 _ ° DEL 

Part] 9-12 9-11 
8-7 8-7 Q-1 0-8-7 | 11-6 0-8-5 | 12-11-6] 9-12-7               
  

5/12 5/13 | .7/12 7/13 

France 11-8-2 | 0-8-2 11-0 | 11-0+8 

USA 11-0-8-2 | 11-8-2 | 0-8~2 11-0 

  

              
Fig. 17.19 Hollerith, Version 15
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12 [12 | 12 12 
Hole 11 [il 7 il tl fail [— di 
Pat. 0 0 0 0 

5/10 10/10 13/0 14/0 Hole Patterns: 

[t] 9-12-0-8-1 11 [13] 0-1 France \ { i ] 

[2] 9-12-11-8-1 12-11-0 9-11-0-1 USA ] \ } { 

[3] 9-11-0-8-1 [2] 12-0 [15] 12-11 Block | Hole Patterns at: 

[4] 9-12-11-0-8-1 11-0 1 3 1 | Top and Left 

[5] No Pch [1] 0-8-2 2 Bottom and Left 

[6] 12 [2] 0 2 4 3 Top and Right 

4 Bottom and Right               
Fig. 17.20 EBCDIC (from Hollerith. Version 15) 

Proposal 16 

In March 1967, Task Group X3.2.3 prepared another Proposed USA 
Standard Hollerith Punched Card Code (Fig. 17.21). 

a) The problem of 12-11 versus 0-8-2 for code position 5/12, referred 
to under Proposal 14 above, was resolved by assigning 0-8-2 to 
position 5/12.
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b7| 0 0 0 0 1 1 1 1 

b6 0 0 1 1 0 0 1 1 

b5 0 1 0 1 0 1 0 1 

Col 
0 1 2 3 4 5 6 7 

b4b3b2b1 | Row 

NUL DLE SP 0 @ 
0000 0 9-12-0 | 9-12-11 

8-1 8-1 No Pch 0 8-4 

SOH DCl ! 1 A 

000i 1 

9-12-1 {9-11-1 | 12-8-7 1 12-1 

STX Dc2 " 2 B 

0010 2 

9-12-2 | 9-11-2 8~7 2 12-2 

ETX DC3 # 3 Cc 

0071 3 

9-12-3 | 9-113 8-3 3 12-3 0-2 12-0-3 | 11-0-2 

EOT DC4 $ 4 D T d t 

0100 4 

9-7 9-8-4 | 11-8-3 4 12-4 0-3 12-0-4 |11-0-3 

ENQ NAK % 5 E U e u 

0101 5 9-0 

8-5 9-8=5 0-8-4 5 12-5 0-4 12-0-5 | 11-0-4 

ACK SYN & 6 F Vv £ Vv 

0110 6 9-0 

8-6 9-2 12 6 12-6 0-5 12-0-6 | 11-0-5 

BEL ETB ' 7 G W g w 
01411 7 9-0 

8-7 9-0-6 8-5 7 12-7 0-6 12-0-7 | 11-0-6 

BS CAN ¢ 8 H xX h x 
1000 8 

9-11-6 | 9-11-8 | 12-8-5 8 12-8 O~7 12-0-8 | 11-0-7 

HT EM ) 9 I Y 1 y 
1001 9 9-11 

9-12-5 8-1 11-8-5 9 12-9 0~8 12-0-9 | 11-0-8 

LF SUB * : J Z j Zz 
1010 10 

9-0-5 9-8-7 | 11~8-4 8-2 11-1 0-9 12-111] 11-0-9 

VT ESC + 5 K { k { 
10311 11 9~12 

8-3 9-0-7 | 12-8-6 | 11-8-6 11-2 

FF FS ’ < L 

1100 12 9-12 9-11 

8-4 8-4 0-8~3 | 12-8-4 11-3 

CR GS - = M 

1101 13 9-12 9-11 

8-5 8-5 ll 8-6 11-4 

so RS . > N 

1110 14 9-12 9-11 

8-6 8-6 12-8-3 0-8-6 11-5 

ST US / ? 0 

17171 15 9-12 9-11 
8-7 8-7 O-1 0-8-7 11-6 0-8-5 | 12-11-6| 9-12-7   
  

Fig. 17.21 Hollerith, Version 16 

b) All that remained was to assign hole patterns to code positions 7/12 

and 7/14. Task Group X3.2.3 chose (for not very strong reasons) 

hole patterns 0-8-1 and 12-8-1. This resulted in ~ and ~ being 
proposed to be assigned to EBCDIC code positions 4/9 and 5/9, 
respectively, as shown in Fig. 17.22.
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Hole 

Pat.   
Hole Patterns: 

  

  

  
  

  

  

[7] 9-12-0-8-1 ll [13] 0-1 
[2] 9-12-11-8-1 12-11-0 9-11-0-1 Block’ | Hole Patterns at: 

[3] 9-11-0-8-1 [9] 12-0 [5] 12-11 1 3 1 | Top and Left 

[4] 9-12-11-0-8-1 11-0 2 | Bottom and Left 

[S] No Pch [v4] 0-8-2 2 4 3. | Top and Right 
[se] 12 [72] 0 4 | Bottom and Right               

Fig. 17.22 EBCDIC (from Hollerith, Version 16) 

Proposal 17 

As a result of ISO/TC97/SC2 ballots on Proposal 15, final agreement was 

reached, as shown in Fig. 17.23. This proposal, subsequently incorporated 
into a draft USA Standard Hollerith Card Code, was finally approved as a 
USA Standard. The results for EBCDIC are shown in Fig. 17.24.
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b7/ 0 0 0 ) 1 1 1 1 
b6 0 0 1 1 i) 0 1 1 
b5 0 1 0 1 0 1 0 1 

Col 
i) 1 2 3 4 5 6 7 

b4 b3 b2b1 | Row 

NUL DLE SP 0 @ P * P 
oo0o0o 0 |9-12-0 | 9-12-11 

8-1 8-1 No Pch 0 8-4 11-7 8-1 |12-11-7 
SOH DCL ui 1 A Q a q 

0001 1 
9-12-1 |9-11-1 | 12-8-7 1 12-1 11-8 |[12-0-1 |12-11-8 
STX DC2 " 2 B R b x 

0010 2 
9-12-2 | 9-11-2 8-7 2 12-2 11-9 |12-0-2 |12-11-9 
ETX DCc3 Fd 3 Cc s c s 

0011 3 
9-12-3 | 9-11-3 8-3 3 12-3 0-2 | 12-0-3 |11-0-2 
EOT DC4 $ 4 D T d t 

0100 4 
9-7 9-8-4 | 11-8-3 4 12-4 0-3 | 12-0-4 | 11-0-3 
ENQ NAK % 5 E U e u 

0101 5 9-0 
8-5 9-8-5 | 0-8-4 5 12-5 0-4 {12-0-5 | 11-0-4 
ACK SYN & 6 F Vv £ v 

0110 6 9-0 
8-6 9-2 12 6 12-6 0-5 | 12-0-6 | 11-0-5 
BEL ETB ' 7 G W g Ww 

01411 7 9-0 
8-7 9-0-6 8-5 7 12-7 0-6 | 12-0-7 | 11-0-6 
BS CAN ( 8 H x h x 

1000 8 
9-11-6 | 9-11-8 | 12-8-5 8 12-8 0-7 | 12-0~8 | 11-0-7 
HT EM ) 9 T Y i y 

1001 9 9-11 
9-12-5 | 8-1 11-8~5 9 12-9 0-8 {| 12-0~9 | 11-0-8 
LF SUB * : J Zz 5 Zz 

10101] 10 
9-0-5 | 9-8-7 | 11-8-4 8-2 il-1 0-9 | 12-11-1} 11-0-9 
VT ESC + 3 K { k { 

1011] 11 9-12 
8-3 9-0-7 | 12-8-6 | 11-8-6 | 11-2 | 12-8-2 | 12-11-2| 12-0 
FF FS 5 < L \ 1 { 

1100) 12 9-12 9-11 
8-4 8-4 0-8-3 | 12-8-4 | 11-3 O~8-2 | 12-11-3] 12-11 
CR GS = = M 7 ™ } 

11011] 13 9-12 9-11 
8-5 8-5 11 8-6 11-4 |11-8-2 | 12-11-4; 11-0 
So RS > N AT 2 0 ~ 

11107) 14 9-12 9-11 
8-6 8-6 12-8-3 | 0-8-6 | 11-5 | 11-8-7 | 12-11-5] 11-0-1 
SI US / 2 0 _ ° DEL 

147447] 15 9-12 9-11 
8-7 8-7 0-1 0-8-7 | 11-6 0-8-5 | 12-11-6] 9-12-7 

Hole Patterns: 

G] May be | 

[2] May be ~ 

Fig. 17.23 Hollerith, Version 17 

The Hollerith card code had finally been resolved. It subsequently 
became both an ISO Recommendation and an ECMA Standard. The 

ECMA Standard on Decimal ASCII was withdrawn.
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Column 

Hole ll ll   
  

  

  

  

  

  

Pat. 0 

Hole Patterns: @ May be | 
[7] 9-12-0-8-1 [7] 11 [3] 0-1 @ May be 

[2] 9-12-11-8-1 12-11-0 9-11-0-1 Block | Hole Patterns at: 

[3] 9-11-0-8-1 [2] 12-0 [is] 12-11 1 3 1 | Top and Left 

[4] 9-12-11-0-8-1 11-0 2 | Bottom and Left 

(s] No Pch [1] 0-8-2 2 4 3. | Top and Right 

[e] 12 {r2] 0 4 | Bottom and Right               

Fig. 17.24 EBCDIC (from Hollerith, Version 17) 

Two further problems arose in the Hollerith Card Code with respect 
to the assignment of the Katakana graphics and with respect to the 

Alphabetic Extenders. These problems are discussed in Chapters 18 and 21, 

respectively.



18 
Katakana 

and the Hollerith 
Card Code 

The Japanese written language, like the Chinese written language, is 
ideographic; that is to say, each word is represented by an ideograph. 
There are thousands (estimates run to 50,000, and higher) of ideographs. 

In the early days of data processing in Japan, it was quite impractical to 
provide these thousands of symbols on either a printing or display device. 

18.1 KATAKANA SYMBOLS 

Instead, a set of 47 phonetic symbols was used. These symbols are called 
Katakana symbols (long used in Japan). The Katakana symbols, and the 
sounds* they represent, are shown in Fig. 18.1. 

These 47 basic Katakana symbols were assigned in EBCDIC in 1964 
as shown in Fig. 18.2. 

18.2 KATAKANA IN PTTC 

These 47 basic Katakana were implemented on IBM products using the 
88-graphic PTTC code, as identified below and shown in Fig. 18.3. 

Alphabetics 26 
Numerics 10 

Katakana 47 

Specials ., —- *y JS 

88 

*This book is not the place to go into the use of the “voiced-sound symbol,” the 
“semi-voiced sound symbol,” or “small Katakana.” 
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Shape Name Shape Name 

P A N HA 
4 I b HI 
9 U 7 FU 
I E A HE 
4 0 ih HO 

b KA 2 MA 
+ KI = MI 
2 KU ds MU 
y KE x ME 
a KO E MO 

tf SA P YA 
y SHI 
z SU 1 YU 
PR SE 
y SO 3 YO 

a TA 3 RA 
F CHI y RI 
y TSU bp RU 
F TE L RE 
b TO o RO 

t NA 9 WA 
= NI y N 
x NU 
R NE * Voiced Sound Symbol 
J NO e Semi-voiced Sound Symbol! 

Fig. 18.1 Basic Katakana-47 

coum] o | 1 [| 2 | 3 a|{s[e| 7 alojfal|e c|ofel| r 

Bit 00 a1 10 114 

Pat oo | 01 10 11 oo | 01 10 11 oo | 01 10 11 oo | 01 10 11 
Row 

0 {0000 y 

1 |0001 ? 4q 

2 |0010 f F \ 

3 |0011 % y ik 

4 |0100 I tr Y 

5 |0101 4 b = 

6 |0110 p t 4 

7 |011% + = d 

8 1000 4 R £ 

9 |1001 2 Pp 

A [10170 q J 2 L 

B [1011 g 

c |1100 ty 3 9 

D {1101 v Nn 3 D 

— |1110 za t y ‘ 

F 1114 p 2 v ° 
  

Fig. 18.2 EBCDIC basic Katakana-47 
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Lower Case Upper Case 

Panag A B BA A B BA 

SP ‘ if \ SP ° - * 

1 x a z 5 1 x J A 

2 2 h / 3 é S K B 

21 P d y y 3 L C 

4 9 t t y 4 U M D 

41 I E = 4 5 V N E 

42 A ¥ 3 N 6 W 0 F 

421 P tt g + 7 Xx P G 

8 1 y 3 2 8 Y Q H 

8 1 3 y a = 9 Z R I 

8 2 2 0 

8 21 t R v W 0 : b 

84 

84 1 

842 

8421 

Block | Hole Patterns at: 

1 3 1 Top And Loft 

2 | Bottom and Left 

2 4 3 Top and Left 

Fig. 18.3 Katakana-88 4 | Bottom and Lett                   

18.3. KATAKANA IN EBCDIC 

Subsequently, 16 more Katakana symbols were introduced (see Fig. 
18.4). They are called small Katakana and Katakana punctuation sym- 

bols. These 16 Katakana symbols, and the 47 described previously, are 

shown coded in EBCDIC in Fig. 18.5: 16 Katakana symbols in 

columns 4 and 5, and 47 Katakana symbols in columns 8, 9, A, and B. 

Shown in Fig. 18.6 are the 88 EBCDIC symbols assigned at that 

time. It is to be observed that 26 of the Katakana symbols co-map into



Fig. 18.4 Small Katakana 

Shape Name 

Katakana full stop 

Katakana.opening bracket 

Katakana closing bracket 

Katakana comma 

Conjunctive symbol 

Katakana particle 

a 

ya 

yu 

yo 

tsu 

Prolonged sound symbol 

and Katakana Punctuation Symbols 

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

coum] o | 1 | 2 | 3 a {os |e6| 7 efsfals c | o[e | e 

Bit 00 01 10 11 

Pat. 
Row oo | 01 to | 41 oo | 01 10 | 11 oo | o1 10 | 11 | 00} 01 40 |] 71 

o Jooo0 y 

1 0001 ° L P 2 

2 |o010 [ 4 q F \ 

3 40011 d P 4 ih 

4 10100 . 2 I T XY 

5 |0101 3 4 b = 

6 [0110 7 9 dD t & 

7 Jovi ? + = a 

8 |1000 4 _ 2D x E 

9 )1001 9 5 a P 

A |1010 4 7 i Lv 

B [1071 o 

c |1100 tf 4 9 

Dp |1101 y N 3 y 

E |1110 za t y ‘ 

e |14%1 b 2 Ib ° 
                      
Fig. 18.5 Katakana-63 in EBCDIC 
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Column| 0 | 1 2 3 4 | 5 6 7 8 9 A B c D E | F 

Bit 00 01 10 11 

Pat. "| 
Row oo | 01 10 1 oo | 01 10 11 oo | 01 10 14 oo |] 01 10 11 

0 |oo00 SP & - 0 

1 [0004 / a j A J 1 

2 |o010 b k s B K s 2 

3 {0011 c 1 t Cc L T 3 

4 |0100 d m u D M U 4 

5 {0101 e n Vv E N v 5 

6 [0110 f£ ° w F 0 W 6 

7 [0111 g Pp x G P xX 7 

8 |1000 h q y H Q Y 8 

9 |1001 i r Zz I R Z 9 

A |1010 ¢ ! 

B 11011 . $ > if 

c |1100 < * 4 @ 

D }1101 ( ) _ ' 

—E |1110 + : > = 

F [1411 | 7 ?                                         

Fig. 18.6 EBCDIC-88 

the same EBCDIC code positions as the small Latin alphabetics. This was 
not a problem at the time, since there were no data processing applica- 

tions calling for the use of both Katakana symbols and small Latin 
alphabetics. Subsequently, a problem arose, which will be described. 

18.4 JISCIl 

In 1968, the Code Standardization Committee of the Information Proces- 

sing Society of Japan was preparing a draft Japanese Industrial Standard 

Code for Information Interchange (JISCII). JISCII was to be based on the 
ISO 7-Bit Code, but would be an 8-bit code. It is shown in Fig. 18.7, with 

the 94 graphics of the ISO 7-Bit Code in columns 2 through 7 and the 63 
Katakana symbols in columns 10 through 13. The control character KS in 
code position 10/0 stands for Katakana Space. 

It was observed, that in JISCII, the small Latin alphabetics and the 

Katakana symbols had unique code positions, whereas, as has been noted 

earlier, they co-map in EBCDIC. Therefore a one-to-one translation 
relationship between the 256 JISCII code positions and the 256 EBCDIC 

code positions was not possible.
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Column] 0 | 1 | 2 | 3 4 | 5 | 6 | 7 8 | 9 | 10 14 12 | 13 | 14 | 15 

Bit. 00 01 10 11 

Row Par] oo | 01 | 10 | 11 | oo |} o+ | 10 | 11 | 08 | o1 | 10 7 11 | OO} 01 | 10 |] 41 

o |0000 sp 0 @ P * P KS - a = 

1 |o0001 | 1 A Q a q ° P F 4 

2 |0010 " 2 B R b r r 4 y a 

3 |0014 # 3 Cc 8 ¢ 8 J 9 > E 

4 |o100 $ 4 D T d t : T b P 

5 |0101 % 5 E U e u x t i 

6 |0110 & 6 F V £ v 7 a = 4 

7 }0111 ' 7 G WwW g w ? + x 3 

8 |1000 ( 8 H X h x 4 2 z y 

9 |1001 ) 9 I Y i y 9 y ? Ib 

10 |1010 * : J Z j z I 4 N v 

Ww j1014 + ; K [ k ri 4 ¥ Cc g 

12, [1100 , < L ¥ 1 P y 2 2 

13, 111701 - = M 7 m } 1 z “\ y 

14111170 . > N . n ~ a e it 

16 41111 / ? oO _ o | DEL 9 y 2 ° 

Fig. 18.7 JISCII 

It was foreseen that the requirement would come to translate EBC- 
DIC to/from JISCII. Clearly, there were only two possibilities; either 
change EBCDIC or change JISCII, so that a one-to-one relationship was 
possible. The probability seemed low that, working through IBM rep- 
resentatives to the Japanese Code Standardization Committee, the Com- 
mittee would change JISCII. Therefore a decision was made to change 
EBCDIC with respect to the Katakana symbols. 

18.5 JISCil, HOLLERITH, AND EBCDIC 

At this time, the International Code Standards Committee, 

ISO/TC97/SC2, was working on the standardization of the Hollerith Card 

Code (which they called the Twelve-Row Card Code), and had accepted 
the requirement to standardize 256 hole patterns. Since it seemed likely 
that the 256 hole patterns of the EBCDIC card code would be the 256 
hole patterns selected for the 256-character Hollerith Card Code, rela- 

tions between three codes, JISCII, Hollerith, and EBCDIC, occupied the 

attention of ISO/TC97/SC2.
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18.6 OBJECTIVES FOR THE HOLLERITH CARD CODE 

Objectives were set for the standardization of the Hollerith Card Code. 

Objective 1. 256 hole-patterns should be provided, to meet the needs of 
8-bit computer manufacturers. 

Objective 2. The assignment of hole patterns to control and graphic 
meanings should be as compatible as possible with existing assignments 
on 6-bit and on 8-bit computers. 

Objective 3. The needs of countries using non-Latin alphabets, as well 
as the needs of countries using Latin alphabets, should be given consider- 

ation. 

Objective 4. The translation of the Hollerith hole patterns to the 
EBCDIC bit patterns should be as simple as possible. 

Objective 5. The translation of the Hollerith hole patterns to the bit 
patterns of ISO-8 (the 8-bit expansion of the ISO 7-Bit Code) should be 
as simple as possible. 

Objective 6. The collating sequence of an alphabet should be code 
independent. 

Comment. It was recognized in ISO/TC97/SC2 that it was not possible to 
achieve all these objectives. In particular, Objectives 4 and 5 are not 
mutually achievable. 

18.7 ASSUMPTIONS FOR THE HOLLERITH CARD CODE 

Some assumptions were accepted by ISO/TC97/SC2. 

Assumption 1. The set of 256 Hollerith hole patterns shown in Fig. 18.8 

should be used.” 

Assumption 2. The structure of ISO-8 would be as follows (see Fig. 

18.9): 

a) The embedment algorithm would be E8 = 0; that is, the 128 charac- 

ters of ISO-7 would be embedded contiguously in the first 8 columns 
of the 16-by-16 code table. 

b) Columns 8 and 9 would be reserved for future assignment of control 
characters. For purposes of reference, these code positions are desig- 

nated KO through K31. 

*This set of 256 hole patterns was also the starting point for the EBCDIC card 
code (Fig. 11.3).



  
Fig. 18.8 256 hole patterns 
  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

                                        

cum] oft |2tsl¢«leslel7,e«,e[o[ul2]sfuw]s 
Bit | 00 01 10 11 

now  } go | or | 10 | 11 | 00 | 01 | 10 | 11 | 00 | 01 | 10 | 11 | oof 01 f 10] 44 

o joooo} NUL | DLE| SP ) @ P p | KO | Ki6] NO | Ni6| N32] N48 Go | G16 

1 [00017 SOH| Dc1| ! i A Q a q | Kl | K17— NL | NL7| N33] N49} G1 | G17 

2 |o0010) STX| DC2} " 2 B R b x | K2 | KLI8[N2 | N18] N34/ N50] G2 | G18 

3 Joo11} ETx| Dc3|] # 3 Cc s ce s | K3 | KL9}N3 | NLO | N35} N51 }G3 | G19 

4 {0100} KOT] Dc4] $ 4 D T d t | K4 | K20] N4 | N20] N36] N52] G4 | G20 

5 |0101) ENQ| NAK] % 5 E U e u [5 | K21)N5 | N21] N37] N539G5 | G21 

6 |0110} ACK] SYN] & 6 F Vv f£ vy | K6 | K22}N6 | N22 | N38) N54 5 G6 622 

7 }0111] BEL| ETB] ¢ 7 G Ww g w | RK7 | K239N7 | N23 | N39| N55]G7 | G23 

8 |1000] BS | CAN] ( 8 H x h x | K8 | K24,N8 | N24] N40] N56] G8 | G24 

9 {1003] Hr | EM ) 9 I Y i y |KO | K25] NO | N25] N41] N57}-G9 | G25 

10 |10107 LF | suB| * J Zz 4 z | K10 | K26] N1O | N26} N42) N58] G10 | G26 

110 |1011} VE | ESC] + 3 K [ k { | 11 | K27 |] N11 | N27 | N43] N59] G11 | G27 

12 |1100/ FF | FS , < L \ 1 | | R12] K28} N12 | N28 | N44] N60] G12} G28 

13 |11017 cR | GS - = M J m™ } | X13 | K29] NL3 | N29 | N45 | N61] G13 | G29 

14 |1170] so | RS > N “ n “~ 7 K14 | R30] N14 | N30] N46 | N62] G14 | G30 

15 (1117 st | us / 2? 0 _ o {| DEL § K15{ K3L 9 N15 | N31 | N47 | N63 9 G15} G3l 

Fig. 18.9 Structure of ISO-8 
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c) Columns 10 through 13 would be reserved for future assignment of 
non-Latin alphabets. For purposes of reference, these code positions 
are designated NO through N63. 

d) Columns 14 and 15 would be reserved for future assignment of 
special graphics. For purposes of reference, these code positions are 
designated GO through G31. 

Assumption 3. In countries with non-Latin alphabetic (Katakana, Cyril- 
lic, etc.), programming language source statements would use capital Latin 
alphabetics, but normal data processing applications could use the non- 

Latin alphabetics. 

Assumption 4. If small non-Latin alphabetics are required (as in Cyrillic, 
for example), they can be co-mapped into the same code positions as the 

small Latin alphabetics, if necessary. 

Comment. What was assumed here was that there would be no data 
processing application requiring four alphabets—the small and capital 
Latin alphabets and small and capital non-Latin alphabets. 

Assumption 5. The gross collating sequence for the Katakana symbols, 
small Katakana and Katakana punctuation symbols collating low to basic 
Katakana symbols, could be reversed in the future, if necessary. 

Comment. One of the proposals described later did invoke this assump- 

tion. 

Assumption 6. The collating sequence of non-Latin alphabetics should be 
the same in ISO-8 and in EBCDIC. 

Assumption 7. Non-Latin alphabetics should be self-contiguous in ISO-8, 
but need not be so in EBCDIC. 

Some criteria, arising from Hollerith Card Code practices and im- 

plementations of that time, were agreed to by ISO/TC97/SC2. 

Criterion 1. The hole patterns long associated with Space, numerics, 
capital alphabetics, and many specials, should be used. 

Criterion 2. The hole patterns already associated with small alphabetics 
in some manufacturers’ card equipments should be used. 

Criterion 3. The hole patterns associated with certain control characters 

(NUL, HT, DEL, BS, DC3, LF, ETB, ESC, EOT, SUB) in some 
manufacturers’ card equipments should be used. 

Comment. EBCDIC is structured so that the first 4 columns are for 

control characters and the last 12 columns are for graphic characters. 

ISO-8 (Fig. 18.9) is structured so that columns 0, 1, 8, and 9 are for
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control characters; columns 2 through 7 and 10 through 15 are for 
graphic characters. 

Criterion 4. The same set of 64 hole patterns should be used for control 
characters in both ISO-8 and EBCDIC. The same set of 192 hole 
patterns should be used for graphic characters in both ISO-8 and 
EBCDIC. 

Comment. The folding characteristics of printer control units for 
EBCDIC-based computing systems should be incorporated because it 
would facilitate the provision of Latin, Katakana, and Cyrillic subsets on 
printers. 

Comment. Due to an anomaly, the simple 64-for-controls/192-for- 

graphics correspondence between ISO-8 and EBCDIC described in 

Criterion 4 above cannot exist precisely. The Delete character is in the 

control character section of EBCDIC, but in column 7 of ISO-8 (there- 

fore not in the control columns of ISO-8). To put it another way, only 63 

of the control positions in columns 0, 1, 8, and 9 of ISO-8 can correspond 

to the control positions in columns 0 through 3 of EBCDIC. The 64th 

control position of ISO-8 (whatever it may be) must correspond to a 

position in the graphic columns, 4 through F, of EBCDIC. The conse- 

quence of this realization is described later. 

Criterion 5. Given that Katakana (and Cyrillic) were to be reassigned in 
EBCDIC, folding* capability should be available in the revised EBCDIC. 

Comment. Following accepted conventions, the 16 columns and 16 rows 
of the EBCDIC code table are numbered according to the hexadecimal 
convention, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F, whereas the 16 

columns and rows of ISO-8 are numbered 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 

11, 12, 13, 14, 15. 

18.8 DEVELOPMENT OF THE HOLLERITH CARD CODE 

Given the Objectives, Assumptions, and Criteria above, development of a 

256-character Hollerith Card Code proceeded in ISO/TC97/SC2. 

Criteria 1, 2, and 3 essentially prescribed the Hollerith hole patterns 
for the 94 graphics, for Space, for Delete, and for 9 control characters 

(NUL, HT, BS, DC3, LF, ETB, ESC, EOT, SUB) of columns 0 through 
7 of ISO-8. 

*As will be described later, this “folding” criterion came into conflict with the 
collating sequence of Katakana, and conflicting proposals were made to 
ISO/TC97/SC2.
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Considering the remaining 23 control characters in columns 0 and 1 
xf the ISO 7-Bit code, it was observed, under Criterion 4, that zone- 

yunch combinations of 9, 9-0, 9-11, and 9-12 were used in columns 0 

through 3 of EBCDIC, but with zone-punch combinations of 9-12-0, 9- 

12-11, 9-11-0, and 9-12-11-0 in row 0 of these columns. It was realized 

chat the closest approach to Objective 5 (translation simplicity, Hollerith 
to/from ISO-8) could be achieved if the digit punches were associated 
within rows with the BCD low-order four bits of the 8-bit bit patterns. 
Accordingly, assignments were made as shown in Fig. 18.10. 

Observe that, with the exception of hole patterns for DLE and SYN, 
the BCD relationship is fairly good. The hole pattern 9-12-11-8-1 was 
one of the four in row 0, columns 0 through 3 of EBCDIC, and had to go 
somewhere in ISO-8. It is not obvious, in retrospect, why 9-2 was 
assigned to SYN. 

This now left the following 31 hole patterns from columns 0 through 
3 of EBCDIC, to be assigned to columns 8 and 9 of ISO-8 under 
Criterion 4. (Of course, 32 hole patterns were needed, but the anomaly 

  

  

  

  

  

  

  

  

Low-|Column-> 0 1 

order} Row 

4 bits J 

0000 0 DLE 9-12-11-8-1 

0001 1 SOH  9-12-1 DCi_ 9-11-1 

0010 2 STX 9-12-2 DC2 9-11-2 

OO11 3 ETX 9-12-3 

0100 4 DC4 9-11-4 

0101 5 ENQ_ 9-0-8-5 NAK 9-8-5 

0110 6 ACK  9-0-8-6 SYN 9-2 

0111 7 BEL  9-0-8-7 

1000 8 CAN 9-11-8 

1001 9 EM 9-11-8-1 

1010 10 

1011 11 VT 9-12-8-3 

1100 12 FF 9-12-8-4 FS 9-11-8-4 

1101 13 CR 9-12-8-5 GS 9-11-8-5 

1110 14 SO 9-12-8-6 RS 9-11-8-6 

1111 15 SI 9-12-8-7 US 9-11-8-7         

Fig. 18.10 Hole patterns, columns O and 1
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(see Comment on Criterion 4) would play a role here.) 

9. 11-0-8-1 

9-0-1 

9-0-2 

9-0-8 9-12-11-0-8-1 

9-0-8-1 9-1 

9-0-8-2 9-11-8-2 

9-0-8-3 9-3 

9-0-8-4 9-4 

9-12-8-1 9-5 

9-12-8-2 9-6 

9-12-8-3 9-12-8 

Following the same BCD translation rule described above, these were 

assigned to columns 8 and 9 of ISO-8, as shown in Fig. 18.11. 

Observe that, with the exception of hole patterns assigned to K13, 

K14, K15, K23, K28, and K29, the BCD relationship is about as good as 

it can be, given the hole patterns available for columns 8 and 9 of ISO-8. 

  

  

  

  

  

  

  

          

Low- |Column-> 8 9 

order| Row 

4 bits- 1 

0000 0 KO = 9-11-0-8-1 K16 9-12-11-0-8-1 
0001 1 Ki = 9-0-1 K17 9-1 

0010 2 K2 9-0-2 K18 9-11-8-2 

0011 3 K3 9-0-3 K19 9-3 

0100 4 K4 9-0-4 K20 9-4 
0101 5 K5—-9-11-5 K21 9-5 

0110 6 K6 = 9-12-6 K22 9-6 
0111 7 K7 = -9-11-7 K23 9-12-8 

1000 8 K8 9-0-8 K24 9-8 
1001 9 K9 9-0-8-1 K25 9-8-1 

1010 10 K10 9-0-8-2 K26 9-8-2 

1011 11 K11  9-0-8-3 K27 9-8-3 

1100 12 K12 9-0-8-4 K28 9-12-4 

1101 13 K13  9-12-8-1 K29 9-11-4 

1110 14 K14 9-12-8-2 K30 9-8-6 

1111 15 K1i5 9-11-8-3 K31 

Fig. 18.11 Hole patterns, columns 8 and 9
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18.9 THE 64th HOLE PATTERN 

For a hole pattern for K31, the anomaly (see Comment to Criterion 4 

above) now came into play. All 64 hole patterns from columns 0 through 3 

had been assigned to the Delete character and to 63 of the 64 control 

positions in columns 0, 1, 8, and 9 of ISO-8. Where was the 64th hole 

pattern to come from? 

Column 9 

Hole 

Pat.   
Hole Patterns: 

  

  

  

  

  

  

[4] 9-12-0-8-1 [3] 

[2] 9-12-11-8-1 9-11-0-1 Block | Hole Patterns at: 

[3] 9-11-0-8-1 [2] fs) 1 3 1 | Top and Left 

[4] 9-12-11-0-8-1 2 | Bottom and Left 

[5] [a1] 2 4 3° | Top and Right 

[s] fr] 4 | Bottom and Right             
  

Fig. 18.12 Control characters in EBCDIC
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Eventually after much discussion, ISO/TC97/SC2 chose the hole 
pattern 9-11-0-1, which comes from EBCDIC hex position E1. 

Incidentally, the assignment of hole patterns for columns 0, 1, 8, and 

9 in ISO-8 now dictated where the 23 control characters in columns 0 and 
1 of ISO-7 (not previously assigned in EBCDIC) and the 32 control 
character positions (KO through K31) in columns 8 and 9 of ISO-8 should 

be assigned in EBCDIC. This is shown in Fig. 18.12. 
As described earlier, EBCDIC had been revised with respect to the 

positioning of the Katakana graphics. This was made known to the 
standards committees. During the discussions on the committees, it 
became apparent that Criterion 5, the “folding” criterion, would come 
into conflict with the collating sequence of Katakana. 

18.10 EXAMPLES OF FOLDING 

In order to appreciate the significance of the criterion on folding, four 

examples are given. 

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  
  

  
  

  

  

  

cum ofa telelelelel?l*lelelelel>l*]+ 
Bit 00 01 10 11 

Row Pat oo | o1 | 10 | 11 |] oO} 01 10 | 11 | oo | ot | 10 | 11 | oo | 01 |] 40 |] 11 

0 j0000 sP & - uv 0 

1 |0001 / P 4a A J 1 

2 }0010 4 ¥ \ B K Ss 2 

3 0011 9 y if c L T 3 

4 |0100 I T v D M U 4 

5 10101 4 b = E N v 5 

6 |ot10 a y b F 0 W 6 

7 jot + = a G P x 7 

8 |1000 2 Bs t H Q Y 8 

9 |1001 5 Eg P I R Z 9 

A [1010 ¢ ! : a ) 1 U 

B [1011 . $ ¥ > # a 

c |1100 < * a @ t 3 9 

po [1104 ( ) _ ' y N | 3 y 

E |1110 + ; > = za t u 

Foiaii | 7 2 " p 7 Wu                                         
Fig. 18.13 EBCDIC Latin and basic Katakana
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Example 1 

The 47 Basic Katakana symbols, the 26 capital Latin alphabetics, the 10 
numerics, 26 specials, and the Space character, as then assigned in 

EBCDIC, are shown in Fig. 18.13. 
If the two high-order bits of the 8-bit bit patterns are dropped, it will 

be observed, as shown in Fig. 18.14, that the 26 Latin alphabetics, the 10 

numerics, the 26 specials, and the Space character “fold” into a 6-bit 
tableau. This dropping of the two high-order bits and the 6-bit resultant 

tableau to ‘‘address”’ printing positions on a line printer is precisely what 

a printer control unit can easily do. Then, if the graphic shapes shown in 

Fig. 18.13 are actually in the addressed printing positions of the print 

element (which could be a print chain, or a print train, for example), the 

appropriate EBCDIC graphics will be printed when the appropriate 

EBCDIC bit patterns are sent to the printer control unit. 

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

ot em 00 01 10 11 

0000 SP & - 0 

0001 A J / 1 

0010 B K s 2 

0011 c L t 3 

0100 D M U 4 

0101 E N v 5 

0110 F oO W 6 

0111 G P x 7 

1000 | H Q Y 8 

1001 I R Z 9 

1010 ¢ ! WS 

1011 . $ ; # 

17100 < * % @ 

1101 C ) _ ' 

1110 + ; > = 

1111 | - ? "                 
Fig. 18.14 Folded Latin-63
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Example 2 

As a further example, if the bit patterns for the 47 Basic Katakana 
symbols, for the 10 numerics, for the following 6 specials 

¥ > * ~ / 

and for the Space character are sent to the printer control unit, the 

dropping of the two high-order bits yields a folded Katakana set, as 
shown in Fig. 18.15. Again, if these graphic symbols are in the addressed 

printing positions of the print element, this Katakana subset will be 
printed. 

Observe, then, that the printer control unit has performed the identi- 

cal operation on both the Latin set and the Katakana set—drop the two 
high-order bits, and address the resultant 6-bit bit patterns to printing 
positions on the print element. The two print elements are, of course, 

  

  

    
  

  

  

  

  

  

  

  

  

  

  

  

    
  

  

Oe ern a0 01 10 11 

5 

0000 SP y - 0 

0001 ? a / 1 

0010 4 5 A 2 

0011 9 y if 3 

0100 I z 2 4 

0101 + b = 5 

0110 h t b 6 

0111 # - x 7 

1000 2 y E 8 

1001 5 z P 9 

1010 a / 1 v 

1011 . ¥ ’ 4 

1100 5 * 3 9 

7701 y n 3 2 

1110 z E i “ 

14114 t 2 ly °                 

Fig. 18.15 Folded Katakana-64
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different, but they have a common characteristic—the appropriate graphic 
is in the appropriate printing position on the print element. 

Example 3 

A somewhat more complex folding is required to provide 48-character 
printing sets. The first part of the process in the printer-control unit is the 
same, the dropping of the two high-order bits of the 8-bit bit patterns. 
But, additionally, in the resultant 6-bit tableau, rows with low-order 

4-bits equal to 1010, 1101, and 1111 are blocked. The three 6-bit bit 

patterns 011110, 101110, and 111110 are also blocked. The 48 positions 
then addressed to the printing positions of the print element are 
designated by X in Fig. 18.16. 

Referring back to Fig. 18.13, it can be seen that this 48-character 
folding yields the 48-character folded Latin set shown in Fig. 18.17. 

  

  

    
  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

Bittern 00 01 10 14 

N 

0000 SP Xx x Xx 

0001 X x x x 

0010 x x x x 

0011 X Xx Xx X 

0100 X X X X 

0101 x X X x 

0110 X X X Xx 

01114 X x x x 

1000 X Xx X Xx 

10014 x Xx x Xx 

1010 

1011 X x X Xx 

1100 x x x x 

1101 

1110 x 

1411                 
Fig. 18.16 48-character printing positions



  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

                  

  

  

  

  

  
  

  
  

  

  

  

  

  

  

  

  

  

          

  

                                      
  

Pattern 00 01 10 11 

0000 SP & _ 0 

0001 A J / 1 

0010 B K s 9 

0011 c L qT 3 

0100 D M U 4 

0101 E N Vv 5 

0110 F 0 W 6 

0111 G P x 7 

1000 H Q XY 8 

1001 I R Zz 9 

1010 

1011 $ ; # 

1100 < * % @ 

1101 

1110 + 

1111 

Fig. 18.17 EBCDIC folded Latin-48 

coum] o | 1 | 2 | 3 [5 [6 | 7 e][ ofa] s ce] of e| 

Bit 00 01 10 11 

Row Pay] oo | o1 | 10] 11 oa | 01 10 | 11 oo | 01 to | 41 | GO} 01 10 | 11 

0 |0000 SP - H 0 

41 [0001 / 1 A 1 

2 |oo10 A M y 2 

3 [0011 5 H nat 3 

4 10100 u 0 B 4 

5 10101 Zi nl b 5 

6 |0110 E A bl 6 

7 |0111 ob P 3 7 

8 |1000 r c Ww 8 

9 |1001 X T 3 9 

A |1010 

B [10171 cs ’ 4 

ce |1100 * VW UW b 

p [7101 

E |1110 H 

F {1111 

Fig. 18.18 EBCDIC Cyrillic-48 
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txample 4 

[he 32 large Cyrillic alphabetics, as then assigned in EBCDIC, are shown 
n Fig. 18.18. Applying the 48-character folding process yields the 32 
arge Cyrillic alphabetics, the 10 numerics, and the following 6 specials, 

CS ’ * 7 / 

is shown in Fig. 18.19, where CS stands for Currency Symbol. 

  

  

    
  

    
  

  

  

  

  

  

  

  

  

    
  

  

  

Pattern 00 01 40 11 

0000 SP H - 0 

0001 oO J / 1 

0010 A M y 2 

0011 5 H Hi 3 

0100 L 0 B 4 

0101 A A b 5 

0110 E A ; 6 

0111 ah P 3 7 

1000 r C uw 8 

1001 X T 3 9 

1010 

1011 . cs ; 4 

1100 U * ly b 

1101 

1110 Y 

4111                 

Fig. 18.19 Folded Cyrillic-48 

18.11 KATAKANA COLLATING SEQUENCE 

As stated in Assumption 2(c), the non-Latin alphabetics would be as- 

igned to columns 10 through 13 (Fig. 18.9). The proposal made to ANSI 
X3L2 at this time met this assumption. However, the proposal had two 
tharacteristics: (1) the 47 basic Katakana symbols would be assigned to
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cum] of a1t2[slelele]7lelelal#lel°]=*|- 
Bit | oo 01 10 11 

Row Par oo | 01 | 10 | 11 oo} 01 io | 41 oo | o1 10 | 11 | oo} o1 10 | 11 

o |0000 NO N32 

1 10001 Nl N10 N48 N56 

2 |o0010 N2 NLL | N19 | N49 N57 

3 70071 N3 N12 | N20 | N50 N58 

4 10100 N4 N13 | N21 | N51 N59 

5 10101 N5 N14 | N22 | N52 N60 

6 |0170 N6 N15 | N23 | N53 N6L 

7 [0111 N7 | N16 | N24 | N54 N62 

8 |1000 N8 N17 | N25 | N55 N63 

9 |1001 NO | N18 | N26 

A |1010 N27 | N33 | N37 | N42 

B |1011 N43 

¢ |1100 N28 N38 | N44 

D }1101 N29 | N34 | N39 | N45 

E |1110 N30 | N35 | N40 | N46 

Fo 114114 N31 | N36 | N4l | N47                                         
Fig. 18.20 Proposed revised EBCDIC non-Latin 

positions N1 through N47, and the small Katakana and Katakana punctu- 
ation symbols would be assigned to positions N48 through N63;* (2) the 

assignment of these non-Latin code positions into EBCDIC was not only 
noncontiguous (which was acceptable under Assumption 6), it was also 
not in correct collating sequence, as shown in Fig. 18.20. 

*It is interesting that the proposal to change the gross collating sequence of the 

Katakana symbols in ISO-8 implied that JISCII should also be modified accord- 

ingly. As was stated earlier in this chapter, it had been reckoned that JISCII could 
not be changed, but nevertheless an attempt was being made here, indirectly, to 

make that change happen.
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Column| 0 | 1 2 3 4 | 5 6 | 7 8 | 9 | A | B c | D | E | F 

Bit 00 01 10 11 

Row Par oo | o1 | 10 | 47 | 06 | 01 | 10 4 11 | oo | 01 | 10 | 11 | OO} 01 | 10 4 411 

0 |o000 sP | - N32 0) 

1 |o0001 Nl | NIO} / 1 

2 |oo10 n2 | n11 | N19 2 
3 {0013 N3 | N12 | N20 3 

4 |0100 N4 | N13] N21 4 

5 |0101 N5 | N14} N22 5 

6 | 0110 N6 | N15 | N23 6 

7 [0111 N7 N16 | N24 7 

8 |1000 N8 | N17] N25 8 

9 {1001 NO | N18] N26 9 

A |1010 N27 | N33 | N37 | N42 

B |1011 . ¥ ’ N43 

c |1100 * N28 N38 | N44 

D {1101 N29 | N34 | N39 | N45 

— ]1110 N30 | N35 | N40 | N46 

Fo f14a1 N31 | N36 | N4i | N47                                       

Fig. 18.21 Proposed revised EBCDIC Katakana 

Comment. The rationale put forward to justify the proposed change in 
the Katakana gross collating sequence was as follows. The small 
Katakana and Katakana punctuation symbols had been provided on data 
processing equipment by few if any manufacturers, so both had been used 
little (if at all) in user applications. In any event, if it was necessary for 
some user application, to provide the “correct” collating sequence for all 
53 Katakana symbols, then it was a fact that manufacturers, in their 
system sorting programs, provided easy methods for a user to achieve any 
-ollating sequence whatsoever, regardless of the native collating sequence 
of the CPU. 

The intent behind the proposal was to preserve the folding capability 
n EBCDIC for Katakana and Cyrillic printing sets. Figure 18.21 shows
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how the 47 basic Katakana symbols would, under the proposal, be 
repositioned in EBCDIC (compare with Fig. 18.13). Figure 18.22 shows 
the folded 64-character Katakana set derivable from this EBCDIC posi- 
tioning (compare with Fig. 18.14). 

  

  

    
  

  

  

  

  

  

  

  

  

  

  

  

  

  

              

b 

o000 SP N32 - 0 

0001 Nl N10 / 1 

oa70 N2 NLL N19 2 

0011 N3 N12 N20 3 

o100 N4 NL3 N21 4 

0101 N5 N14 N22 5 

0110 N6 N15 N23 6 

0114 N7 N16 N24 7 

1000 N8 N17 N25 8 

1001 No N18 N26 9 

10140 N27 N33 N37 N42 

1011 . x > N43 

1100 N28 * N38 N44 

1101 N29 N34 N39 N45 

1110 N30 N35 N40 N46 

1111 N31 N36 N41 N47     
Fig. 18.22 Proposed revised folded Katakana-64 

18.12 CYRILLIC IN EBCDIC 

Figure 18.23 shows how the 32 capital Cyrillic alphabetics would be 
repositioned in EBCDIC under the proposal (compare with Fig. 18.18). It 
should be noted that the first 26 capital Cyrillic alphabetics would go into 
EBCDIC positions N1 through N26, while the 27th through the 32nd 
capital Cyrillic alphabetics would go into EBCDIC code positions N28, 
N30, N32, N38, N43, and N44. The 48-character folded Cyrillic set 

resulting from the EBCDIC positioning is shown in Fig. 18.24 (compare 
with Fig. 18.19).



  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

                                      

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

        

  

  

cum of 1tatesl[elelel7lelelalelel»= lel 
BE 00 01 10 14 

Row Pay oo | o1 | 10 | 14 | oO | o1 | 10 | 11 | 00 | 01 | 10 | 11 | 08 | 01 | 10 | 14 

0 |0000 SP - N32 0 

1 [0001 N1 | N1O} / 1 

2 |o0010 N2 | N11 | N19 2 

3 |oo11 w3 | wi2 | w20 3 

4 |0100 N4 | N13 | N21 4 

5 [0104 NS | N14 | N22 5 

6 |o1to N6 | N15 | N23 6 

7 |o111 N7 | N16 | N24 7 

8 |1000 N8 | N17] N25 8 

9 {100% N9 | N18 | N26 9 

A 11010 

B {1011 cs ’ N43 

c |1100 * N28 N38 N44 

5 1101 

E |1110 N30 

F |1114 

‘ig. 18.23 Proposed revised EBCDIC Cyrillic 

Pattern —___——+ 00 01 10 11 

9000 SP N32 - 0 

0007 NL N10 / 1 

0010 N2 Nil N19 2 

0011 N3 N12 N20 3 

0100 N4 N13 N21 4 

017101 N5 N14 N22 5 

0110 N6 N15 N23 6 

0111 N7 N16 N24 7 

1000 N8 N17 N25 8 

1001 No N18 N26 9 

1010 

1011 cs ; N43 

1100 N28 * N38 N44 

17101 

1110 N30 

1711                 

Fig. 18.24 Proposed revised folded Cyrillic-48 
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18.13 THE U.S.A. PROPOSAL 

The proposal for a revised EBCDIC had been put forward to the U.S.A. 
code standards committee X3L2. Subsequently, X3L2 proposed it to 
ISO/TC97/SC2, where it became known as the “U.S.A. Proposal.” 

It was realized that the “incorrect”? gross collating sequence for 

Katakana in the proposed revised EBCDIC was not a serious “defect,” 
since any collating sequence whatsoever could be provided by sort 
programs. Nevertheless, this defect disturbed people, and an alternate 
proposed revised EBCDIC came forward in France. 

18.14 THE FRENCH PROPOSAL 

The essence of the “French Proposal,” as it came to be known, was that 

the coding positions NO through N63 and GO through G31 in ISO-8 (see 
Fig. 18.9) should be assigned consecutively (though not contiguously) in 
the 94 remaining code positions of EBCDIC. This is shown in Fig. 18.25. 

  

  

  

  

  

  

  

  

  

  

  

    

  

  

  

  

  

  

  

coum] o | 1 | 2] 3 a | s |e] 7 ej] 9 [als c{ ofe| r 

Bit | 00 01 10 11 

Row Per oo | o1 | 10 | 11 | OO] O1 10 | 11 | 00 | 01 10 | 11 | OO} O1 10 | 11 

0 |0000 N26 | N35 | N42 | N49 | N56 

1 {0001 NO | NO N27 N57 

2 |oo10 NI | NLO | N18 | N28 N58 

3 |0071 N2 } NIL} N19 | N29 N59 

4 |0100 N3 | N12 | N20] N30 N60 

5 |o104 N4 | N13 | N21| N31 | NOL 

6 |}0110 NS N14 | N22] N32 N62 

7 Jo1tt N6é | N15] N23] N33 N63 

8 {1000 N7 N16] N24] N34 GO 

9 |1001 N8 | N17] N25 Gl 

A |1010 N36 | N43 | N50 | G2 | G8 | G14 | G20 | G26 

B {1011 N37 | N44 | N51 | G3 | G9 | G15 | G21 | G27 

c 11100 N38 | N45 | N52] G4 | GLO] G16 | G22 | G28 

D {1101 N39 | N46] N53} GS | G1i| G17 | G23 | G29 

&€ {1110 N40 | N47 | N54 |].G6 | G12] G18] G24 | G30 

Fo.4111 N41 | N48 | N55 | G7 | G13] G19} G25] G31                                         

Fig. 18.25 Alternate proposed revised EBCDIC
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18.15 FOLDING VERSUS COLLATING 

Two points can be made with respect to the alternate proposed revised 
EBCDIC: (1) the collating sequence of Katakana (and, indeed, of any 
non-Latin alphabet correctly sequenced in ISO-8) would be maintained in 
EBCDIC, and (2) there would be no way whatsoever to set up a simple 

folding algorithm for either 48-character or 64-character sets from the NO 
through N63 code positions.in EBCDIC. 

These two aspects—collating sequence (the French proposal) and 
folding capability (the U.S.A. proposal)—came to characterize the two 
proposals in discussions on the standards committees. Eventually, the 
French proposal won more adherents in ISO/TC97/SC2, and it was 
adopted. 

It should be borne in mind that the objective of the standards 
committees was not to standardize a revised EBCDIC (although it might 
seem so from the previous discussion) but to standardize a 256-character 
Hollerith Card Code. There was, perhaps, a realization that, regardless of 

whether it was called the EBCDIC card code, or the Hollerith Card Code, 

or the Twelve-Row card code, it should be the same. For example, the 

hole pattern 12-1 should be the hole pattern for the alphabetic A and the 
hole pattern 12-8-5 should be the hole pattern for the “left parenthesis” 
in all these card codes. 

18.16 THE HOLLERITH CARD CODE, FINAL VERSION 

In any event, a one-to-one correspondence had now been established 

between the 256 bit patterns of EBCDIC and the 256 bit patterns of 
ISO-8. Given this correspondence, what remained to be done to specify 
the 256-character Hollerith Card Code was quite mechanical. The al- 

gorithm was as follows: 

" Take an EBCDIC bit pattern; 

"take its associated EBCDIC hole pattern; 

"associate this hole pattern with the ISO-8 bit pattern corresponding 

to the EBCDIC bit pattern; 

"Do this for all 256 EBCDIC bit patterns. 

The final result is shown in Fig. 18.26. This reflects the notation in Fig. 
18.9, where the control characters and graphic characters shown in 
columns 0 through 7 of that figure are used in Fig. 18.26, and the 
position-designators KO through K31, NO through N63, and GO through 
G31 in columns 8 through 15 of that figure are also used in Fig. 18.26.



366 Katakana and the Hollerith Card Code 

  

  

    
  

      

    

Hole Hole 

Pat. | 12 12 | 12 12 | 12 12_ | 12 12 |, Pat 
Ll Li [11 | 2) 11 fir fu | 

Q Q Q 0 Q Qt 9 

& - o jsp | f } | N26]N8 | N17/}N25 | ~ ) N35} N42 | N49.1 N56] 8-1 

11 Aq dg / 1 a | ji ~ (N57 [SOH |} DCL | KL |K17 {NO [NO | K3L | N27 1 
  

2 B K 5 2 b k s |N58 ]STX |DC2}]K2 | SYN |) NL | N10 | N18 | N28 2 
  

3 c L T 3 c 1 t |N59 | ETX | DC3 |} K3 | K19 |}N2 | N11 | N19 | N29 3 
  

4 D M U 4 d m u | N60] K28 |] K29 | K4 | K20]N3 {N12 | N20 | N30 4 
  

5 E N Vv 5 e n. v |N6i 7 HT | K5 | LF K21 | N4 | N13 | N21 | N31 5 
  

6 F 0 W 6 f£ ° w |N627K6 | BS | ETB | K22|N5 | N14 | N22 | N32 6 
  

7 G P xX 7 g P x | N63 | DEL | K7 ESC | EOT | N6 | N15 | N23 | N33 7 
  

@/ulaqiyx{eat|{n=tqaé=isdy jceo [23 |can}K8 |K24|N7 | N16 | N24 | N34] 8 
  

2h r}eRtizgtstofaif-er | 2 jet }xi3}]em {xo | x25] nut] DLE] Ko | x16} 8-1 
  

8-2 C 7 \ : N36 | N43 |N50 |G2 | K14 | K18 | K10 | K26|G8 | G14 | G20 | G26 | 8-2 
  

8-3 . $ ’ # |N37)N44 [N51 ]G3 | VT | KL5 | Kil | K27 {G9 | G15 | G21 | G27 | 8-3 
  

8-4 < * hs @ |N38]N45|N52|G4 | FF | FS |} K12 | DC4 | G1O | G16 | G22 | G28 | 8-4 
  

  

  

  

  

    
                                        

  

8-5 ( ) _ ' 1N39|N46]N53|G5 [CR | GS | ENQ | NAK | G11 | G17 | G23 | G29 | 8-5 

8-6 + : > = 1N401N47!/N54]GCG6 7 SO | RS | ACK] K30] G12] G18 | G24 | G30] 8-6 

8-7 | “ ? " | N41 | N48 ]N55|1G7 [SI | US | BEL] SUB | G13 | G19 | G25 | G31 | 8-7 

7 9; 9 tT oT of ot ot of 9 
. 12 12 | 12 12 

Hole 11 11 | 11 [11 
Pat. 0 0 0 0 

2 Block | Hole Patterns at: 
  

1 Top and Left 
  

  
2 | Top and Right 
              3 Bottom and Right 
  

Fig. 18.26 256-character Hollerith card code 

18.17 REVISED KATAKANA IN EBCDIC 

The final revised Katakana for EBCDIC is shown in Fig. 18.27 (compare 
with Fig. 18.5). The original EBCDIC Katakana (Fig. 18.5) had been 
implemented on the IBM System/360, and was also implemented on the 
IBM System/370. The revised EBCDIC Katakana of Fig. 18.27 was 
implemented on the IBM System/3. 
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Column of 1] 2] 3 a|[s|s6]| 7 e}|2|ale c]poje|r 

Bit | oo 01 10 11 2 

Pat.” 
oo o1 190 vw 00 a1 10 V1 ae 01 10 V1 aq 01 10 v1 

Row 

0 joo000 q T Nn b y 

1 {0001 9 ty Ww 
- af 

2 10010 ° I 4 y U 

3 [00171 f a yg Zz o 

4 10100 J P I P 9 

5 |0101 ’ a q y » 

6 }0110 . 3 fj 8 ‘ 

7 0111 3 y + F ° 

8 |1000 ? _ 2 4) 

9 |1001 t P vi) 

A [1010 k E x 
-—4 

B [1011 + 2 E 

c |1100 = A p | 

D 1101 z ih 2 

E |1110 x z 3 

F Jt111 ) = 5 1                                         
Fig. 18.27. Final revised EBCDIC Katakana 

It was considered at that time that there would be a data interchange 
problem if users wanted to interchange the Katakana data between a 
System/3 and a System/370, or if a user wanted to migrate from a 
System/3 to a System/370, which has greater capabilities, and still use the 
System/3 Katakana data bases. As it turned out, there was little or no 
user interchange of Katakana data between System/3’s and System/370’s. 
Additional capabilities were provided for the System/3 itself over the 
years, so that there was little or no user migration from System/3’s to 

System/370’s. In short, neither of the two potential problems 

materialized.





19 
What 

Is aCPU Code? 

19.1 INTRODUCTION 

Central Processing Unit (CPU): The unit of a computing system that 
includes the circuits controlling the interpretation and execution of in- 
structions. 

What is a CPU Code? To answer this question by saying that a CPU 
code is the code used by a CPU answers the letter but not the spirit of the 
question. A CPU inputs, manipulates, processes, and outputs data in 
many shapes and forms. It is not uncommon to view a character code as 
being the only code form of significance to a CPU. But many other code 
forms—packed decimal, signed numerics, binary numbers, floating-point 

numbers, bit strings, and so on—are processed and manipulated by a CPU. 
The question would have been more meaningful if it had been 

What are the attributes of a character code, the presence or absence 

of which would cause the code to be categorized as a viable or 

nonviable CPU code? 

As a preliminary to answering the question, the attributes of codes of 
more limited context, such as a magnetic tape code, a data transmission 
device code, and a punched card code are analyzed. 

19.2 MAGNETIC TAPE CODE 

What are the attributes that make a code suitable or desirable for 

magnetic tape? There are two attributes—one speaking to the format of 

data recorded on magnetic tape, the other speaking to control of the 
magnetic tape drive. 

369
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Suppose a magnetic tape has nine recording tracks, with one track 
dedicated to parity and the other eight tracks available for recording data, 
or for recording a code. Then the code should be eight bits or less in byte 
size. Similarly, for seven-track tape, with one track dedicated to parity 
and six tracks for the recording of either data or a code, the magnetic tape 

code should be six bits or less in byte size. The phrases ‘eight bits or less” 
and “‘six bits or less” were used with the realization that if, for example, a 

code of less than eight bits is to be recorded on eight data tracks, it is 
simple to fill (or pad in) zero bits to bring the byte size of the magnetic 
tape up to eight. By contrast, to record, for example, a seven-bit or 
eight-bit code on six data tracks would take a scheme which, while 
feasible, is complex. The hardware to implement such a recording scheme 
would be more complex than the hardware to record a seven-bit code on 

eight data tracks. 
The other attribute of a magnetic-tape code is that it must contain 

the control characters necessary both to control the tape drive and to format 

or to structure the records recorded on tape. For seven-track magnetic tape 

and six-bit codes, as many as seven different control characters were used 

to control the tape movement or to implement various data formatting 
schemes on different CPU systems. On early nine-track tape drives, only 
one control character was used to control tape movement, and on recent 

nine-track tape drives, no control characters are used. For the latter type 

of tape drives, control is exercised by the execution of either computer 
instructions or channel commands. 

19.3 DATA TRANSMISSION DEVICE CODE 

When the environment of a transmission medium involves printing or 

display devices, another attribute is necessary besides those described 
above. The code for such a medium must also provide the graphic 
characters to meet the requirements of applications that use the medium 
and associated devices. For such environments, three attributes are neces- 

sary: 

a) byte size commensurate with the transmission format of the medium; 

b) control characters to control the terminal, printing, or display de- 
Vices; 

c) graphic characters to meet the application requirements that use the 
transmission medium and associated devices. 

19.4 PUNCHED CARD CODE 

A punched card code such as Hollerith has attributes that, though desira- 
ble, are conflicting. As a consequence, manufacturers of punched card
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equipment have to make trade-off decisions on these conflicting attri- 

butes. 
In order to process on computing systems the data from punched 

cards, the punched card code must be translated to some other code form. 

In some computing systems, for example, the digit punches were trans- 
lated to their binary-coded decimal equivalents, so that the system could 
add and subtract the data. In these computing systems, the hardware 
translation was implemented in electronic logic. The translation circuitry 
was usually located in the computer, not in the reader/punch unit. Such 
logic was costly. It was estimated that compared to a card reader/punch 
used as input/output to a computer, the cost of the translation hardware 
was one third of the cost of the total hardware circuitry of a 
reader/punch. 

A desirable attribute of a card code, then, is that the translation 

to/from a related bit code should be as simple as possible. The translation 
hardware for a binary punched card code would have been substantially 
less complex than it would have been for the Hollerith punched card 

code. 
The punched card code chosen by standards committees for standar- 

dization, however, was not binary, because a binary card code has two 
consequences that are quite undesirable. A binary card code requires 
more holes per character than the Hollerith card code. For example, a 
binary card code to represent a 64-character six-bit code would require as 
many as six holes per character, whereas the 64-character Hollerith Card 

Code requires no more than three holes per character. The additional 

holes per character of a binary card code have undesirable consequences: 
(1) the punched card itself would be structurally weak, and hence unreli- 

able; (2) if there are more holes per character, the punch dies and plate 
must be of much more rugged construction (that is, higher manufacturing 
cost), and maintenance costs will be higher. (For a fuller discussion of 
these points, see Chapter 16.) 

To sum up for punched card codes, translation simplicity to/from a 
related bit code is certainly a desirable attribute, but the simplest transla- 
tion scheme, binary, has undesirable consequences—card unreliability, 
and higher manufacturing and equipment maintenance costs. 

19.5 CPU CODE 

By looking at magnetic tape codes, punched card codes, and data trans- 
mission device codes, three fundamental attributes of a media code have 

been discerned: 

= The byte size of the code must be commensurate with the recording 
or transmitting format of the associated physical medium.
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Pattern nad A B BA 

Hole 
Pattern—> 0 11 12 

SP 6 Ly - & or + 

1 1 L / j A 

2 2 2 s K B 

21 3 3 T L c 

4 4 4 U M D 

4 1 5 5 Vv N E 

42 6 6 W 0 F 

421 7 7 x P c 

8 8 8 Y Q H 

8 1 9 9 Z R I 

8 2 0 0 + L2| ! 2 

8 21 8-3 # or = ; $ 

84 a-4 @ or ' % or ¢ * Wor ) 

84 1 8-5 Y ] [ 

842 8-6 > \ ; < 

8421 8-7 v # A + 

Hole Patterns: 
SP - Space 

[1] 8-2 
[2] 0-8-2 

Fig. 19.1 BCDIC 

The code must provide control characters to control associated 

devices. 

If there are associated printing or display devices, the code must 

provide graphic characters to meet the requirements of applications 

using the devices. 

In short, a code must meet the functional requirements of the associated 

medium and associated product(s). 

The functional requirements for CPU codes are much broader, more 

subtle, and more complex than they are for the media codes discussed 

above. For example, since a CPU may control the media and products 

discussed above, it must meet their functional requirements as well as its 

own intrinsic functional requirements.
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A number of functional requirements of CPU codes will be 

discussed: 

"control characters for associated products, 

=" graphic characters for associated products, 

=" numeric capabilities, 

# collating sequence, 

=" translation simplicity to media codes, 

= compatibility with other codes. 

(Contiguity or non-contiguity of alphabetic characters will be discussed in 

Chapter 25.) 
These aspects will be discussed for three prominent character codes: 

=" BCDIC, BCD Interchange Code, a 64-character, 6-bit bit code and 

12-row card code (Fig. 19.1). 

# EBCDIC, Extended BCD Interchange Code, a 256-character, 8-bit 

bit code and 12-row card code. 

s» ASCII, A 128-character, 7-bit bit code. 

Other character codes that will be discussed in less detail are: 

= Hollerith Card Code, a 256-character, 12-row card code, with 64- 

character and 128-character subsets, 

» CCITT #2, a 58-character, 5-bit bit code, 

=" Fieldata, a 128-character, 7-bit code. 

19.6. CONTROL CHARACTERS FOR ASSOCIATED PRODUCTS 

19.6.1 BCDIC 

The seven control characters in BCDIC and the graphics provided to 
represent them are shown below. 

Graphic Control character 
  

Substitute Blank 
Word Separator 
Mode Change 

Record Mark 

Group Mark 
Segment Mark 

Tape Mark 2
f
t
+
+
 
p
e
e
 

Such graphics were useful in printouts for debugging programs.
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These control characters controlled either the movement of the 
seven-track magnetic tape associated with the computing systems current 
at that time or the formatting and structuring of data to be recorded on 

magnetic tape. Not all of these control characters functioned on all 
computing systems, and indeed, some of them functioned differently from 

one system to another. 

Tape Mark and Segment Mark were used to control the movement 
of tape. Record Mark and Group Mark were used for formatting and 
structuring of data to be recorded on tape. 

Magnetic tape systems of those days were described as odd-parity 
systems, or as even-parity systems, according as the seven-track magnetic 
tape associated with the system was odd or even parity. On even-parity 
systems, the Space character (whose bit pattern is all zero bits), if 
recorded on tape, would be indistinguishable from blank tape. This 
situation rendered the Space character essentially unusable on such tapes. 
Instead, the Substitute Blank was used in its place. 

The Word Separator character was necessary on 1401-1410 systems, 
which in a sense had 7-bit memories. One of the options available on the 
system was that when a bit pattern that had a one-bit as its seventh bit 
was recorded from memory on tape, the seventh bit would be stripped 

off, and a Word Separator bit pattern would be injected in the string of 
bit patterns being recorded on tape. On reading from magnetic tape to 
memory, the opposite process would ensue. The Word Separator charac- 
ter, then, was a means of making the 7-bit CPU code commensurate with 
the 6-bit byte size of magnetic tape. 

The Mode Change character was used on magnetic tape for 7070 
systems to indicate the beginning and end of numerical mode. 

19.6.2 General Definitions for Control Characters 

The control characters of EBCDIC (Fig. 19.2) and ASCII (Fig. 19.3) fall 

into seven classifications by function. Ten of these control characters are 
subclassified as data communication systems control, and are indicated by 
an asterisk (*) in the listings below. 

Customer use 

Characters used to designate user-assigned function, which may be 

realizable by user software: 
ASCII EBCDIC 
  

CU1 Customer Use 1 x 

CU2 Customer Use 2 xX 

CU3 Customer Use 3 x 
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Fig. 1 

Control Characters for Associated Products 

Column 0 

00 

12 

Hole 

Pat. 

Hole Patterns: 

[1] 9-12-0-8-1 11 [13] 0-1 
[2] 9-12-11-8-1 12-11-0 9-11-0-1 
[3] 9-11-0-8-1 12-0 [15] 12-11 

(4] 9-12-11-0-8-1 11-0 

[s] No Pch [a] 0-8-2 

[e] 12 {12} 0 

9.2 EBCDIC 

375 

  
  

  

  

  

  

Block | Hole Patterns at: 

1 Top and Left 

2 | Bottom and Left 

3. | Top and Right 
        4   Bottom and Right 
     



376 What Is a CPU Code? 

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

b7| 0 0 0 0 1 1 1 1 

b6 0 0 1 1 0 0 1 1 

b5 0 1 0 1 0 1 0 

Col 
0 1 2 3 4 5 6 7 

b4b3 b2b1 | Row 

NUL DLE SP 0 @ P P 
0000 0 

SOH DC1 ! 1 A Q a q 
0001 1 

STX DC2 " 2 B R b r 

00310 2 

ETX DC3 i 3 c S c s 

00141 3 

EOT DC4 $ 4 D T d t 

0100 4 

ENQ NAK a 5 E U e u 
01041 5 

ACK SYN & 6 F Vv £ Vv 
0110 6 

BEL ETB ' 7 G W g w 
01141 7 

BS CAN ( 8 H x h x 
1000 8 

HT EM 5) 9 T Y i y 
1001 9 

LF SUB x : J Z 5 Z 
1010 10 

VT ESC + ; K c k { 
1011 11 

FF FS ’ < L \ 1 i 

1100 12 , 

CR GS = = M J m } 
11041 13 

so RS : > N “ n ~ 
1171710 14 

ST US / ? 0 _ ° DEL 
1711771 15                         

Fig. 19.3 ASCII
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Device control 

Characters used to control devices or to control major functions of 

devices: 

ASCII EBCDIC 
  

PF Punch Off 

PN Punch On 
  

RS Reader Stop 

DC1 Device Control 1 
  

DC2 Device Control 2 

DC3 Device Control 3 

DC4 Device Control 4 a
K
 mM

 
| 

M
K
 
| 

K
M
 

~ 
M
X
 

|.
 

  

Error control 

Characters used for error control, for indicating ‘“‘alarms,”’ or for identify- 
ing or requesting identification of stations in a communications system: 

ASCIT EBCDIC 
  

DEL Delete 

CAN Cancel 
  

*ENO Enquiry 
*ACK Acknowledge 
  

*NAK Negative Acknowledge 
BEL Bell 
  

SUB Substitute 

EO Eight Ones 

~ 
1 

mm
x 

| 
K
M
 
| 

K
X
 

mx
] 

KM
] 

mK
] 

K
X
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Formatting or editing control 

Characters used for formatting or editing data: 

ASCII EBCDIC 
  

HT Horizontal Tab 

VT Vertical Tab 

Xx 

  

FF Form Feed 
CR Carriage Return 

Xx 

x 
Xx 

  

NL New Line 

BS __ Backspace ms 

  

LF Line Feed 

RLF Reverse Line Feed 

~ 

  

DS _ Digit Select 

SOS Start of Significance 
  

FS Field Separator 
SP Space A

x
 
|
 

KR
M]

 
R
K
 

KM
] 

m
M
 
| 

K
K
 

  

Grouping control 

Characters used to group data or information: 

*SOH 

*STX 

Start of Heading 

Start of Text 

ASCII EBCDIC 
  

  

*ETX End of Text 

SMM Start of Manual Message 
  

EM 

CC 

End of Medium 

Cursor Control 

* 

  

IFS 

IGS 

Interchange File Separator 

Interchange Group Separator 
  

IRS 

{US 

Interchange Record Separator 

Interchange Unit Separator 
  

*ETB 

*EOT 

End of Transmission Block 

End of Transmission ~m
K 

| 
Mo
M]
 

K
M
 

~
A
 
| 

K
M
 

K
K
 
| 

K
K
 
| 

K
M
 
| 

OM
X 
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In ASCII, the following nomenclature is used: 

FS File Separator 

GS Group Separator 
RS Record Separator 
US Unit Separator 

Mode control 

Characters used to set, change, or restore a mode of operation: 

ASCIL EBCDIC 
  

LC Lower Case 

UC Upper Case 
  

SI Shift In 
SO — Shift Out 
  

ESC Escape 

*DLE Data Link Escape x
x
 

| 
K
M
 

  

GE | Graphic Escape 

BYP Bypass 
  

RES Restore 

SM Set Mode mm
, 

M
K
 

| 
RM

] 
O
M
]
 

K
M
 

  

Synchronization control 

Characters used for synchronization of communication systems, or for 
synchronization of data within a format, or for synchronization of data 

streams with certain timing characteristics of a function of some device: 

ASCII EBCDIC 
  

NUL Null xX Xx 

IL Idle Xx 

*SYN_ Synchronous Idle Xx xX 
  

ASCII lacks many of the control characters deemed essential for the 
CPU Code, EBCDIC, but such characters could be assigned into code 

‘xtensions of ASCII.
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19.7 GRAPHIC CHARACTER CAPABILITY 

19.7.1 BCDIC 

BCDIC has 68 graphic characters, as follows: 

  

  

  

  

26 Alphabetics _ A to Z 

10 Numerics 0 to 9 

15 Specials . 3 ; * 

[ |] ) §$ 
f\ $$ 9 = 

10 Duals HH & HK % @ 

= +) ( - 
7 Graphics to 

represent controls + Vv y A 

+ += 6 

Note. There are 68 graphics, but with the five dual pairs, only 63 code 

positions are utilized. 
The graphics used to represent control functions were considered to 

be useful for printouts in debugging programs. 
The other graphics were sufficient for the commerical and 

scientific/engineering applications of the time, and for some programming 

languages (FORTRAN, COBOL, and various Assemblers). 

The duals of BCDIC were not created or invented at the same time. 

On the tabulating and accounting products and systems of the early 

1950s, a 48-graphic set adequate for “commercial” applications was 

provided: 

1 Space 

10 Numerics 0 to 9 
26 Alphabetics A to Z 

11 Specials ., * | = § % 4 & # @ 

With the advent of FORTRAN, for “‘scientific’” applications, a different 
48-graphic set was required: 

1 Space 

10 Numerics 0 to 9 
26 Alphabetics A to Z 
11 Specials ., * | - §$ () + = '
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The “inventors” and users of these overlapping graphic sets thought 
that the application areas were separable. They were, until COBOL 

created a requirement for both the ‘commerical’? and “scientific” 
graphics within a single application, or at least within a single computing 
installation. Intended application has a profound bearing on code design. 

19.7.2 EBCDIC 

EBCDIC has 192 code positions reserved for graphic characters. The 

Space character and the 94 graphic characters of ASCII are assigned. 
Graphics are assigned for various non-Latin alphabets: 

« Katakana (see Fig. 10.10) 

=" §6Cyrillic (see Fig. 2.34) 

" Hebrew (not shown here) 

# Arabic (not shown here) 

" Greek (not shown here) 

Graphics are assigned for various Latin alphabets which require 
more than the 26 letters of English-speaking countries (not shown here). 

Graphics for FORTRAN, COBOL, PL/I, and ALGOL (standard subset) 

are assigned. 

For text processing applications, 120 graphics are assigned (see 

Chapter 26). 

19.7.3 ASCII 

ASCII has 94 graphic characters, sufficient for most data processing 
applications. It lacks others for applications such as text processing, 

non-Latin alphabets, but these could be assigned into code extensions of 
ASCII. 

19.8 NUMERIC CAPABILITY 

An aspect of numeric capability of a CPU code, signed numerics, will be 
discussed. 

19.8.1 Signed numerics 

BCDIC, EBCDIC, and ASCII are alike in one very important 

characteristic—they can be called, generically, BCD codes. The four 

‘ow-order bits of the bit patterns that represent the numerics are binary
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coded decimal (BCD), as shown in Fig. 19.4. Note that the sequence in 

BCDIC—1, 2, 3, 4, 5, 6, 7, 8, 9, O—will not affect the train of the 

discussion to follow. The arithmetic circuitry of BCDIC computers took 
into account the particular BCD bit pattern 1010, for 0. 

  

Numeric BCDIC EBCDIC ASCII 

0 IAAT 1111 0000 011 0000 
1 00 0001 1111 0001 011 0001 

2 00 0010 1111 0010 011 0010 

3 00 0011 1111 0011 011 0011 

4 00 0100 1111 0100 011 0100 

5 00 0101 1111 0101 011 0101 

6 00 9110 1111 0110 011 0110 

7 00 0111 1111 0111 011 0111 

8 00 1000 1111 1000 011 1000 

9 00 1001 1111 1001 011 1001 

0 00 1010 HAT AEE 
  

Fig. 19.4 BCD numerics 

The BCD characteristic, in fact, is the source of the names BCDIC and 

EBCDIC—BCD Interchange Code and Extended BCD Interchange 
Code. And this BCD characteristic was quite intentionally built into 
ASCII. 

From ANSI X3.4-1963, ASCII, Criterion C2.6 reads: 

The numerals 0 through 9 shall be so coded that the four low-order 

bits shall be the binary coded decimal form of the particular numeral 
that the code represents. 

The same criterion worded slightly differently, is found in ANSI X3.4— 

1968. 
The BCD concept, as it relates to signed numerics, grew from the 

Hollerith Card Code (Fig. 19.5). The concept of overpunching a numeric 

with a 12-punch or 11-punch to indicate positive or negative numerics 
was, and is, common practice in punched-card applications. Thus 12-0, 
12-1, 12-2,...,12-9 punches represent +0, +1, +2,...,+9, respec- = 

tively; 11-0, 11-1, 11-2,...,11-9 punches represent —0, —1, —2,..., 
—9 respectively; and 0, 1, 2,...,9 punches represent absolute numerics 0,.. 

1, 2,...,9, respectively.
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Block | Hole Patterns at: 
  

1 3 1 | Top and Left 
  

  Bottom and Left 
    

              
2 

2 4 3. | Top and Right 

4 Bottom and Right 
  

Fig. 19.5 Hollerith Card Code 

All three bit codes, BCDIC, EBCDIC, and ASCII, have a specified 

relationship to the Hollerith Card Code. In order for the signed-numerics 
concept to carry over into a CPU code, the bit patterns from the positive, 

negative, and absolute numerics of the Hollerith Card Code must exhibit 
the following characteristics in the bit code: 

a) For all numerics, signed or absolute, the numerics 0 through 9 have 

the four low-order bits as BCD bit patterns.
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Pitter 00 01 10 11 

Hole 

Pattern 12 1 

00660 

0001 1 +1 -1 1 

0010 2 +2 ~2 2 

0011 3 +3 -3 3 

0100 4 +4 ~4° 4 

0101 5 +5 ~5 5 

0110 6 +6 ~6 6 

01114 7 +7 -7 7 

1000 8 +8 ~8 8 

1¢01 9 +9 ~9 9 

1010 0 +0 ~0 0 
  

  

  

  

                
  

Fig. 19.6 BCDIC signed numerics 

b) For all positive numerics 0 through 9, the high-order bits* are the 

same. 

c) For all negative numerics 0 through 9, the high-order bits* are the 
same. 

d) For all absolute numerics 0 through 9, the high-order bits* are the 

same. 

The code positions into which the Hollerith overpunched numeric 
hole patterns will translate for BCDIC, EBCDIC, and ASCII are shown 

in Figs. 19.6, 19.7, and 19.8, respectively. It may be seen that BCDIC 
and EBCDIC exhibit characteristics (a), (b), (c), and (d), but ASCII does 

not exhibit characteristics (a), (b), and (c). 

*The actual high-order bits for parts (b), (c), and (d) do not matter, What matters - 
is that within each category, (b), (c), and (d), the high-order bits are the same. The ~ 

actual high-order bits will be accommodated by the arithmetic circuitry of the- 
CPU implementing the code. :
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Cotumn 0 1 

00 

Hole 

Pat.   
Fig. 19.7 EBCDIC signed numerics 

Note that the American National Standard Hollerith Punched Card 
Code (ANSI X3.26-1970) contains the following caution about the 
practice of overpunching: 

Section 3.4 

Punched card systems have used the convention of overpunching 
digits with 12 or 11 to represent signed numbers or for other 
purposes. This standard does not provide a simple translation of over- 
punched digits to the ASCII representation of digits. Where possible, 

signs of numbers should be in separate columns. Overpunched digits 
should be used in information interchange only by specific agreement 
between sender and receiver. 

Uhe admonition does not state that the practice of overpunching numerics
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Column 0 1 2 3 4 5 6 7 

Bit b7 | 0 0 0 0 1 i 1 1 
Paver b6 0 0 1 1 0 0 1 1 

b5 0 1 0 1 0 1 0 1 

Row b4 b3 b2 b1 

0 0000 0 -7 

1 000 1 1 +1 ~8 

2 0010 2 +2 -9 

3 0011 3 +3 

4 0100 4 +4 

5 01041 5 +5 

6 0110 6 +6 

7 0111 7 +7 

8 1000 8 +8 

9 1001 9 +9 

10 1010 ~1 

W 101171 <2 +0 

12 1100 =3 

13 1101 -4 -0 

14 11710 5 

15 11171 ~6                         
Fig. 19.8 ASCII “signed numerics” from Hollerith 

is bad per se. It does point to a problem in translation (to be discussed in 

Section 19.10). Nor does the admonition say not to use the practice. It 

says to carry the signs in separate card columns “where possible.” Indeed, 

the admonition does not enjoin against the use of the practice in informa- . 

tion interchange, but says that use in information interchange should be - 

only “by specific agreement between sender and receiver.” That is @
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reasonable precaution. This agreement, and many others, are obvious 
precursors to information interchange. A receiver who does not know the 

card layout of the sender will not be able to process the cards. 
The problem is not the use of overpunched numerics. The problem is 

in translation to ASCII. Doubtless, some scheme of translation of over- 

punched numerics (similar to that of Fig. 19.7) could be devised for 

ASCII but then that scheme would be different from the scheme of Fig. 
19.8. While it would no doubt be feasible to build two different transla- 
tion schemes—Hollerith to ASCII—into a translator, there is no way, 

intrinsic just to the data itself, for the translator to know when to activate 
one or the other translation scheme. That is to say, to build logic into the 
translator to recognize and respond to “‘the specific agreement between 
sender and receiver’”’ would be quite impractical, and probably impossi- 

ble. Signed numerics and ASCII are mathematically incompatible. 
It has been argued that the solution to this dilemma is to forbid the 

use of overpunched numerics and to require that the sign for a numeric 
card field be carried in a separate field position. Certainly, this is a 
theoretical solution. It is a solution, however, contrary to a widespread 

and entrenched user practice. To implement such a solution would 
require conversion of card data fields, and a reprogramming of the user’s 
application programs. 

19.9 COLLATING SEQUENCE 

The graphics, as assigned in a code, have a certain bit sequence. For 

reasons outside the code, the graphics may be assigned to a particular 
sequence, which is called the collating sequence. The bit sequence may or 

may not match the collating sequence. 

19.9.1 BCDIC 

An undesirable attribute in BCDIC as a CPU code was that the standard 
collating sequence for BCDIC did not match the bit sequence. In the 
code table of Fig. 19.1, BCDIC is shown in bit sequence. The collating 

sequence of BCDIC is shown. in the code table of Fig. 19.9. The 

convention for this table is that the collating sequence, from low to high, 

is 

space through % or (, 

then y through F, 
then G through T, 

then U through 9. 

The disparity between bit sequence and collating sequence is evident.
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\ H Vv 

Hor ) al I W 

C 6 ! x 

< # or = J Y 

# @ or '' K Zz 

& or + L 0 

$ > M 1 

* v N 2 

] 2 0 3 

A P 4 

A B 5 

- Cc R 6 

/ D t 7 

’ E 5 8 

Zor (¢ F T 9                 
Fig. 19.9 BCDIC in collating sequence 

The disparity between BCDIC bit sequence and collating sequence 

led to “‘costs” for users of the 6-bit computing systems which would not 
have been incurred if the two sequences had matched. For the 7090 

system, the cost was for computer usage time. Data fields that were to be 

operated on by comparison operations were, in advance, converted by a 

program to bit patterns that matched the collating sequence, and recon- 

verted back to their original bit patterns (again, by a program) after the 
sorting or collating operations. For the 1400 and 7080 systems, the cost 

was additional hardware. A hardware comparator was provided which 
matched the bit sequence to the collating sequence during the comparison 

operations of sorting and collating. 

19.9.2 EBCDIC 

There are 256 character positions in EBCDIC, with bit patterns ranging ~ 
from 0000 0000 to 1111 1111. The collating sequence of EBCDIC.
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from low to high, is prescribed to match the bit sequence. As a result, in 

sorting and collating operations, no hardware comparator is needed, and 
no pre- or post-conversion by software is needed. 

19.9.3 ASCII 

There are 128 character positions in ASCH, with bit patterns ranging 
from 000 0000 to 111 1111. As with EBCDIC, the collating sequence, 

from low to high, is prescribed to match the bit sequence. 

19.10 TRANSLATION SIMPLICITY 

CPU codes as related to magnetic tape and punched card codes will be 
discussed. 

19.10.1 BCDIC 

The translation from the 6-bit CPU code to the 6-bit magnetic tape code 
was a one-to-one bit translation. The translation to the 64-character 
punched card code was quite simple; digit punches 0 to 9 translated on a 
binary coded decimal basis, and zone punches 0, 11, 12 translated on a 

binary basis, as shown by the code chart of Fig. 19.1 (with the two 
exceptions noted, 8-2 and 0-8-2). 

19.10.2 EBCDIC 

The magnetic tape code for EBCDIC matches the CPU code, bit for bit 
and bit pattern for bit pattern. No translation is required for magnetic 
tape. 

For punched card codes, the situation is different. The optimum 
theoretical EBCDIC, from a card-code-translation-simplicity point of 
view, would be the card code shown in Fig. 19.10. The four high-order 

bits of EBCDIC would translate to the four zone punches 12, 11, 0, and 9 

on a pure binary basis, and the four low-order bits would translate to the 
digit punches, 0 through 9, on a binary coded decimal basis. However, 
this theoretical EBCDIC was rejected for two primary reasons— 

translation simplicity to BCDIC and collating sequence compatibility with 
BCDIC. 

If the graphics of BCDIC had been positioned in theoretical EBC- 
DIC according to the BCDIC card code, they would have been positioned 

as shown in Fig. 19.10. For these 63 graphics and Space, the EBCDIC 

card hole patterns would have matched precisely the assignments in 

common usage, a very desirable attribute. However, the translation from 
BCDIC bit patterns to EBCDIC bit patterns, under the scheme of Fig. 

19.10, would have been complex and hence undesirable.



Row | 45867 

9 0000 

1 0001 

2 0010 

0011 

0100 
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0110 
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1100 
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0 1 2 

oo 

10 

Column 3 5 

01 

23; 00 

Hole 

Pat. 

4 

11 

Hole 

Pat. 

Fig. 19.10 Theoretical EBCDIC, based on optimum bit-pattern-to-hole- 
pattern relationship 

More significantly, the bit sequence of the BCDIC graphics in Fig. 
19.10 would have been radically different from the BCDIC collating 
sequence; that is, BCDIC and EBCDIC would have been incompatible 

from a collating-sequence point of view. 

In short, four desirable attributes of a CPU code were conflicting, 

and not all could be achieved: 

a) 

b) 

c) 

d) 

translation simplicity to a punched card code; 

translation simplicity to a previous CPU code (BCDIC); 

collating-sequence compatibility to a previous CPU code, BCDIC; 

card-code compatibility to the card code in common usage.
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Column 0 1 2 

00 

00 o1 10 11 

  
Fig. 19.11 Embedded collating sequence 

[t was decided that two of these attributes, collating-sequence compatibil- 
ty to BCDIC and card-code compatibility to the card code in common 

Isage, were more important than the other two attributes. 
After numbering the Space and the 63 graphics of BCDIC (Fig. 

19.9), from 0 to 63, in collating sequence order, it was decided to embed 
hese 64 characters in EBCDIC as shown in Fig. 19.11. The BCDIC 
collating sequence is embedded in the EBCDIC collating sequence, but 
1ot contiguously. . 

A consequence of these two attributes for EBCDIC is that the 

ranslation relationships, BCDIC bit patterns to EBCDIC bit patterns, 
ire somewhat complex-—more complex than for the simple scheme of Fig. 

19.10.
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19.10.3 ASCII 

Is it feasible to translate ASCII to/from EBCDIC? Certainly, taking into 
account the facts that ASCII is a 128-character, 7-bit code and that 

EBCDIC is a 256-character, 8-bit code, the translation relationship is 

well known. Software for automatic translation has been provided by 
some manufacturers. 

The straightforward translation is immensely complicated if the user 

intermixes pure character code forms (ASCII or EBCDIC) with other 

code forms, such as signed numeric, packed numeric, binary data, bit 
strings. The complication is both administrative and technical. 

The representation of ASCII on magnetic tape is prescribed by an 
American National Standard. That same Standard prescribes the record- 
ing of pure ASCII character data only; that is to say, other code forms are 
ruled out. Magnetic tape with ASCII character data intermixed with other 

code forms is nonstandard, and would pose administrative problems. 
Technically, the problem has an interesting aspect; it cannot be 

solved by manufacturers, only by users. The mixture of code forms in a 
user’s application would vary from application to application, and even 
within applications. For a given application, translation is always possible, 

but a generalized translation program applicable to all applications, such 
as a manufacturer might provide, is not possible in the absence of a data 
descriptive language. A user who conforms ASCII data on magnetic tape 
to American National Standards has no translation problems. A user who 
chooses to intermix other code forms with ASCII data would create 
translation problems only he could solve. 

With respect to punched card code, the situation for ASCII is not 
simple. ASCII is in a one-to-one correspondence to 128 characters of the 
American Standard Hollerith Card Code, so translation is certainly 

feasible. But no logical translation relationships (or almost none) exist, so 

the translation is on a brute-force, character-for-character basis. 

It is interesting to note that in 1963 a card code called Decimal 
ASCII was proposed as an American National Standard, which had the 
characteristic of optimum translation simplicity to ASCII. Further, the 

concept of signed numerics could, from this card code, have been incor- 

porated into ASCII. It had, however, a very undesirable attribute. The 
card hole patterns assigned to the numerics and to the alphabetics A 

through I matched the assignments in common usage in the data proces- 

sing industry, but the assignments for the alphabetics J through Z, and for 

virtually all special graphics, did not match those of common usage. This 
mismatch implied such considerable conversion costs that users rejected 
Decimal ASCII when it was voted on at X3.
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19.11 COMPATIBILITY 

There are a number of aspects involved in compatibility between two 
different codes: 

=" The codes should be structurally similar. BCDIC and EBCDIC are 
structurally similar, but ASCII is structurally dissimilar to both. 

= The collating sequence of the two codes should be the same. If the 
codes are of different size, the collating sequence of the smaller code 
should be embedded, not necessarily contiguously, in the collating 
sequence of the larger code. | 

" The codes should be functionally equivalent; that is, they should 
have the same set of control and graphic characters, although not 
necessarily with the same bit patterns. A smaller code is functionally 
equivalent upward to a larger code if the smaller code’s set of graphic 

and control characters is contained in the larger set of characters. 
EBCDIC and the Hollerith Card Code are functionally equivalent. 

ASCII is upward functionally equivalent to EBCDIC. 

# Translation relationships between the two codes should be simple. 

In debates on code compatibility, it often turns out that one debater 
views the codes as incompatible because not all of the four aspects above 
are present, while the other debater views the codes to be compatible 
because at least one of the aspects above is present. 

19.11.1 BCDIC 

The magnetic tape code, punched card code, and CPU code of BCDIC 
are deemed to be compatible, in that they are functionally equivalent and 
translate simply to each other. 

19.11.2  EBCDIC and BCDIC 

EBCDIC is structurally similar to BCDIC. The collating sequence of 

BCDIC is embedded in the collating sequence of EBCDIC. All charac- 
ters of BCDIC are included in EBCDIC, so there is upward functional 
equivalence. The translation relationship, BCDIC to EBCDIC, is not as 
simple as it could theoretically be, but it is certainly feasible. 

19.11.33. EBCDIC and ASCII 

EBCDIC and ASCII are structurally dissimilar and the collating se- 
quences are different. However, all characters of ASCII are included in 
EBCDIC, so there is upward functional equivalence. The translation



394 What Is a CPU Code? 

  

  

  

  

  

  

  

  

Bit Letter Figure Bit Letter Figure 

pattern case case pattern case case 

00000 Not used Not used 10000 E 3 

00001 T 5 10001 Z +or” 

00010 CR CR 10010 D (2) 
00011 O 9 10011 B ? 

00100 SP SP 10100 S ’ 
00101 H (1) 10101 Y 6 

00110 N , 10110 F (1) 
00111 M . 10111 Xx / 

01000 LF LF 11000 A - 
01001 L ) 11001 WwW 2 

01010 R 4 11010 J Bell 
01011 G (1) 11011 FS FS 

01100 I 8 11100 U 7 
01101 P 0 11101 Q 1 

01110 C 11110 K ( 
01111 Vv = or; 11111 (3)LS LS           
  

(1) For National Use 
(2) Used for Answer Back 
(3) Also used for Delete 

Fig. 19.12 CCITT #2 

relationship, ASCII to/from EBCDIC, is quite complex but certainly 

CR Carriage Return 
SP Space 
LF Line Feed 
FS Figure Shift 
LS Letter Shift 

feasible, in view of the upward functional equivalence. 

Other codes in common use are CCITT #2 (Fig. 19.12) (sometimes 

called the Baudot or Teletype code) and Fieldata (Fig. 19.13). 

19.11.4 CCITT 2 AND ASCII 

ASCII and CCITT #2 are structurally dissimilar, have different collating 

sequences, and have a complex translation relationship. CCITT #2 is 

upward functionally equivalent to ASCII.
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Column| 0 1 2 3 4 5 6 7 

Bit b7 | 0 0 0 0 1 1 1 1 
Pattern b6| 0 ) 1 1 0 0 1 1 

bS 0 1 0 1 0 1 0 1 

Row 

0 K ) 0 

1 L - 1 

2 M + 2 

3 N < 3 

4 0 = 4 

5 Pp > 5 

6 Q _ 6 

7 R $ 7 
CONTROL 

(NOT DEFINED) = 

8 : 8 * 8 

9 T ( 9 

10 U tt 1 

"1 Vv : ; 

12 Ww 2 / 

13 x ! . 

14 Y : SPEC 

15 Zz STOP | IDLE                 
  

Fig. 19.13 Fieldata 

19.11.5 BCDIC and ASCII 

ASCII and BCDIC are structurally dissimilar, have different collating 
sequences, and do not have a translation relationship because they are 

functionally inequivalent.
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19.11.6 FIELDATA 

Fieldata is incompatible in all four aspects with BCDIC, EBCDIC, and 

ASCII, mainly because of the control functions assigned to columns 0, 1, 

2, and 3 in various implementations. 

19.12 SUMMARY OF FUNCTIONAL REQUIREMENTS OF A CPU 
CODE 

7 Control characters for associated media and for associated media 

products. 

=“ Control characters for intrinsic CPU operations, such as editing. 

=" Graphics for associated printing/display products, to satisfy data 

processing applications, such as 

Commerical applications, 

Scientific/engineering applications, 
Applications such as meteorology, text processing, chemical 
abstracting, library bibliographing, 
Programming languages, 

Latin alphabetics, 

Non-Latin alphabetics, 

Graphics to represent control characters. 

# Arithmetic capability, such as signed numerics. 

= Collating sequence matching the bit sequence. 

* Translation simplicity to media codes. 

« Compatibility with other codes: 

Structural similarity, 
Functional equivalence, 
Same collating sequence, 
Translation simplicity. 

An additional attribute, contiguity or noncontiguity of alphabetics, will be 

discussed in Chapter 25.



20 
ASCII 

in an 8-Bit 
Interchange 

Environment 

It had been decided by the standards committees in 1963 that the format 
for the standard magnetic tape would be 9 tracks (Fig. 20.1). One track 
would contain the parity bit; the other 8 tracks would contain “informa- 
tion bits.” 

Row 

  

  

  

  

  

  9 Tracks 
  

  

  

  

  

Figure 20.1 

In consequence of this decision, 8 tracks were available on which to 
record the 7 bits of the 7-Bit Code. After some technical discussion, and 

some pushing and shoving, 7 specific tracks (of the 8 available tracks) and 
the specific track-to-bit relationship were decided upon. 

20.1 ENGINEERING CONSIDERATIONS 

The solution of the problem now exposed a new problem. What should 

be done with what came to be called ‘“‘the eighth track’’? Various sugges- 

tions, which might be described as being of a magnetic tape engineering 
nature, were presented to the standards committee with respect to the 

397
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eighth track. The following list, while certainly not exhaustive, is represen- 

tative of the variety of suggestions that were put forward: 

1. Record all bits on the eighth track as zero-bits. 

2. Record all bits on the eighth track as one-bits. 

3. When recording the 7-bit bit-patterns of the 7-Bit Code, record all 
bits on the eighth track as zero-bits. This is not quite the same as part 

(1) above. In part (1) all bits on the eighth track would be set to 

zero, regardless of what information (7-Bit Code or otherwise) was 

being recorded. In part (3), only when the 7-bit bit patterns of the 
7-Bit Code were being recorded would the bits on the eighth track 
be set to zero. But when other kinds of data (packed numeric data 

which requires 8 bits or the 8-bit bit patterns of an 8-bit code, for 
example) were being recorded, let the bits on the eighth track be 
recorded as either zero- or one-bits as required. 

The thought here was that 7-bit code data on the tape could be 

distinguished from non-7-bit code data on the tape. A record of 7-Bit 
Code data would have the characteristic that the eighth track would be 

uniformly zero. Non-7-bit code data would have some one-bits in the 

eighth track. 
This proposal came to take on a different implication. The supporters 

of the 7-Bit Code considered it to be “‘the standard code,” and all other 

codes as “nonstandard.’”’ Hence, the above approach could be used to 
distinguish between “‘standard data” and ‘“‘nonstandard data.” 

The weakness of this proposed facility for testing was that it is quite 

possible to envisage a string of 8-bit bytes containing packed numerics or 

a string of 8-bit bytes containing the 8-bit bit patterns of an 8-bit code, 

which would fortuitously exhibit the characteristic that for every byte, the 

bit to be recorded on the eighth track was, in fact, a zero bit. Therefore, 

even a string of so-called nonstandard data would pass the test for 

“standard data.” 

The supporters of this approach, while admitting the theoretical 

possibility of such data strings, claimed that they were very unlikely to 

occur in actual applications, and so the test would generally be valid in 

actual practice. 

4. Use the 8 tracks as a clocking track to improve reliability of the tape 

drive. 

As it turned out, none of the various suggestions was sufficiently 

appealing to gain a majority concensus on the standards committees. So 

the standards committees had arrived at that singularly frustrating situa-
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tion in the drafting of a standard where every technical detail except one 
had achieved committee agreement. They decided, therefore, to proceed, 

even lacking agreement on what to do with the eighth track. The standard 
was drafted and approved with a specific statement that the eighth track 
was ‘“‘undefined.’’ Any bits in this track, however, were to be included in 

parity. ‘“‘Undefined”’ meant, in the minds of the committee members, that 

it could be used for any purpose whatsoever. That is, any of the proposals 

above, or any other, could be implemented without violating the letter or 

spirit of the standard. 

The committee, thus having sent the draft standard on its way to 

higher levels of standards authority, now tackled the remaining question 
of the “undefined” track with great vigor. But a new aspect more 
oriented to the aspects of coded character sets in general, than to the 
specific field of magnetic tape, now came on the scene. Consideration of 
this new aspect overshadowed all previous discussions and became the 
central topic of discussion in the standards committees. 

20.2 8-BIT ENVIRONMENT 

This aspect was the 8-bit environment which emerged in the data proces- 
sing world as a result of the introduction of IBM’s System/360. An 8-bit 
CPU code provided by the System/360 was EBCDIC (which is discussed 
in other chapters of this book). From the viewpoint of the standards 
committees, the main aspect of EBCDIC was that, structurally, it bore 

absolutely no relationship whatsoever with the 7-Bit Code. The most 
obvious structural difference was that the alphabetics were contiguous in 

bit sequence in the 7-Bit Code and noncontiguous in EBCDIC. 
However, also provided by the System/360 was another 8-bit CPU 

code, called USASCII-8 (Fig. 20.2). This 8-bit code was structurally 

related to the 7-Bit Code. The eight columns of the 7-Bit Code had been 
distributed unaltered, albeit not contiguously, into eight of the sixteen 
columns of USASCI-8. This version of ASCII was slightly different from 
the 1963 version (see Fig. 14.11) and also slightly different from the 

ASCII 1967 version (see Chapter 24). 

The attention of the standards committees was now focussed on the 
concept of an 8-bit code and, more particularly, on an 8-bit code 

structurally related to the 7-Bit Code. This standards development work 
rejoiced in the euphemistic title of ‘an 8-bit representation of the 7-Bit 
Code in an 8-bit environment.” 

Relating this standards effort back to the problem of what to do with 
the eighth track on 9-track magnetic tape, it was clear that if the structure 
of an 8-bit code was determined, then the recording of this 8-bit code on
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Cotumn| 0 | 1 | 2 3 4 5 6 7 8 9 A B c D | E F 

Bit | 00 01 10 11 

Pat. "| 
Row oo | o1 | 10 | 11 | 00 | O78 10 | 11 | 00 | 01 10 | 11 | oo | 07 | 10 | 11 

o |}oocoy NUL | DCO SP 0 @ P Pp 

1 | 0007) SOM] DC1 { 1 A Q a q 

2 {001701 EQOA {| DC2 " 2 B R b r 

3 |001711] EOM| DC3 # 3 c S c 8 

4 |}0100] RoT| pc4 $ 4 D T d t 

5 101017 WRU| ERR % 5 E U e u 

6 |0110] Ru | SYN & 6 F Vv f Vv 

7 |0%117 BEL] LEM ' 7 G W g Ww 

8 $1000] gs | so ¢ 8 H x h x 

9 |1001] HT Sl ) 9 T Y ti y 

A |1010] LF S2 x 2 J Z j Zz 

B |i011) Vr | 83 + ; K [ k 

c |1100] FF | $4 ’ < L \ 1 

D {17017 CR | 85 - = M ] m 

E |1110f so S6 . > N 4 n | ESC 

F |it1if st | 87 / 2 0 + Oo | DEL                                         
Fig. 20.2 USASCII-8 

the 8 data tracks of 9-track magnetic tape would necessarily define the 

contents of the eighth track. 

The problem, which had initially been addressed as a magnetic tape 

engineering problem, was now addressed as a coded character sets prob- 

lem. The problem was now restated. How should the 128 characters of the 

7-Bit Code be embedded in the 256 code positions of an 8-bit code? 

20.3 EMBEDMENT OF 7 BITS IN 8 BITS 

It should be realized that, mathematically, the number of different possi- 
ble embedments is very large. In the case of embedding 128 characters 
(of a 7-bit code) in the 256 code positions (of an 8-bit code), the number 

of different possible embedments is 

256! 
256 X 255 X254x:++ 131x130 129 = 75a) ~ 2.2% 107°" 

which is quite a large number indeed. However, if constraints are placed
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Fig. 20.3 7-bit code table 

401 

on the nature of the embedment, the number of different possible 

embedments reduces in size. Suppose the 7-bit code table and the 8-bit 
code table are exhibited in the customary columnar fashion (see Figs. 20.3 

and 20.4).
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Column | g 1 2 3 4 5 6 7 & 9 {10 1 12 | 13 | 14] 15 
— oo 01 10 14 

Bit 
& |Pat. oo 01 to | 11 oo | o1 10 1 =| oo | 91 en oo | of | to | 14 

@ (0000 

1 \0001 

2 

3 

4 

111   
Fig. 20.4 8-bit code table 

20.4 EMBEDMENT CONSTRAINTS 

Columnar constraint. Suppose the constraint is to maintain columns; 
that is, each column from the 7-bit code table must be embedded 

unaltered into a column in the 8-bit code table. Then the number of 

different possible embedments is 1615x14x13x12x11x10x9= 
518,918,400, which although smaller than the previous number, is still a 

respectably large number. 

Sequence constraint. Suppose an additional constraint is applied; 
namely, that the eight columns of the 7-bit code table must be embedded 
in the sixteen column positions of the 8-bit code table in the same 

columnar sequence, although not necessarily contiguously. Then the 
number shrinks to 10,776. 

Contiguous column-pair constraint. Suppose the columns of the 7-bit 

code table must be embedded in sequence, and in contiguous pairs, so as 
to maintain both the contiguous upper-case alphabet and the contiguous 

lower-case alphabet; the number of possible embedments reduces to 486.
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Contiguous 8-column constraint. Finally, if the 8 columns of the 7-bit 
code table must be embedded in sequence, and the 8 columns must 
remain contiguous, the number of different possible embedments is 9. 

These constraints—the columnar restraint, the sequence constraint, the 

contiguous column-pair constraint, and the contiguous 8-column 

constraint—are nested; that is, an embedment meeting the last constraint 
meets the immediately preceding constraint, which in turn meets its 
immediately preceding constraint, and so on. 

The standards committees did not seriously consider all the vast 
number of possible embedments. Only six embedments received serious 
considerations (see Fig. 20.5). All of these embedments met the columnar 
constraint, the sequence constraint, and the contiguous column-pair 
constraint. 

These three constraints, then, became the three major criteria for 

embedment. However, since all six candidate embedments met these 

three criteria, these criteria were clearly not factors for decision between 
the six candidates. 

Two of the candidate embedments met the contiguous 8-column 
constraint, four candidates did not. So this criterion was a factor for 

decision between the six candidates. 

20.5 EMBEDMENT NOTATION 

While considering the embedments, the committees used a notation 
which helped to exhibit the embedments compactly. The eight columns of 

the 7-bit code table were named as follows: 

Column 0 C for Control character 

Column 1 C for Control character 

Column 2 S column of Specials 

Column 3 N_ column with Numerics 

Column 4 A column with upper case A 

Column 5 Z column with upper case Z 

Column 6 a column with lower case a 

Column 7 z column with lower case z 

The 7-bit code table could then be compactly exhibited as follows: 

Columns> 0} 1/2) 3 |4)5 [6] 7 
  

clelsInlalzlalz 

The problem was now restated. How should the eight columns of the 
7-Bit Code be embedded in the sixteen column positions of an 8-bit code 
table?
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Column Opt} 273 fF 5] O] 748] 9] tO] tty 12 | 23 | 14 | 15 
  

clcl | IsIwl | TT talzl | fale 
Candidate 1 

Columns— a ee 
  

sInl | lalzl | Jalal | 
Candidate 2 

Columns 0/1/2/3/4]/5{/[6]7]8 ]9]10j,11]12|13 |] 14] 15 

clel | 

  

Columns 0/1/2/3[/4/5|]6]7]8 {9 |10{11 | 12]13 | 14] 15 
  

Columns> 0/1/2[3/41/15[6[7[8[9 {110 {111]12{13 | 14115 
      

Columns> 0{1]2/3)]445 6|7 8 9 | 10 11] 12 | 13 | 14 | 15 
                            

Candidate 6 

Fig. 20.5 Candidate embedment schemes 

20.6 EMBEDMENT SCHEMES 

Six embedment schemes were proposed to the standards committees. 

These are shown in Fig. 20.5. Candidate 6 is the embedment scheme first 
proposed (late 1963) to the standards committees. Candidate 1 is the 

embedment scheme actually implemented on the System/360 (see Fig. 
20.2). 

20.7 TRANSFORMATION ALGORITHM 

It would be reasonable to suppose that, in determining the optimum 8-bit 
representation of the 7-bit code in an 8-bit environment, the only factor 

that would need to be considered would be the simplicity of the transfor- 
mation algorithm, when transforming a 7-bit byte into an 8-bit byte and 
when transforming an 8-bit byte into a 6-bit byte. As a step in evaluating 
the superiority or inferiority of various transformation algorithms, it is
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Candidates 

Fig. 20.6 Three high-order bits, as embedded 

necessary to number or name the bits of a 7-bit byte and the bits of an 
8-bit byte. The notation used by the standards committees was as follows: 

7-bit byte b7 b6 b5 b4 b3 b2 b1 

8-bit byte E8 E7 E6 ES E4 B3 E2 El 

The six candidates evaluated by the committees are shown in Fig. 20.5. In 

Fig. 20.6, the three high-order bits, b7, b6, b5, of the 7-bit byte are 

shown in relation to the four high-order bits, E8, E7, E6, ES, of the 8-bit 

byte. It is to be observed that, for all candidates, b5 = E5. 

The columnar restraint referred to earlier ensured that, for all 

candidates, the four low-order bits, b4, b3, b2, b1, of the 7-bit byte are 

identical to the four low-order bits, E4, E3, E2, E1, of the 8-bit byte. 

In summary, for all candidates, the transformation algorithm, with 

respect to the five low-order bits, 7-bits to 8-bits or 8-bits to 7-bits, is 

E5 E4 E3 E2 E1=b5 b4 b3 b2 bi 

The relationship between E8 E7 E6 and b7 b6 is, however, different for 

all candidates and the candidates came to be characterized by the transfor- 

mation algorithms of the high-order bits.
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Candidate Transformation Algorithm 
  

E8 = b7 
1 E7 = b6 

E6=b7 

E8 =b7 
2 E7 = b6 

E6=0 

E8 =0 
3 E7=b7 

E6 = b6 

E8=1 
4 E7=b7 

E6 = b6 

E8 = b7|b6 
5 E7=b7 

E6 = b6 

E8 = b7 
6 E7=b7 

E6 = b6 

Boolean analysis of Fig. 20.6 shows that the transformation al- 
gorithms for the six candidates are as follows. (The notation E8 = b7|b6 

means that E8= 1 if b7 = 1, or if b6=1, or if b7 and b6=1.) 

It is to be observed that all the transformation algorithms involve 

fairly simple logic. They could be rated in degree of complexity, which 

could then be a factor to decide for the optimum (least complex) 

algorithm. However, the logic circuits to implement these algorithms 

would, in fact, be trivially different in complexity. The relative complexity 

of the transformation algorithms cannot sensibly be taken as a significant 

factor for decision. The standards committees recognized this, and de- 

veloped other criteria. 
Although the committees were ostensibly trying to determine the best 

8-bit representation of the 7-bit code in an 8-bit environment, and were 

not supposed to be developing an 8-bit code,” all the criteria below except 

*In short, the committee was indeed working to develop an 8-bit code. The 

rationale was that the committee was not working to develop an 8-bit code, but 

rather to develop an 8-bit representation of the 7-bit code in an 8-bit environ- 

ment. However, some day in the future, an 8-bit code might be needed. There- 

fore, the 8-bit representation should be designed now so that it could serve as an 

8-bit code if needed.
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the first four would be considered of significance for a code. The first four 

criteria relate to the transformation algorithm. Of these four, three were 

met by all six candidates, and so were not factors for decision. 

20.8 EMBEDMENT CRITERIA 

rhe standards committee developed and considered the eighteen criteria 
sresented below. It is to be emphasized that 

a) Some of these criteria are important for environments that are 
mainly computer oriented. 

b) Some of these criteria are important for environments that are 
mainly communications oriented. 

c) Some of these criteria are important for both environments. 

d) It is a matter of individual judgment as to which criteria fit under 
parts (a), (b), and (c) above. 

e) It is a matter of individual judgment as to how the criteria are ranked 
or weighted in order of importance. 

f) The set of criteria are mutually self-conflicting. In particular, Criteria 
11 and 13 are conflicting, and Criteria 16 and 17 are conflicting. In 
consequence, no 8-bit representation can satisfy all criteria. 

For purposes of reference later in this chapter, the criteria are headed by 
a “short form.” 

1. Column integrity. Each column of the 7-bit code should be embed- 
ded unaltered in a column of the 8-bit representation. 

2. Column sequence. The cight columns of the 7-bit code should be 
embedded in the same columnar sequence in the sixteen column positions 
of the 8-bit representation, although not necessarily in contiguous column 

sequence. 

3. Contiguous column pairs. Contiguous column pairs (columns 0 and 
1, columns 2 and 3, columns 4 and 5, columns 6 and 7) of the 7-bit code 

should be embedded in contiguous column pairs in the 8-bit representa- 

tion. 

4. Contiguous 8-columns. The eight columns of the 7-bit code should 
be contiguous in the 8-bit representation. 

5. Collating sequence. The 6-Bit Subset,* the 7-Bit Code, and the 8-Bit 
Representation should have the same relative collating sequence. 

*The 6-Bit Subset referred to here consists of the 64 characters in columns 2, 3, 

4, and 5 of the 7-Bit Code. The bit patterns of this subset are derivable by 
dropping b6 of the bit patterns of the 7-Bit Code.
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6. Katakana 64. A contiguous 64-character block should be available in 
the 8-Bit Representation to which the 64 Japanese Katakana graphics 
could be assigned. 

7. Latin-Katakana contiguity. A 64-character block for the Katakana 
alphabet and the Latin alphabet should be contiguous in the 8-Bit 
Representation. 

8. Contiguous controls. Unassigned positions in the 8-Bit Representa- 
tion should be available contiguous to the columns containing control 
characters from the 7-Bit Code to which new control characters could be 
assigned. 

9. Single-bit test, Latin alphabetics. Latin alphabetic characters should 
be distinguishable from nonalphabetic characters in the 8-Bit Representa- 
tion, as in the 7-Bit Code, by a single-bit test. 

10. Symmetry. The columns of the 7-Bit Code should be distributed 
symmetrically in the 8-Bit Representation. 

11. Space collate low. The Space character should collate low to the 
graphic characters from the 7-Bit Code and also to all (unassigned) 
graphic positions in the 8-Bit Representation. 

Comment. The committee had the concept that if an 8-bit code were 

developed providing 128 code positions additional to those from the 

7-Bit Code, 32 of these code positions, or two columns, would be 

assigned to new control characters, and 96 code positions, or six columns, 

would be assigned to new graphic characters. 

12. Signed numerics greater than 9. In the 8-Bit Representation, the 
four high-order bits for the column containing the numerics, interpreted 
as a binary coded decimal, should be numerically greater than 9, to 
facilitate checking on arithmetic operations in computers. 

13. Packed numerics. Packed numerics, if used in interchange and 

interpreted as 8-bit bytes, will have bit patterns from columns 0 through 9 

and rows 0 through 9 of the 8-Bit Representation. Control characters 

may be assigned to these bit patterns without causing trouble, but the 

graphics from the 7-Bit Code should not be assigned to these columns. 

14. Null=all zeros. The Null character from the 7-bit Code should be 

in the all-zeros bit-pattern position of the 8-Bit Representation; that is, in 

column 0, row 0. 

15. Delete = all ones. The Delete character from the 7-Bit Code should 

be in the all-ones bit-pattern position of the 8-Bit Representation; that is, 
in column 15, row 15.
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16. Low-order 7 bits, 7 to/from 8. The seven bits of the 7-Bit Code 

should become the low-order seven bits of the 8-Bit Representation. 

17. Low-order 6 bits, 6 to/from 8. The six bits of the 6-Bit Subset 

should become the low-order six bits of the 8-Bit Representation. 

18. Single-bit test, 7 versus non-7. In the 8-Bit Representation, all bit 
patterns from the 7-Bit Code should be distinguishable from all bit 
patterns not from the 7-Bit Code by a single-bit test. 

20.9 ANALYSIS OF EMBEDMENTS 

The six candidates of 8-Bit Representation (Fig. 20.5) were than analyzed 

against the 18 criteria, as shown in Fig. 20.7. (An “‘X” in the table means 
the candidate meets the criterion.) 

  

  

  

  

  

  

  

  

  

oo Landidate 1 2 3 4 5 6 
Criterion 

1. Column integrity Xx Xx Xx x x x 

2. Column sequence x X x x Xx x 

3. Contiguous column pairs XxX x xX x x x 

4. Contiguous 8 columns xX x 

5. Collating sequence x x xX x x x 

6. Katakana 64 x xX xX xX x 

7. Latin-Katakana contiguity x x 

8. Contiguous controls xX x x 

9. Single bit test, Latin alphabetics xX X x 

10. Symmetry x x 

11. Space collate low x x x x 

12. Signed numerics greater than 9 x xX x x 

13. Packed numerics xX xX 

14. Null = all zeros x x xX x x 

15. Delete = all ones xX x x x 

16. Low-order 7 bits, 7 to/from 8 xX xX X xX 

17. Low-order 6 bits, 6 to/from 8 xX 

18. Single-bit test, 7 versus non-7 x x x               
Fig. 20.7 Candidates and criteria
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20.10 COMMITTEE DECISION 

It is an interesting exercise, weighting the various criteria as deemed 
appropriate, to judge which of the six candidates is the superior 8-Bit 
Representation. The standards committees, by majority but not by unani- 
mous vote, decided in favor of candidate 3, characterized by its transfor- 
mation algorithm: 

E8=0 

E7, 6, 5, 4, 3, 2, 1=b7, 6, 5, 4, 3, 2, 1 

This transformation algorithm having been decided by the coded charac- 
ter sets committees, the magnetic tape committees now specified in 
9-track magnetic tape standards that what was previously called the 
‘“‘eighth”’ or undefined track would now be set uniformly to zero. 

They might have (should have?) specified the eighth track more 
precisely as being set to zero for every row in which is recorded a bit 
pattern from the 7-Bit Code. Instead they chose to specify the eighth 
track as uniformly recorded with zero bits. A consequence of this particu- 
lar specification is that any 9-track tape that records either an 8-bit code 
(such as EBCDIC) or packed numerics or binary data, such that a one-bit 

is recorded anywhere along the eighth track, is deemed to be nonstan- 
dard. 

Since virtually all 9-track tapes recorded in computing installations 
will have packed numeric data or binary data, virtually all computing 
installation magnetic tapes are nonstandard. A curious consequence in- 
deed.



21 
The 

Alphabetic 
Extender Problem 

As described in Chapter 4, accommodation of European countries with 

Latin alphabets of 29 letters was provided on products by duals. The 

three additional letters were associated with card hole patterns as shown 

in Fig. 21.1. 

Subsequently, as described in Chapter 9, these card-code assign- 

ments were carried forward into EBCDIC. The EBCDIC code positions 

assigned to such graphic meanings were designated as alphabetic- 

extender positions. 

BCDIC was a monocase alphabet code, while EBCDIC was a 

duocase alphabet code. The card hole patterns for the BCDIC alphabetic 

extenders were assigned to EBCDIC as capital alphabetic extenders, and 

new code positions were assigned to small alphabetic extenders, as shown 

in Fig. 21.2. 

Hole 

pattern ULSS.A. Germany Sweden Finland Norway Denmark 
  

8-3 # A A A z E 
8-4 @ oO O O @ O 

11-8-3 $ U A A A A 
  

Fig. 21.1 Monocase and capital alphabetic extenders 

Hole 

pattern U.S.A. Germany Sweden Finland Norway Denmark 
  

8-7 " A A 4 x we 
12-8-2 ¢ 5 5 5 g Q 
11-8-2 ii 4 A A A 
  

Fig. 21.2 Small alphabetic extenders 

411
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21.1 THE ISO 7-BIT CODE 

In 1967, the ISO 7-Bit Coded Character Set for Information Processing 

Interchange was standardized in an approved ISO Recommendation, 

R646-1967 (see Fig. 21.3). 
Of particular significance were the third and fourth footnotes. They 

are reproduced here (in part). 

  

  

    
  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

Column 0 1 2 3 4 5 6 7 

Bit b710 0 0 0 1 1 1 1 
Pattern b6 0 0 1 1 0 0 1 1 

b5 0 1 0 1 0 1 0 1 

Row b4 b3 b2 b1 

By Lu | 
0 0000 NUL | DLE | SP 0 @ P . P 

1 0001 SOH DCL ! 1 A Q a q 

2 0010 STX DCc2 " 2 B R b r 

3 0011 ETX DC3 £ 3 Cc s c 8 

4 0100 EOT DC4 $ 4 D T d t 

5 0101 ENQ NAK 4 5 E U e u 

6 0110 ACK SYN & 6 F Vv £ v 

7 0111 BEL ETB ' 7 G W g w 

8 1000 BS CAN ( 8 H x h x 

9 1001 HY EM ) 9 I Y i y 

10 1010 LF SUB * : J Zz 4 Zz 

LB La] 
1 10171 VT ESC + ; K c k 

L3 [3 | 
12 1100 FF FS ; < L 1 

13] io 
13 1101 cR GS - = M J ™m 

Le] Le] 
14 1110 sO RS : > N “ n ~ 

15 1111 SI US / 9 0 _ oO DEL                         
Fig. 21.3 ISO 7-Bit Code
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* Reserved for National Use These positions are primarily intended 

for alphabetic extension. If they are not required for that purpose, 

they may be used for symbols. 

*Positions 5/14, 6/0, and 7/14 -+-+may be used for other graphical 
symbols when it is necessary to have 8, 9, or 10 positions for national 

use. 

In the ISO 7-Bit Code, therefore, the requirement for alphabetic 

extender positions was recognized, as it had been in EBCDIC. 

21.2 EBCDIC AND THE 7-BIT CODE 

At this point in time, then, there was a slight mismatch between EBCDIC 

and the ISO 7-Bit Code, in that the former assigned 6 positions for 

alphabetic extenders, and the latter assigned 7 ‘‘primary”’ positions and 3 

more “secondary” positions if needed by some country. 

This mismatch could have been rectified easily by assigning addi- 

tional alphabetic extender positions in EBCDIC. But a much more 

worrisome mismatch arose when the ISO/TC97/SC2 was working on the 

standardization of the Hollerith Card Code (called, by SC2, the Twelve- 

Row Card Code). 

21.3. EBCDIC AND THE HOLLERITH CARD CODE 

As described in Chapter 17, a slight mismatch existed between the 

American Standard Hollerith Card Code and the EBCDIC Card Code, as 

shown below: 

Hole pattern MHollerith EBCDIC 
  

12-8-7 ! | 
11-8-7 . 7 
12-8-2 [ ¢ 
11-8-2 ] 
  

The first pair of these, ! (exclamation point) versus | (Logical OR) 
and * (circumflex) versus ™ (Logical NOT), was resolved, as described in 

Chapter 24, by text in the American Standard which specifically permit- 

ted the “‘stylization’” of * as “, and of ! as |. 
The second pair of these, [ (left bracket) versus ¢ (cent sign), and | 

(right bracket) versus ! (exclamation point), was not resolved in the 

American Standard, but was resolved in EBCDIC by permitting dualiza- 

tion; which is to say, by permitting the left bracket and the right bracket 
to be provided instead of the cent sign and the exclamation point.



414 The Alphabetic Extender Problem 

The more worrisome mismatch referred to above resulted from 

applying the following algorithm: 

=" Take a graphic in an ISO 7-Bit Code code position. 

=" Take the card hole pattern corresponding to that ISO 7-Bit Code 

code position. 

«" Take that hole pattern and the corresponding EBCDIC code posi- 

tion. 

# Take the EBCDIC graphic in that EBCDIC code position. 

21.4 THE GERMAN 7-BIT CODE 

In applying this algorithm, it is necessary to apply it not to the ISO 7-Bit 

Code but rather to some national variant; the German 7-Bit Code (DIN 

66003-1967, Informationsverarbeitung 7-Bit Code) is used here for 

illustrative purposes. The result is shown in Fig. 21.4. 

It should be pointed out that this alphabetic extender mismatch did 

not exist between the American Standard Hollerith Card Code and 

EBCDIC, as shown in Figure 21.5; however, the slight mismatches 

referred to earlier in this chapter are seen. 

The mismatches between EBCDIC and the Hollerith Card Code in 

the U.S.A., then, were with respect to specials (albeit in alphabetic 

    

  

  

  

  

German EBCDIC 

7-bit code Hole Code 

Graphic | position | pattern | position Graphic 

# 2/3 8-3 7B A 
@ 4/0 8-4 5B O 

$ 2/4 11-8-3 7C U 

A 5/11 12-8-2 4A 6 

O 5/12 0-8-2 EO Not assigned* 
U 5/13 11-8-2 5A iu 

a 7/11 12-0 CO Not assigned* 
6 7/12 12-11 6A | Not assigned* 
il 7/13 11-0 DO Not assigned* 

" 2/2 8-7 7F a               

Fig. 21.4 DIN 66003 and EBCDIC mismatch. (Asterisk 
refers to year 1967.)
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Significance of Mismatches 
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U.S.A. EBCDIC 

7-bit code} Hole Code 

Graphic | position | pattern | position Graphic 

# 2/3 8-3 7B 7 

@ 4/0 8-4 5B @ 
$ 2/4 11-8-3 TC $ 

[ 5/11 12-8-2 4A ¢ 

\ 5/12 0-8-2 EO Not assigned* 
] 5/13 11-8-2 5A ! 

{ 7/11 12-0 CO | Not assigned* 
7/12 12-11 6A | Not assigned* 

} 7/13 11-0 DO Not assigned* 

” 2/2 8-7 7F "               
Fig..21.5 Hollerith and EBCDIC mismatches. (Asterisk 
refers to year 1967.) 

extender positions), but in Germany and also in the four Scandinavian 

countries the mismatches were with respect to alphabetic extenders 
themselves. 

21.5 SIGNIFICANCE OF MISMATCHES 

There is a substantial difference in the significance of these two kinds of 

mismatches. As described earlier, the mismatch in the U.S.A. was rectifi- 

able very easily—simply by providing, on printers or displays, the left 

bracket and right bracket in place of the cent sign and exclamation point. 

But the mismatch between alphabetic extenders (in Germany and in the 

Scandinavian countries) could not be rectified in such a simple way. 

To begin to understand the significance of these two different kinds 

of mismatches, consider the effect on, for example, the IBM 029 

keypunch. Let us look first at the mismatch in the U.S.A. To modify the 

keypunch, two “‘fixes’? would have to be made: 

« Provide keytops (and the emphasis here is on the engraved symbols 

on the tops of the keys) engraved [ and ] to replace the keytops 
engraved ¢ and !. 

" The mechanism that interprets along the top of a keypunched card is 
called a “‘code plate.” Provide a new code plate that, for the hole 

patterns 12-8-2 and 11-8-2, would interpret [ and ].
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Both of these fixes could be made to keypunches in the field and the cost 

would be moderate. 

Before considering the equivalent fixes for an IBM 029 keypunch for 

Germany, it should be recalled (as was described in Chapter 10) that one 

of the keytops has no graphic engraved on it, but instead has 0-8-2 

engraved. When this key is depressed, the 0-8-2 hole pattern is punched 

in the card, and no symbol is interpreted on the card; that is to say, for 

that column of the card, it would appear to a human viewer that, from an 

interpretation point of view, the Space bar had been depressed. The fixes, 

then, for the German 029 keypunch would be 

# Provide keytops engraved 

A OU # @ $ 
to replace, respectively, the keytops engraved 

0 0-8-2 i A O U 
= Provide a new code plate which would interpret 

AOU #4 @ $ 

for the hole patterns 12-8-2, 0-8-2, 11-8-2, 8-3, 8-4, 11-8-3, re- 

spectively. 

Both of these fixes could be made in the field, at very close to the same 

moderate cost of making the fixes in the U.S.A. 

If we look at another aspect, output printing from the CPU, and 

consider the printer to be a chain/train printer, then the fix would be 

simply a new chain/train, with the necessary substitutions. The cost would 

be very moderate. 

It can be concluded that the cost to modify equipment would be 

moderate. But the cost to a user to fix existing punched card data files 

could be horrendous. The user would have to convert all card files which 

contained alphabetic information so that they could be processed cor- 

rectly by the modified equipment. 

In addition, any user programs that are code dependent on the 

alphabetics (and many users have many such programs) would have to be 

reprogrammed. 

These two fixes, conversion of card files and reprogramming, could 

prove to be an uneconomical burden. 

21.6 THE FRENCH SOLUTION 

It might well be asked if ISO/TC97/SC2 did not foresee this economic 

consequence. In fact, ISO/TC97/SC2 did foresee it. One proposal was 

put forward (by France) which had a “‘solution.”’



21.6 The French Solution 417 

It was proposed that a footnote be added to the card-code table, 

pointing at code-table positions 2/3, 2/4, 4/0, 5/11, 5/12, and 5/13: 

Within six positions, presentations of card codes shall be allowed; 

i.e., the assignment of the six card codes 8-3, 11-8-3, 8-4, 12-8-2, 

11-8-2, and 0-8-2 to the six positions 2/3, 2/4, 4/0, 5/11, 5/12, and 

5/13 may vary by permutation when required to take into account 

well-established national usage. 

It is to be noted that this footnote would not point at code-table positions 

7/11, 7/12, 7/13, The reason was that, at this time, there was little if any 

usage of small alphabetics, and therefore of small alphabetic extenders, in 

punched-card applications. In consequence, little if any economic conse- 

quence was foreseen for users in respect to small alphabetic extenders. 

Figure 21.6 shows an example of how this could be implemented in 

Country 1, “where no established usage opposes,” and in Countries 2 and 

3 “to comply with established usage.” In Country 2, a single national 

character is used in both upper and lower case. In Country 3, three 

national characters are used in both upper and lower case. 

This proposal clearly would have met the requirement to comply 

with established usage within a country, but there were two undesirable 

aspects. 

  

  

  

  

  

Position |Card code to 
in the j|be used when Character and card code assigned 

ISO 7-Bit |no established to this character to comply with 
Table |usage opposes established usage 

Country 1 Country 2 Country 3 

2/3 8-3 £ 8-3 £ 12-8-2 

2/4 11-8-3 $ 11-8-3 $ 0-8-2 

4/0 8-4 @ 0-8-2 @ 11-8-2 

5/11 12/8-2 [ 12-8-2 A 8-3 

5/12 0-8-2 N 8-4 |O]  11-8-3 
5/13 11-8-2 ] 11-8-2 U 8-4 

7/11 12-0 { 12-0 a 12-0 

7/12 12-11 ni 12-11 6 12-11 

7/13 11-0 } 11-0 u 11-0           
  

Fig. 21.6 Permutation of card codes
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21.6.1 Undesirable Aspects of the French Solution 

A. Consider the graphics @ # and $. Under this proposal each of these 

graphics would have different hole patterns in different countries, with the 

following consequences: 

= For manufacturers of punched-card equipment, different and incom- 

patible lines of card equipment. 

=» For the manufacturer, dual or multiple maintenance and distribution 

of programming decks. 

# For the users in different countries, difficult or impossible inter- 

change of card deck. 

B. Under this proposal a given ISO 7-bit bit pattern could be associated 

with different Hollerith hole patterns, and a given Hollerith hole pattern 

could be associated with different ISO 7-bit bit patterns, in different 

countries. The consequence of this, for the manufacturer of card-code 

to/from bit-code equipment, would be different and incompatible lines of 

equipment between countries. 

As reviewed by ISO/TC97/SC2, these two aspects were deemed suffi- 

ciently undesirable that the proposal was rejected. 

The alphabetic extender problem remains unsolved to this day. 

Manufacturers of punched-card equipment continue to implement the 

card codes “of established usage,” not the ISO card codes, for the 

alphabetic extenders. Users continue with the card codes “‘of established 

usage.” Short of government intervention to force compliance, the ISO 

Standard card code will evidently not be implemented in Europe with 

respect to alphabetic extenders.



22 
Graphic Subsets 

for the 
Government 

22.1 A AND H SUBSETS 

As described in Chapters 4, 9, and 10, there were various subsets of 

BCDIC and of EBCDIC. The most popular of these, the A and H sets, 

manifested themselves on 48-character trains/chains. 

  

  

            

BCDIC EBCDIC 

A to Z 26 A to Z 26 

0 to 9 10 0 to 9 10 

,/* -§ 6 -,/+* -$Rk& 8 

H ) < ) 
% ( % ( 

& + 5 # = 4 

it = @ ’ 
@ ' | 

A-Set | H-Set A-Set | H-Set 

Total 47 Total 48   
It is to be noted that the BCDIC subsets shown above are actually 

47-graphic sets. The 48th graphic on the chain/train was sometimes +, 

sometimes — (repeated), sometimes a company logo, and sometimes 

something else. 

In fact, there were quite a number of 48-graphic trains/chains 

available. Consider, then, the problem of a computing installation that 

received from some source outside the installation a report to be listed. 

This report might come to the installation on punched cards or on
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magnetic tape. If the source installation had prepared the report using an 
A-train and if the receiver installation used an H-train to list the report, 

there would be some unintelligibility in the listing, the amount depending 

on the extent to which the source installation had used special graphics 

beyond the period, comma, slash, asterisk, minus sign, and dollar sign. 

This kind of confusion was compounded where many installations 

sent data from one to another to be listed and where a variety of 

48-graphic trains/chains were used in the installations. An obvious solu- 

tion to such situations would have been for somebody in authority over 

all the installations to issue an edict to all installations to always use the 

same train/chain. 

Such a simplistic solution would probably not have worked very well 

in real life. Installations had particular trains/chains for a particular 

reason, and users would have resisted the bureaucratic order to change. 

22.2 DEPARTMENT OF DEFENSE SOLUTION 

During the early 1960s, a different kind of solution was tried in the 

Department of Defense. Recognizing that 42 graphics—26 alphabetics, 

10 numerics, and 6 specials (period, comma, slash, asterisk, minus sign, 

and dollar sign)—were common to all trains/chains, an edict was issued 

that only these 42 graphics could be used on reports. (Incidentally, it was 

exactly this set of 42 characters, together with the Space character, that 

formed the “hard core 43” described in Chapter 17. 

This solution had moderate success. A countervailing factor was that 

military part numbers used the left parenthesis, the right parenthesis, and 

the number sign, and part numbers were in much of the report data 

interchanged between military installations. 

22.3 FIPS PUB 15 SOLUTION 

In the late 1960s, a Federal Information Processing Standards Publication 

(FIPS PUB) 15 was approved. FIPS PUB 15 stated that “all applicable 

equipment ordered on or after the date of this FIPS PUB must be in 

conformance with this standard...”’. 

“Applicable equipment” included printers, display devices, punched- 

card equipment, and other data processing or communications equipment. 

The standard specified three graphic subsets: 

=» a 16-character graphic subset, 

= a 64-character graphic subset, 

=» a 95-character graphic subset. 

The graphic subsets were derived from ASCII, shown in Fig. 22.1. 

The 16-graphic subset consisted of the 10 numerics and 6 specials in 
column 3 of the code table.
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Column 0 1 2 3 4 5 6 7 

Bit b7 10 0 0 0 1 1 1 1 

Pawn los 0 0 1 1 0 0 1 1 

b5 0 1 0 1 0 1 0 1 

Row b4 b3 b2 b1 

0 0000 SP 0 @ P . p 

1 0001 ' 1 A Q a q 

2 0010 tt 2 B R b xr 

3 0011 # 3 c s c 8 

4 0100 $ 4 D T d t 

5 0101 4 5 E U e u 

6 a1 10 & 6 F Vv £ v 

7 0111 ' 4 c W 5 w 

8 tooo ¢ 8 H x h x 

9 1001 ) 9 t Y 1 y 

10 1010 * ; J Zz j z 

11 1011 + ; K [ k { 

12 1100 ; < L \ 1 1 

13 1101 - - M 1 n } 

14 1110 : > N A n ~ 

15 11141 / ? 0 _ ° 

Fig. 22.1. ASCII 

The 64-graphic subset consisted of the Space character and the 63 

graphics in columns 2 through 5 of the code table. 

The 95-graphic subset consisted of the Space character and the 94 

graphics in columns 2 through 7 of the code table. 

The wording of FIPS PUB 15 was such that these graphic subsets 
were to be provided regardless of the code of the equipment. Thus, for 

example, FIPS PUB 15 was applicable not only to ASCII-based equip- 

ment, but also to EBCDIC-based equipment, or, indeed, to equipment 

based on any code whatsoever.
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Since this federal standard applied to all equipment entering the 

federal inventory, manufacturers had to supply these graphic subsets if 

they wished to market to the federal government. FIPS PUB 15 had, 

therefore, considerable clout. 

22.4 FIPS PUB 15 TRADE-OFF 

The federal government had made an interesting trade off here. As 

described in Chapter 10, the nominal printing speeds (LPM, lines printed 

per minute) for train/chain printers, depending on the number of graphics 

in the repeated sets of the train/chain, were as follows: 

Number of graphics Repeated sets Nominal printing speed 
  

40 6 1250 LPM 

48 5 1100 LPM 

60 4 950 LPM 

120 2 570 LPM 

240 1 300 LPM 

The number 64 does not divide evenly into 240, so for a 64 (really 63 

plus Space) graphic set, the ‘‘preferred”’ graphic approach would have to 

be used. For the 64-graphic subset, the nominal printing speed would be 

approximately 940 LPM. Assume, for the purposes of discussion, that the 

train/chain printer would run without stopping for 8 hours. Then the 

48-graphic printer would produce 528,000 lines of print, whereas the 

64-graphic printer would produce approximately 451,000 lines of print; 

that is, approximately 77,000 lines of print less during 8 hours. 

The federal government was making a trade-off between productiv- 

ity of lines printed and intelligibility of interchanged data as printed. 

FIPS PUB 15 did recognize that the bulk of printing in an installa- 

tion would probably not come from data interchanged from another 

installation, and that productivity of printed lines for such noninter- 

changed data should not be reduced. FIPS PUB states: 

Printers of the “chain” or “train” or other replaceable symbol 

technology must be provided with the ability to conform to one of 

the subsets herein but may also be provided with optional subsets 

having a different number of characters than those specified herein in 

order to increase either the printer repertoire of symbols or the 

printer speed in local use. 

That is to say, federal departments and agencies could order 48-character 

train/chain printers, as long as a 64-character train/chain could be 

mounted if needed. And that is an easy and simple thing to do with 

train/chain printers.
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Which ASCII? 

23.1 ASCII-1963 

A national standard, even when approved, may nevertheless not remain 

fixed and unchanging. When ASCII became an approved American 

standard in 1963, it was not complete. As may be seen from Fig. 23.1, 28 

code positions in columns 6 and 7 were not filled. In addition, the control 

character in position 0/8 was defined very broadly as a “format effector” 

(in contrast with the other ‘format effectors’? Horizontal Tab, Line Feed, 

Vertical Tab, Form Feed, and Carriage Return that were defined very 

specifically), and the control characters in positions 0/8 through 015 were 

broadly called “‘separators.”’ 

23.2 ASCII-1965 

As can be seen from Fig. 23.2, ASCII in 1965 was changed from 

ASCII-1963. Some of these changes, such as the addition of small 

alphabetics in columns 6 and 7, the change of name without change of 

essential meaning of some control characters—Start of Message (SOM) 

changed to Start of Header (SOH); End of Message (EOM) changed to 
End of Text (ETX)—can be described as evolutionary, in that they did 

not change what existed before, but simply added to it. 

Other changes, such as moving Escape (ESC) from position 7/14 to 
position 1/11; “...Are you?” (RU) in position 1/6 being replaced by 
Acknowledge (ACK); changing \ ft and <— to ~ * and _in positions 5/12, 

5/14, and 5/15, respectively, can be described as revolutionary, in that 

they did change what existed before.
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Column 

  

Bit 

Pesere 

  

b7 

b6 

b5S 
  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

                      

Row b4 b3 b2 b1 

0 0000 NULL pco 6 

1 0001 SoM | DCl ! 

2 oo10 EOA | DC2 " 

3 6011 EOM | DC3 # 

4 9100 EOT DC4 $ 

5 0101 WRU ERR % 

6 9110 RU | SYNC & 

7 0111 RELL LEM ' 

8 1ooo FEO | 80 ( 

9 1001 HT/SK| Sl ) 

10 1010 LF 52 * 

11 1011 VTAB $3 + 

12 1100 FF 84 ; ACK 

13 1101 CR 85 - (2) 

14 11170 so S6 ESC 

15 1111 SI 87 / DEL 
  

2] 

Fig. 23.1 ASCII-1963 

As described in Chapter 16, a proposed American national standard 

which specified a card code radically different from the well-established 

Hollerith Card Code was resolutely voted down at X3 by users who 

clearly foresaw the substantial economic impact of such a revolutionary 

change. As described in Chapter 21, a draft ISO standard that specified a 

change to well-established card hole patterns for alphabetic extenders was 

approved, but has not been implemented—again because of the economic 

impact on users. 
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Column| 0 1 2 4 5 6 7 

Bit b7 | 0 0 1 1 1 
Pacer b6 0 0 1 0 1 1 

bS 0 0 1 0 1 

Row b4 b3 b2 b1 

0 0000 NUL DLE SP P @ P 

1 0001 SOH Del ! A 0 a q 

2 0010 STX DC2 " R B r 

3 0011 ETX DC3 # Ss c 8 

4 0100 EOT DC4 $ T d t 

5 0101 ENQ NAK % U @ u 

6 0110 ACK SYN & F v f v 

7 0111 BEL ETB ' W g w 

8 1000 BS CAN ( H x h x 

9 1001 HT EM ) I Y i y 

10 1010 LF Ss * Zz j z 

"1 10171 vt ESC + K C k { 

12 1100 FF FS : L ~ 1 7 

13 1101 CR GS - M 1 m } 

14 111.0 so RS N * n | 

15 1111 SI US / 0 _ o DEL 

Fig. 23.2 ASCII-1965 

23.3. ECONOMIC IMPACTS 

It is reasonable to inquire, therefore, whether changes to ASCII, such as 

those described above, have had similar economic impacts. Two examples, 

to be described below, will give insight on this question.: (Both these 

examples are drawn from the author’s experience.) However, t the follow- 

ing explanation must preface the examples. 

425 

Reference was made above, and will be made below, to ASCII- 

1965. Some rather unusual circumstances surround ASCII-1965. ASCH- 
1963 had been approved and published in June 1963. Since that time, the
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American subcommittee X3.2 (now X3L2) had been working to com- 

plete the code table. There was considerable interplay between the 

American subcommittee and the ISO subcommittee ISO/TC97/SC2 
(which will be referred to in the remainder of this chapter as SC2). SC2 

was working on the ISO Draft Proposal for a 7-Bit Code. The two 

subcommittees, X3.2 and SC2, were striving to achieve compatible 7-bit 

codes. Some graphics, and some controls, were under contention and 

controversy. 

By January of 1965, X3.2 had completed its ‘‘revision” of ASCII and 

forwarded it to X3 for further processing. During the X3 balloting, a 

controversy arose with respect to graphics for Logical OR and Logical 

NOT (see Chapter 24). This controversy delayed further processing of the 

revised ASCII at that time. 
Meanwhile X3.2 had received information that, at the upcoming 

April 1966 meeting of SC2, changes would be made to the ISO Draft 

Proposal. These changes would create incompatibilities between the ISO 

7-Bit Code and ASCII. 
Therefore, X3.2 requested X3 to request ASA to delay publication 

of the revised ASCII until after the SC2 meeting. This request was 

granted and ASCII-1965, although approved by ASA, was, in fact, never 

published or distributed. 

23.4 THE 2260 DISPLAY STATION 

IBM’s first ASCII transmission product, the 2260 Display Station and 

2848 Display Control, announced in 1965, was based on ASCII-1965. 
As can be seen from Fig. 23.3, not every character of ASCII-1965 was 

implemented. Eight control characters (sufficient for the data communica- 

tions protocols of the day), the Space character, and 59 graphic characters 

were implemented. These 59 graphics, shown below, were the graphic set 

of the programming language PL/I: 

26 capital letters A to Z 

3 alphabetic extenders # $ @ 

10 numerics 0 to 9 
20 syntactics () < = >.,: 5°? 

a | % &' [ * + - = 

The symbols shown below the code table of Fig. 23.3 had the 

following meanings: 

‘Displays on the 2260 Display as ™ (End of Message symbol). Prints 
on 1053 Printer as ! (exclamation mark). 

*Displays on the 2260 Display as Ii (Check symbol). Prints on the 
1053 Printer as ‘‘ (quotation marks).
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Column 0 1 2 3 4 5 6 7 

Bit ' |b7]0 0 0 0 1 1 1 1 
Pattern | bé 0 oO 1 1 0 0 1 1 

: b5 0 1 0 1 0 1 0 1 

Row b4 b3 b2 b1 

0 ooo00 SP 0 P @ 

2] 
1 0001 SOH 1 A Q 

[2 | 
2 0010 STX 2 B R 

3 °~ 0011 ETX i 3 c s 

4 0100 EOT $ 4 _ OD qT 

5 9101 NAK 4 5 E U 

6. 0110 ACK & 6 . *-F Vv 

7 04111 ' 7 G Ww 

8 1000 CAN ( 8 H x 

9 1001 ) 9 L Y 

3 
10 1010 LF * : J Zz 

1 1011 + . K 
a 

12 1100 ; é L “ 

Le | 
13 1101 - = M 

14 11140 > N | 

15 111471 : / 2 oO                       
  

Display 1053 Printer — 
  

Fig. 23.3 2260-1965 

*Displays on the 2260 Display as A (New Line symbol). Causes the 

1053 Printer to execute a New Line function. 

‘Displays on the 2260 Display as }» (Start Manual Input symbol). 

Prints on the 1053 Printer as ¢ (cent sign).
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23.5 THE 1053 PRINTER 

It is to be noted, then, that 62 graphics were printable on the 1053 

Printer. The 1053 Printer was a typewriter-based product with a printing 

capability of 88 graphics. However, the capital letters were duplicated, 

that is, they printed whether the typewriter was in upper-case or lower- 

case shift. Accordingly, 88 — 26 = 62. 

23.6 ASCII-1967 

The standards committee X3.2 continued with its work to arrive at an 

agreed-upon ASCII, and ASCII-1967 was the result. 

23.7 ASCII-1965 VERSUS ASCII-1967 

A comparison of ASCTI-1965 (Fig. 23.2) and ASCII-1967 (Fig. 23.4) 
shows changes in 6 code positions: 

Code position ASCII-1965 ASCII-1967 
  

  

  

1/10 SS SUB 
4/0 . @ 

5/12 ~ \ 
6/0 @ ° 

7/12 7 | 
7/14 | ~ 
  

23.8 THE 2265 DISPLAY STATION 

The changes in code positions 1/10 and 5/12 do not affect the discussion 

in this chapter, since they had not been implemented on the 2260. But a 

follow-on product to the 2260, the 2265 Display Station and 2845 

Display Control, was being developed, and the pertinent question was 

Should the 2265 be compatible with the 2260 and hence in noncon- 

formance to ASCII-1967, or should the 2265 be in conformance to 

ASCII-1967 and hence incompatible with the 2260? 

Since the 2265 was planned to replace installed 2600’s, compatibility was 

a requirement. The question then became “Which was more important, 

compatibility or conformance?” In the end, it was decided that compati- 

bility was more inportant. The nonconformance to ASCII-1967 (but 

conformance to ASCII-1965) was carefully explained in the 2265 

manuals. 

A dilemma of a different kind was posed because of an incorrect 

guess on the ultimate shape of a draft standard. Before discussing this
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Column 0 1 2 7 

Bit b7| 0 0 
Pacer b6 0 0 1 1 

b5 0 

Row b4 b3 b2 b1 

0 9000 |} not |] DLE | sP P 

1 ooo01 SOH | DC i q 

2 09010 STX DC2 " r 

3 oo11 ETX DC3 i# s 

4 0100 EOT DC4 $ t 

5 0101 ENQ | WNAK % u 

6 014110 ACK SYN & v 

7 0111 BEL ETB ' w 

8 1000 BS CAN ( x 

9 1001 HT EM ) y 

10 1010 LE SUB * Zz 

11 1011 VI ESC + { 

12 1100 FF FS ; i 

13 1101 CR Gs - } 

14 1110 SO RS ~ 

15 1111 St US / DEL     

Fig . 23.4 ASCII-1967 
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problem, it is necessary to understand the operation of Pack/Unpack and 

Decimal Arithmetic instructions on the IBM System/360. 

23.9 SYSTEM/360 DECIMAL ARITHMETIC 

In the System/360, decimal arithmetic is performed with operands in the 

packed format. What does this mean? 

In what is called the ‘‘zoned format’? for numerics, each numeric 

occupies an 8-bit byte, with the high-order 4 bits called the “‘zone”’ and
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the low-order 4 bits being the familiar BCD representation for numerics. 

Referring to an EBCDIC code chart (Fig. 23.5), we see that the represen- 
tation of the numerics is as follows: 

Numeric Zone BCD numeric 
  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

0 1111 0000 

1 1111 0001 

2 1111 0010 

3 1111 0011 

4 1111 0100 

5 1111 0101 

6 1111 0110 

7 1111 0111 

8 1111 1000 

9 1111 1001 

come [12 [*[*Tel*l*[*l*l*l*yelelels 
Bit 00 01 10 4 

how "| oo | ov | 10 | 11 | oo | 01 | 10 | 11 | oo | 01 | 10 | 11 | 00 | 01 | 10 | 44 

o |o000 sp | & | - 0 

1 |oo001 / A | J 1 

2 |o0010 B | K s 2 

3 }0011 c L T 3 

4 [0100 D M U 4 

5s |or01 E| Ni v 5 

6 |ot10 F | oj] W 6 

7 |o111 G | P x 7 

8 |1000 H/] Ql y 8 

9 |1001 ~ I R Z 9 

aA [1010 ¢ ! 

B {1011 . $ : # 

c |1100 < * 4 @ 

D [1101 ( ) _ ' 

— |1110 + 13 > = 

F faaa4 | a 9 "                                         

Fig. 23.5 EBCDIC
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A string of zoned numerics, then, occupies a string of 8-bit bytes as 

follows: 

  
  

| Zone | Digit | Zone | Digit | | Zone | Digit | Sign | Digit | 
    

Note that in the rightmost (low-order) byte, the high-order 4 bits are not 

a “zone”’ but are a “‘sign.”” More will be said about this later. 

When the Pack instruction is executed on an operand in the zoned 

format above, a ‘‘packed decimal number” results as shown below: 

  
  

| Digit | Digit | Digit | [ Digit | Digit | Digit | Sign | 
  eee mew meee ween ee   

The high-order 4 bits of the low-order 8-bit byte from the zoned format 
now occupy the low-order 4 bits of the packed decimal format, all zones 

have been removed, and the 4 bits of the decimal numbers are now 

‘“‘packed’”’ together from right to left. If necessary, four zero-bits are filled 

in to the extreme left 4 bits of the resultant high-order 8-bit byte. 

23.10 PACKED DECIMALS 

This, then, is a packed decimal number, and on such numbers the 

System/360 performs decimal arithmetic (which includes comparison) 
instructions. As described elsewhere in this book (Chapter 19), the 

concept of signed numerics was incorporated into EBCDIC. A number 

with a zone of 1100 was considered a positive numeric, a number with a 
zone of 1101 was considered a negative numeric, and a number with a 

zone of 1111 was considered an absolute numeric. The zones over the 

low-order numeric in a string of zoned numerics, when that string was 

packed, became the sign of the packed numeric string. The arithmetic 

circuitry of the CPU would recognize these signs during execution of 

decimal arithmetic instructions, and would also generate the appropriate 

sign for the result. 

23.11 USASCII-8 

In order to appreciate the significance of this zone-to-sign relationship, 

consider another CPU code implemented on the System/360, called 

USASCII-8 (Fig. 23.6). 
USASCII-8 was an 8-bit representation of ASCII-1963 (Fig. 23.1). 

More will be said later about why this particular 8-bit representation was 

chosen. For now, however, consider the zone-to-sign relationship. In Fig. 

23.6, the numerics are in column hex 5, with high-order zone bits of 

0101; therefore, 0101 was chosen as the zone for absolute numerics. 

For reasons which will be described a little later, column hex A, with 

high-order zone bits of 1010, and column hex B, with high-order zone
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Column| 0 | 1 2 | 3 4 | 5 | 6 | 7 8 | 9 | A B c | D | E | F 

Bit. 00 01 10 11 
Pat. *| 

Row oo | 01 | 10 | 11 |] OO | 01 10 | 11 | 00 | 01 10 |} 11 | oo | 01 to | 11 

0 |oo00] yuL | Dco SP 0 @ P P 

1 |o000%] SOM| Dc1 ! 1 A Q a q 

2 |0010 4 EOA | DC2 " 2 B R b r 

3 |0011} EOM! DC3 # 3 c Ss c s 

4 }o0100]7 EOT| DC4 $ 4 D T d t 

5 |0101, WRU] ERR % 5 E U e u 

6 |o170) RU SYN & 6 F Vv £ Vv 

7 $0111] BEL | LEM ' 7 G W g w 

8 {10001 BS | SO ( 8 H x h x 

9 $1001] HT St ) 9 I Y i y 

A |1010] LF | S2 * : J Z 3 Zz 

B {10117 VI | 53 + 5 K C k 

c [1100] FF | 84 ; < L \ 1 

D {1707} CR | S5 - = M J m 

— [1110] SO S6 . > N + n ESC 

Fo J4114] SI S7 / 2? 0 + oO DEL                                         

Fig. 23.6 USASCII-8, 1964 

bits of 1011, were chosen as zones for positive and negative numerics 

respectively. We have then, the following: 

| EBCDIC | USASCI-8 
  

Absolute 1111 0101 

Positive 1100 1010 

Numeric 1101 1011 

The Pack and Unpack instructions operated independently of whether the 

numeric data was EBCDIC or USASCII-8. But the decimal arithmetic 

instructions had to take the differences in signs into account. This was 

controlled by bit 12 in what was called the Program Status Word (PSW). 
If bit 12 in the PSW was set to zero, the decimal arithmetic instructions 

assumed EBCDIC signs on input to the arithmetic circuits, and generated 

EBCDIC signs on output from the arithmetic circuits. If bit 12 in the 
PSW was set to one, the decimal arithmetic instructions assumed and 

generated USASCII-8 signs. (Bit 12 of the PSW was normally set at zero 

(EBCDIC). Setting it to one (USASCII-8) was under control of the 

System/360 Operating System, but a discussion of that is beyond the 

scope of this book.)
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In any event, the particular bit patterns chosen for absolute, positive, 

and negative numerics in USASCII-8 established the code structure of 

USASCH-8. More precisely speaking, the code structure of USASCII-8 

established the bit patterns for absolute, positive, and negative numerics. 

Why was that code structure chosen? This question is answered in some 

detail in Chapter 20, and need not be discussed further here. 

It is clear why column hex 5, which contained the numerics, was 

chosen for the zone for absolute numerics. But why columns hex A and 
B for positive and negative numerics? 

23.12 DECIMAL ASCII 

As described in Chapter 16, a new card code had been proposed to the 
standards committees in November 1963 that came to be called Decimal 
ASCII. This card code, which was initially accepted by the ANSI, ECMA, 

and ISO standards committees, was planned to be the card code for the 

System/360 when functioning in the USASCII-8 mode. 

In those days, the input/output card reader/punch was considered to 

be a vital part of a computing system; a keypunch to prepare input card 

data was considered as equally essential. One assumption was made. The 

practice, widespread in Hollerith punched card applications, of over- 

punching the units position of a numeric field with a 12-punch or 
11-punch to indicate a positive or negative numeric field: would be carried 

over to Decimal ASCII punched card applications. 

Since, in the Decimal ASCII card code, the 12-punch was associated 

with the alphabetics A through I, and the 11-punch with alphabetics P 

through Y, the association of these card columns in USASCII-8 with 

positive and negative numerics was the natural choice. 

23.13 COMPILERS 

Another part of the computing system which may be, and usually is, 

dependent on the CPU code is the programming system. 

For example, when a FORTRAN compiler is scanning FORTRAN 

statements, it “looks” for left and right parentheses, which enclose 

FORTRAN expressions. Actually, of course, it looks for the bit patterns 

which represent left and right parentheses; they would be 01001101 and 

01011101, respectively, for EBCDIC and 01001000 and 01001001, 

respectively, for USASCII-8. 

All compilers are similarly code dependent for all the bit patterns for 

which they “look.” 

In the spring of 1964, work was underway in IBM designing the 

Decimal ASCII keypunch and input/output card reader/punch. Also, 

programmers had been instructed to identify all code-dependent parts of
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their programs so that programming systems dependent on USASCII-8 

could be developed in due course. 

In June of 1964, at the meeting of X3.2.3 (the task group responsible 

for developing the punched card code standard), strong words against 

Decimal ASCII and for Hollerith were spoken (by the UNIVAC rep- 

resentative). 

A review of the merits of Decimal ASCII versus Hollerith was 
commenced vis-a-vis customers. It was concluded that, in general, cus- 

tomers would not accept Decimal ASCII. (Ultimately, as demonstrated 

by the rejection of the draft Decimal ASCII standard by users at the X3 

level, this conclusion turned out to be correct.) Work on the Decimal 

ASCII card equipment was halted, and never resumed. 

As explained in Chapter 16, the main concept behind the Decimal 

ASCII card code was a simple translation to ASCII. It is quite feasible to 
translate from the Hollerith card code to ASCII and hence also to 
USASCII-8, but the translation is very complex and the translation 
hardware would, in those days, have been costly. Also, signed numerics 

would present a problem. For example, in the Hollerith card code, the 

11-2 hole pattern represents K, and so it should be translated, for 

USASCII-8, to hex position AA (see Fig. 23.6). But if the 11-2 hole 

pattern represents — 2 as a signed numeric, it should be translated to hex 

position B2. And there is no way to tell, just from the hole pattern, 

whether it represents K or —2. 

A more serious problem arose. The 8-bit representation of ASCII 

known as USASCII-8 had been proposed to X3.2 and, apparently, 
accepted. But in mid-1965, this representation was opposed in X3.2, and 

eventually another representation was adopted (see Chapter 20). 
Further work to support USASCII-8, therefore, was not done. The 

CPU hardware described above for decimal arithmetic was provided in 

every model of the System/360, but without programming systems sup- 

port. The guess on the 8-bit representation of ASCII had turned out to be 

incorrect.
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Logical NOT 

24.1 ASCIF1963 

When ASCII became an approved American National Standard in 1963, 

it was not complete. There were 28 code positions in columns 6 and 7 

that had no assigned meaning. There was some controversy on whether 

small alphabetics or additional control characters should be assigned to 
these positions. This controversy was resolved when, at the 1963. October 

meeting of ISO/TC97/SC2, it was decided to assign small alphabetics in 

the ISO 7-Bit Code then being developed. 

24.2 ASCII-1965 

By January 1965, X3.2 had completed work on the Proposed Revised 

ASCII, which was compatible with the ISO 7-Bit Code. The code table is 
shown in Fig. 24.1. 

24.3 PL/I 

In this code table, a problem was perceived with respect to PL/I, the new 

programming language which had been announced with the System/360 

in April 1964. The graphics of PL/I were of five kinds: 

1 space 

10 numerics 0 to 9 
26 alphabetics A to Z 

3 alphabetic extenders # $ @ 
20  syntactics /*+-=&/ln4<> 

",.32:()% —? 

435
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Column| 0 1 2 3 4 5 6 7 

Bit b7 | 0 0 0 0 14 1 1 1 
een b6 0 0 1 1 0 0 1 1 

b5 0 1 0 1 0 1 0 1 

Row b4 b3 b2 b1 

0 oo000 NUL DLE SP 0 * P @ P 

1 0001 SOH DCL { 1 A Q a q 

2 0010 STX DCc2 " 2 B R b r 

3 0011 ETX DC3 i# 3 C 5 c 5 

4 0100 EOT pDc4 $ 4 D T d t 

5 0101 ENQ NAK % 5 E U e u 

6 0110 ACK SYN & 6 F V £ v 

7 0111 BEL ETB ' 7 G W g w 

8 1000 BS CAN ( 8 H x h x 

9 1001 HT EM ) 9 I Y i y 

10 1070 LF Ss * : J Zz j Zz 

1 1011 VI ESC + 3 K [ k { 

12 1100 FF FS ; < L ~ 1 ™ 

13 1101 CR GS - = M ] nm } 

| 14 1110 SO RS . > N “ n i 

15 11171 SI US / 2 O _ o DEL                         
Fig. 24.1 ASCII-1965 

The term syntactic meant that the programming language would assign 

some specific function to a graphic when that graphic was used in a 

programming language source statement. For example, 

* would mean multiplication, 
/ would mean division, 

& would mean Logical AND, 

| would mean Logical OR, 
would mean Logical NOT.
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24.4 THE PROBLEM 

The problem that was perceived was based on the assumption that, some 

day, PL/I would become a candidate for international standardization. 

(That assumption turned out to be correct.) At that time, among the 

many aspects of PL/I that would be reviewed would be the character set. 

Presumably, the committee would agree on the 29 alphabetic, 10 

numeric, and 20 syntactic functions, but they might well debate the actual 

graphics to be associated with the syntactic functions. For example, is © 
the appropriate graphic to be associated with the syntactic function of 

“Logical NOT’? 

A further assumption was made, which was that the committee 

would set two ground rules with respect to the graphic character set of 

PL/I. 

24.5 GROUND RULES 

Ground rule 1 

All graphics for the PL/I character set would be chosen from the set of 63 

graphics in the center four columns of the ISO 7-Bit Code. 

Ground rule 2 

The graphics associated with the syntactic of PL/I should not be as- 

sociated with a code position reserved in the ISO 7-Bit Code for 

alphabetic extenders. 

The reasoning behind these ground rules was as follows. For Ground 

rule 1, it was the judgment of many people at that time that most 

upcoming printing and display devices would have a repertoire of 63 

graphics and Space. The 63 graphics, in fact, would be those in columns 
2, 3, 4, and 5 (the center four columns) of the 7-Bit Code. For Ground 

rule 2, although alphabetic extender code positions might have graphics 

like { ] and \ in English-speaking countries, in Germany and the four 
Scandinavian countries, alphabetics would indeed be in those positions. 

Therefore, no matter how appealing a graphic in an alphabetic extender 

position of the code for English-speaking countries might be, it could not 

be used as a syntactic for any programming language. 

As can be seen from Fig. 24.1, three of the PL/I graphics, @ | and ~, 

were not in the center four columns (Ground rule 1), and also ™ and |, 

PL/I syntactics, were in alphabetic extender positions (Ground rule 2). 

The reason for @ being in code position 6/0 is interesting. It was 

forecast that, in the French national variant of the ISO 7-Bit Code, @ 

would be replaced by a. Since 4 is an accented small letter, it should be in 

columns 6 or 7 where the other small alphabetics were positioned. With 

the U.S.A. requesting that @ be in code position 4/0, and with France 

requesting that it be in 6/0, it actually moved back and forth at successive
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meetings of ISO/TC97/SC2. Ultimately, it was agreed to position it in 

4/0, and thus this part of the PL/I graphic set problem resolved itself 

satisfactorily. 

The problem with | (Logical OR) and ~ (Logical NOT) remained. 
User groups SHARE, GUIDE, and COMMON, becoming aware of this 

problem, became concerned. Letters were written from various com- 

panies in these user groups to the Chairman of X3 requesting that the 

problem be solved. Representatives from these user groups attended 

X3.2 meetings and X3 meetings to lobby for their requirement. 

  

  

    
  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

                      
  

Column 0 1 2 6 7 

Bit b7| 0 0 1 
Pane b6 0 0 1 1 1 

b5 0 

Row b4 b3 b2 b1 

0 doo 0 NUL | DLE SP . Pp 

1 9001 SOH | DC1 ! a q 

2 0010 STX | DC2 " b x 

3 0071 ETx | DC3 # c 8 

4 0100 EOT DC4 $ d t 

5 0101 ENQ MAK % e u 

6 0110 ACK SYN & £ v 

7 0111 BEL ETB ' g w 

8 1000 BS CAN ( h x 

9 1001 HT EM ) i y 

10 1010 LF SUB * j 2 

"4 1011 VT ESC + ek | ¢f 

12 1 00 FF FS ; 1 | 

13 1101 CR Gs - m } 

14 1110 so RS n ~ 

15 1111 SI US / o DEL 

Fig. 24.2 ISO 7-Bit Code 
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Various proposals were made to solve the problem. For example, it 

was proposed that | and replace ! and “*, respectively, in the code table. 

All such proposals to change the set of graphics in the ASCII code table 
were rejected by a majority of the X3.2 members. X3.2 completed its 

work on the draft Proposed Revised ASCII and forwarded it to X3. 

On the X3 letter ballot, the Joint Users Group (which included 

SHARE and COMMON among its members) voted no. A sufficient 
majority of X3 affirmative votes was received, however, and the draft 

standard was forwarded to ASA. In December 1965, the Information 

Processing Standards Board of ASA approved the Revised ASCII. 

In January 1966, X3.2 received information that changes would be 

made to the 4th Draft ISO Proposal for (6 and) 7-Bit Codes. These 

changes would not speak to the Logical OR/Logical NOT problem; they 

would be with respect to some control characters. The consequence 

would be that ASCII would then be incompatible to the ISO 7-Bit Code. 
Therefore, X3.2 requested X3 to request ASA to delay publication of the 

revised ASCII until after the April 1966 meeting of ISO/TC97/SC2. This 

request was granted. In fact, ASCII-1965, although approved by ASA, 

never was published. ; 

Changes were indeed made to the ISO 7-Bit Code at the April 1966 

meeting. The SS (Start of Special) character in position 1/10 was replaced 
by SUB (Substitute); @ and * flip-flopped again, @ ending up in 4/0 and ~ 
in 6/0; ? replaced ~ in position 5/12; | was moved from 7/14 to 7/12; and ~ 
(overline, or tilde) was placed in 7/14. This was the final version of the 

ISO 7-Bit Code. It became an approved ISO Recommendation, R646, in 

1967 (see Fig. 24.2). 

The Logical OR/Logical NOT problem was discussed at this meeting 

and a solution (of sorts) was set into the document. (This solution will be 

described later in this chapter.) 

24.6 REVISED ASCII 

ASCII itself now had to be revised to bring it into line with the changes 

made to the ISO 7-Bit Code. Once again, a draft Proposed Revised 

ASCII was under preparation by X3.2. The Logical OR/Logical NOT 

problem continued to concern X3.2. 

24.7 THE SOLUTION FOR ASCII 

Ultimately a solution was found. The solution has two parts. The first part 

is the inclusion of the following text in Section 6.4 of the ASCII standard: 

6.4 
No specific meaning is prescribed for any of the graphics in the code 

table except that which is understood by the users. Furthermore, this



440 Logical OR, Logical NOT 

standard does not specify a type style for the printing or display of 

the various graphic characters. In specific applications, it may be 

desirable to employ distinctive styling of individual graphics to facili- 
tate their use for specific purposes as, for example, to stylize the 

graphics in code positions 2/1 and 5/14 into those frequently as- 

sociated with Logical OR | and Logical NOT %, respectively. 

This text was taken to mean that manufacturers could, if they wished, 

substitute the graphics | for !, and ™ for *. 

24.8 THE SOLUTION FOR THE ISO 7-BIT CODE 

It should be pointed out that positioning the Logical NOT graphic in 

position 5/14 does not strictly satisfy Ground rule 2, since position 5/14 is 

an alphabetic extender position. However, the 10 positions designated as 

alphabetic extender positions in the ISO 7-Bit Code are viewed as being 

divided into ‘‘primary” and “‘secondary”’ by virtue of the footnotes which 
speak to them. For the 7 “‘primary”’ positions, 4/0, 5/11, 5/12, 7/11, 7/12, 

7/13, the footnote reads (in part): 

Reserved for National Use. These positions are primarily intended 

for alphabetic extensions. If they are not required for that purpose, 

they may be used for symbols... 

By contrast, for the 3 ‘“‘secondary” positions, 5/14, 6/0, and 7/14, the 

footnote reads (in part): 

Positions 5/14, 6/0, and 7/14...are normally provided for the 

diacritical signs ‘“‘circumflex,” “‘grave accent,” and “‘overline.’’ How- 

ever, these positions may be used for other graphical symbols when it 

is necessary to have 8, 9, or 10 positions for national use. 

It was reckoned that, in Germany and in the four Scandinavian countries 

where the Logical OR/Logical NOT problems would exist, these three 

“secondary” positions would not be needed for national use, so Ground 

rule 2 would not really apply to these code positions. 

The second part of the solution had to do with the graphic | (Vertical 

Line) in code position 7/12 (Fig. 24.2). Suppose a manufacturer im- 

plemented | (Logical OR) in code position 2/1, as permitted by Section 

6.4 of the ASCII standard. These two graphics, as printed or displayed, 

would be indistinguishable to the human eye. The solution to this 

problem was to change the actual graphic in position 7/12 slightly. It 

became | (still called Vertical Line) but now clearly distinguishable from | 

(Logical OR).
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As an interesting sidelight, IBM had previously called the graphic | 

Logical OR or Vertical Bar in its internal EBCDIC standard and in 

reference manuals. From this point in time, IBM called it Logical OR, to 

avoid confusion in nomenclature: 

The “‘solution”’ previously mentioned for the ISO 7-Bit Code was the 

following text in Section 4.3 of ISO R-646: 

4.3 Interpretation of graphics 

The meaning of the graphics is not defined by this ISO Recommen- 

dation. It will be necessary to reach agreement on the meaning and 

this will depend upon the particular application except in cases where 

other ISO Recommendations already exist. However no interpreta- 

tion may be chosen which is contradictory to the customary meaning. 

A graphical symbol can have more than one meaning, e.g., the 
graphical symbol — (minus) also can have the meaning of hyphen or 
separation mark. The font design of the symbol is not part of this 

ISO Recommendation. 

It is to be noted that, in contrast to the explicit solution in ASCII, this is 

an implicit solution based on the following point. The last sentence of 

Section 4.3 leaves the question of “‘font design” open; that is, a manufac- 

turer could design ! to look like | and * to look like ~. 

The Logical OR/Logical NOT problem had finally been solved.





25 
A Comparison 

of Contiguous, 
Noncontiguous, and 
Interleaved Alphabets 

25.1 THE COMPILER 

For programming languages, PL/I, COBOL, FORTRAN, ALGOL, and 
so on, a compiler is a software product which takes a user’s program and 

turns it into the set of CPU instructions that, when executed, will perform 

the calculations or operations specified in the user’s program. The user’s 

program, written in source language, is mapped into object language by 

the compiler. a 

One task performed by the compiler is the analysis of the graphics in 

the user’s source language. While we may, anthropomorphically, view the 

compiler as “looking for’’ a left parenthesis, or a right parenthesis, the 
compiler really “looks for” the bit patterns representing those graphics. 

Compilers, then, are based on the CPU code of the computing system. 

One of the requirements of the compilation process is the ability to 

separate, that is, distinguish between, the bit patterns of alphabetics, 

numerics, and nonalphamerics. 

25.1.2 Separability Requirement 

There are operations during the compilation’ process for programming 

languages that require the determination of whether a bit pattern is or is 

not in the set of bit patterns for alphabetics; that is, whether a character is 

or is not an alphabetic. “‘Variables’” or “‘names” in programming lan- 

guages are permitted to be alphameric. Names such as PAYFILE, MAN- 

NUMBER, CHKPT, SAM, A123, A124, JUMP2, JUMP3 are accepta- 
ble. Such names are called symbolic. During the compilation process, they 

443
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will be converted into absolute numeric memory addresses (and relative 
numeric addresses, in today’s technology). 

The programmer may also use absolute addresses, which will be pure 

numerics, such as 17326 or 4653. The compilation process must, in an 

early phase, be able to distinguish between absolute and symbolic addres- 

ses. Absolute addresses are always pure numerics; symbolic addresses 

may be pure alphabetics or mixed alphamerics. The rule is that absolute 

addresses must be pure numeric, and symbolic addresses must have the 

first character an alphabetic. The rule for distinguishing, then, applies to 

the first character: if it is numeric, the address is absolute; if it is 

alphabetic, the address is symbolic. The need to determine whether a 

character is or is not alphabetic, and whether a character is or is not a 

numeric, is fundamental to the compilation process. 

Note that this rule must be quite rigorous. If the first character of an 

address is not a numeric, it does not follow that it is necessarily an 

alphabetic. An error may have introduced an initial character that is 

neither a numeric nor an alphabetic, and the compilation process must be 

able to detect such errors. 

It is in the context of this compilation requirement that the contigu- 

ous alphabet of ASCII and the noncontiguous alphabet of EBCDIC may 

be compared. 

25.2 ASCil AND EBCDIC 

The 7-Bit Code, ASCII, and the 8-Bit Code, EBCDIC, are structurally 

dissimilar. Both codes, generically, may be termed BCD codes; that is, 

the four low-order bits of the bit patterns for numerics are binary-coded 

decimal. The structural dissimilarity arises from the bit patterns assigned 

to alphabetics. For ASCII, the alphabetics are assigned to a contiguous 

set of bit patterns. For EBCDIC, the alphabetics are noncontiguous. 

Computers process bit patterns. Let us examine the bit patterns of 

the alphabetics in ASCII and in EBCDIC, and apply them to the 

compilation requirement. The fact that ASCII is a 7-bit code, and 
EBCDIC an 8-bit code, is immaterial to this discussion. 

Consider Fig. 25.1, which shows the bit patterns for the alphabetics 

of ASCH and of EBCDIC. The alphabetic bit patterns for ASCII run in a 

contiguous block from 100 0001 for A to 101 1010 for Z. The alphabe- 

tics for EBCDIC run in three blocks, contiguous within blocks, but with 

gaps between blocks: 

1100 0001 for A to 1100 1001 for I, 
a gap from 1100 1010 to 1101 0000, 
1101 0001 for J to 1101 1001 for R, 
a gap from 1101 1010 to 1110 0001, 

1110 0010 for S to 1110 1001 for Z.
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ASCII EBCDIC 

Bit pattern Meaning Bit pattern Meaning 

000 0000 Null 0000 0000 Null 

100 0000 @ 1100 0000 { 

100 0001 A 1100 0001 A 

1100 1001 I 

. . 1100 1010 Unassigned 

101 1010 Z . . 

101 1011 [ . : 

: : 1101 0000 \ 

. : 1101 0001 J 

141 1111 Delete . . 

1101 1001 R 

1101 1010 Unassigned 

1110 0000 \ 

1110 0001 Unassigned 

°1110 0010 S 

1110 1001 Z 

1110 1010 Unassigned 

1111 1111 Eight ones         

Fig. 25.1. ASCII and EBCDIC alphabetics 
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25.2.1 Tests for Alphabetics 

There are three methods by which the determination of alphabetics may 
be made: 

Method 1. High-order bit test. 

Method 2. Bracket test. 

Method 3. Translate and test. 

High-order bit test 

It is not uncommon to find the statement: “The contiguous alphabet of 

ASCII may be determined by a high-order bit test, whereas the noncon- 

tiguous alphabet of EBCDIC cannot.” This is an imprecise, and indeed, 

incorrect statement. 

It was certainly an objective, in the design of ASCII, that the 

alphabetics be determined by a “‘single high-order bit test.’” However, this 

objective was not accomplished. 

In order to examine this aspect of ASCII and EBCDIC, it will be 

necessary to introduce some elementary Boolean notation and concepts. 

Three Boolean operators will be used, NOT, Exclusive OR, and AND, as 

defined in Chapter 2. (Note: The derivation is not given for the Boolean 

equations that follow.) 

If we interpret the meaning of “alphabetic” to mean “‘columns in the 

code table which contain alphabetics, upper or lower case,”’ then it can be 

shown that 

for ASCII alphabetic = b7 (Fig. 2.26), 

for EBCDIC alphabetic = e0 a (e2 v e3) (Fig. 2.28). 

If we interpret the meaning of “alphabetic” to mean “‘columns in the 

code table which contain upper-case alphabetics”’ (this is closer to the 

requirement for the compilation process), it can be shown that 

for ASCH alphabetic = b7 A b6, 

for EBCDIC alphabetic = e0 Afel A (e2¥ e3)]. 

In the first interpretation, it could be said that ASCII meets the objective 

of a “high-order bit test.’’ Perhaps this is what is meant when it is stated 
that ““ASCII had a high-order bit test for alphabetics.”’ 

Both of the interpretations above, however, are inadequate for the 

requirement of the compilation process. There is a nonalphabetic in 

column 4, and there are five nonalphabetics in column 5 of ASCII. And 

there are nonalphabetics in each of hex columns C, D, and E of EBCDIC. 

There are six nonnumerics in column 3 of ASCII and six in hex column F 

of EBCDIC. It is necessary, in the compilation process, to determine 

precisely and rigorously whether a particular bit pattern is, or is not, in 

the sets of alphabetic or numeric bit patterns.
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If the high-order bit test were actually used by compilers (it isn’t— 

because there are more efficient and less cumbersome methods available), 

it would be necessary to evaluate Boolean equations. As a matter of 

interest, the Boolean equations for alphabetics, numerics, and al- 

phamerics for ASCII and EBCDIC are shown (with some simplification, 

taking common expressions into account). 

EBCDIC 

Common Expressions 

A=e0ael 

B=e2Ae3_ 

C=e4 (esa 6) 

D= [ed ne5]¥ [e5 A(e4re6)] 

alphabetic = AA{[BAD] [e2, A(CAe7)}} 
alphameric = AA{D v {Ca [(e2\e7) vy BP} 

ASCII 

Common Expressions 

E=b3Ab2 

F=[b7 A (b6Ab5). S)IA [b4 v (b4 \E)] 

G=b7Ab6n C{b5 A 64}. {Eabl} 
¥ {{b5 A b4}A {[b3 A (b2 Ab1)] v b3}H) 

alphabetic =G 

alphameric = Fv G | 

For the compilation process described above, the programming flow 

chart* would be as follows: 

Is it an alphameric? —~> Error routine 

[es 

Is it an alphabetic? "> Numeric routine 

yes 

Alphabetic routine 

The relative complexity of the programs for EBCDIC and ASCII can 

be estimated by counting the number of Boolean operators A for AND, 

+ for OR, and — for NOT, in the equations. 

*The determination of “numeric” in the above flow chart was achieved not by 

evaluating a specific Boolean equation but as a consequence of determining first 

‘alphameric,”’ then “alphabetic” or ‘“nonalphabetic.”
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EBCDIC ASCII 

AND OR NOT AND OR NOT 

Common expressions 7 1 5 14 3 10 

Alphameric 3 2 1 0 1 0 

Alphabetic 4 1 2 0 0 0 

Totals 14 4 8 14 4 10               
It may be seen, therefore, that the relative complexity of determining 

alphamerics, alphabetics, and numerics for ASCII and EBCDIC by 

high-order bit test is approximately the same. 

Bracket test 

In this method, the question is whether a bit pattern under examination is 

within the outermost bit patterns of a contiguous block of bit patterns. 

Suppose the minimum bit pattern of the block is Emin, the maximum bit 

pattern of the block is Emax, and the bit pattern of the character under 

examination is X. Then four computer-comparison instructions—two 
comparison and two branch instructions—will determine if X is in the set 

bracketed by Emin and Emax. 

Step 1. Is X less than, equal to, or greater than Emin? 
|yes yes yes 

X is notinset Xisinset go to Step 2. 

Step 2. Is X less than, equal to, or greater than Emax? 

[yes yes [yes 

X is in set X isin set X is not in set. 

A bracket test consisting of four instructions determines if a bit 

pattern is within a set of contiguous bit patterns. Note then that to make 

the rigorous determination, two bracket tests (eight instructions) are 

required for ASCII—one for the alphabetic block and one for the 

numeric block. For EBCDIC, four bracket tests (sixteen instructions) are 

required—one for each of the three alphabetic blocks and one for the 

numeric block. 

Translate and test 

In some modern computers, there is an instruction (in the System/360 or 

System/370, this instruction is called ‘“Translate and Test’’) that, by
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reference to a table of bit patterns stored in memory, can determine 

whether a bit pattern is or is not in a set of bit patterns, regardless of 

whether the set is contiguous or noncontiguous. That is to say, to make 

the rigorous determination, we have one instruction for ASCII or one 

instruction for EBCDIC. 

Is it an alphabetic, a numeric, or a nonalphameric? 
|yes . [yes [yes . 

alphabetic numeric error 

routine routine ' routine 

In summary, the high-order bit test would be approximately the same 

for ASCII and EBCDIC; the bracket test requires eight instructions for 
ASCII and sixteen instructions for EBCDIC; translate and test requires 
one instruction for either ASCII or EBCDIC. Note that while the bracket 

test was the method that would be used with older 6-bit computers, it is 

doubtful if any of those 6-bit computers now process 7-bit ASCII data. 

It may be concluded that while contiguity and noncontiguity of 

alphabetics certainly characterize a difference between ASCII and EBC- 

DIC, this characteristic cannot be used to determine superiority or 

inferiority in any determinative way. 

25.2.2 Translation to Hollerith Card Code 

There is another aspect of the ASCII and EBCDIC alphabets that 

serves as a basis for comparison. This aspect is the translation relationship 

to the Hollerith card code. (See Figs. 2.26, 2.28, and 17.23.). 
The well-known BCD relationship-holds for numerics 1 through 9 in 

both ASCII and EBCDIC. 

Low-order 

Digit punch ~— four bits 
  

0001 

0010 

0011 

0100 

0101 

0110 

0111 

1000 

1001 O
m
M
A
A
D
A
D
P
W
N
 eR

 

  

For EBCDIC, this BCD relationship holds for alphabetics A through I, J 

through R, and S through Z. For ASCII, it holds only for alphabetics A
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through I. In building a hardware translator (card code to/from bit code) 

the BCD relationship must be provided for numerics 1 through 9 for both 
ASCII and EBCDIC. Then, for EBCDIC, this same part of the translator 

can be used for all 26 alphabetics, while for ASCII it can be used only for 

alphabetics A through I, and the alphabetics J through Z require addi- 

tional hardware circuitry. 

As long as the punch card persists both as a data entry and as a data 

storage medium (volume of punched card sales continues to increase each 

year, at least at the time of writing this book, despite the competition of 

other media), EBCDIC will be a less complex code than ASCII to 
implement in hardware. And the lesser complexity is attributable specific- 

ally to the particular noncontiguous alphabet for EBCDIC. 

25.2.3 Collating Sequence of Alphabetics 

In both ASCII and EBCDIC, the collating sequence for alphabetics 

corresponds to the bit sequence either directly or relatively. American 

manufacturers who market computing systems in Europe. must consider 

the ISO 7-Bit Code, and the 29-letter alphabets of Germany, Norway, 

Sweden, Denmark, and Finland. The three additional letters for these 

countries are as shown in Fig. 25.2. 

Germany A O U 

Denmark A @ A 

Norway E @ A 
Sweden A O A 

Finland A oO A 

Fig. 25.2 Diacritical letters 

In developing the ISO 7-Bit Code, provision was made for these addi- 
tional alphabetics by assigning three code positions contiguously following 

the letter Z in the code table. Provision for these diacritical letters is also 
made in EBCDIC, but not in code positions contiguous to the other 

alphabetics. | 
The fact that the bit patterns for these 29 letters are not in relative 

binary sequence in EBCDIC means that additional steps must be taken in 

sorting passes. 

Interestingly, the fact that the 29 bit patterns are in relative binary 

sequence in the ISO 7-Bit Code does not improve the sorting situations 

by an iota. For Germany, the three umlaut letters A, O, U collate 
adjacently to the non-umlaut letters A, O, U and do not follow the letter 

Z as shown in the code table.



25.3 Interleaved Alphabets 451 

In Sweden, by contrast, the diacritical letters do collate immediately 

after the letter Z. But, by a strange quirk (the discussion of which is 
beyond the scope of this book), the Swedish national standard for the 

7-Bit Code positions the three diacritical letters following the letter Z, 

but in a sequence different from their official collating sequence. This 

anomalous situation also exists in Finland. 

Exactly the same extra steps must be taken in sorting passes to sort 

ISO 7-Bit Code data in Germany, Sweden, and Finland as are taken to 

sort EBCDIC data. 

25.2.4 Signed Numerics 

Another factor for comparison is the inherent inability of ASCII, and the 

inherent ability of EBCDIC, to provide for signed numerics. This has 

been discussed in Chapter 19. The inability of ASCII and the ability of 

EBCDIC are direct consequences of their contiguous and noncontiguous 

alphabets. The noncontiguous alphabet of EBCDIC is based on the 

Hollerith Card Code, and it was from punched card applications that the 

practice of overpunching numerics to represent signed numerics arose. 

25.3 INTERLEAVED ALPHABETS 

During the early days of code development and standardization, the 

concept of interleaving small and capital letters in the code was frequently 

proposed. Indeed, as described in Chapter 3, the Stretch Code (Fig. 25.3) 

and the Information Processing Code (Fig. 25.4) did provide interleaved 

alphabets. 

The first question for an interleaved alphabet was whether the small 
or capital letter should precede within the alphabetic pair. The primary 

reason cited for interleaving the alphabetics was to make sorting and 

collating more efficient. It is engaging that the designers of the Stretch 

Code decided that the small letter should precede the capital letter in the 

pair, whereas the designers of the Information Processing Code chose 

that the capital letter should precede the small letter. 

During the development of ASCII, it was proposed that the al- 

phabets should be interleaved. Various factors spoke against such a 

decision (not the least of which was the fact that the ASCII designers had 

not, at that time, decided whether or not to include small letters in the 

code), but the example which spoke most strongly against interleaving 

was the “Telephone Directory Problem.”’ 

25.3.1 The Telephone Directory Problem 

When the telephone directories of different cities are studied, it will be 

observed that there is no common rule for sequencing names. Different
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Fig. 25.3 Stretch, 120-character set 

cities have different rules. For the purposes of illustration, consider the 

following rules: 

A. A name shall be given in the following sequence: 

First, the last name; 

then, the first name or initial; 

then, the second name or initial; 

and so on. 

. Names and initials shall be separated by a space, but with no periods 

Or commas. 

““Space”’ shall collate low to all alphabetics. 

. The alphabetics shall collate in their natural sequence. Thus, A, B, C, 

D,...,X, Y, Z, or a, b, c, d,...,X, y, z. 

A capital letter shall collate low to its corresponding small letter. 

Thus, ““MacDonald”’ shall collate low to ‘““Macdonald.” And ‘“‘Mac- 

donald Peter” shall collate low to ‘““Macdonald Robert.”
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Fig. 25.4 IPC, 7-bit subset 

Then, under these rules, consider a name with five spellings: 

Van De Water 
Van de Water 

van De Water 

van de Water 

Vandewater 

453
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And consider another name also with five spellings: — 

Van De Wenter 

Van de Wenter 

van De Wenter 

van de Wenter 

Vandewenter 

And, finally, suppose that for each of these ten names, there exists a 

“John” and a “Peter.” 

What will be the sequence for these twenty names? (We must also 

assume, of course, that there are other names, and these are indicated 

below by dots.) 

* Van De Water John 

Van De water Peter 

Van De Wenter John 

Van De Wenter Peter 

* Van de Water John 

Van de Water Peter 

Van de Wenter John 

Van de Wenter Peter 

Vandewater John 

Vandewater Peter 

Vandewenter John 

Vandewenter Peter
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* van De Water John 

van De Water Peter 

van De Wenter John 

van De Wenter Peter 

van de Water John 

van de Water Peter 

van de Wenter John 

van de Wenter Peter 

Consider now the problem of a stranger to the city who wants to look 

up a name in the telephone directory. He knows he wants to find, let us 

say, John Van De Water, but is not sure which of the five possible 

spellings is the correct one. Then he must search the telephone directory 

in five separate sections, as indicated by the asterisk above. The separa- 

tion of these sections depends on how many intervening names there are. 

[f he checks all five sections, he will locate five names, one of which is the 

one he wants. By a process of phoning and elimination, he can thus locate 

the one he wants. 

There are two adverse attributes of this particular sequence: (1) the 
five possible names may be widely separated, and thus not easy to find. 

(2) Unless the stranger knows that there are five possible spellings, he 

may possibly not locate all five names, and may, in fact, not find the 

actual name that would turn out to be the correct one. 

Is it possible to construct different rules for sequencing names so that 

the particular problem above is simplified? Consider the following: 

A. A name shall be given in the following sequence: 

First, the last name; 

then, the first name or initial; 

then, the second name or initial; 

and so on.
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B. Names and initials, as printed, shall be separated by a space, but with 
no periods or commas. However, on sorting or collating operations, 
the spaces shall be ignored; that is, the names and initials will be 
treated as if concatenated with ‘“‘space” characters removed. 

C. The alphabetics shall collate in their natural sequence. Thus, A, B, C, 
D,...,X, Y, Z, or a, b, c, d,...,x, y, z. 

D Capitalization will be ignored in sorting and collating operations, 
unless two names are otherwise identical, in which case a capital 

letter shall collate low to its corresponding small letter. Thus ‘‘Mac- 

Donald John” and “Macdonald John” will both collate low to 
“Macdonald Peter,” but “MacDonald John” will collate low to 
“Macdonald John.” 

Under these rules, the twenty names of the example will collate as 
follows: 

* Van De Water John 
Van de Water John 

Vandewater John 

van De Water John 

van de Water John 

* Van De Water Peter 
Van de Water Peter 

Vandewater Peter 

van De Water Peter 

van de Water Peter 

* Van De Wenter John 
Van de Wenter John 

Vandewenter John 

van De Wenter John 

van de Wenter John 

* Van De Wenter Peter 
Van de Wenter Peter 

Vandewenter Peter 

van De Wenter Peter 

van de Wenter Peter 

The stranger’s problem is clearly much simplified by such a sequence, 

for all names that ‘“‘sound”’ the same (which is what he knows) appear in a 
block, regardless of idiosyncratic spelling with capital/small letters or 

spaces.
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This example has been given, not in order to champion any particular 

set of rules for sequencing names, but rather to point out that there can 

be different rules, depending on particular requirements. It may be 

pointed out that the first set of presented rules above makes for simple 

sorting and collation algorithms but a complex look-up algorithm, while 

the second set of rules makes for a simple look-up algorithm but complex 

sorting and collation algorithms. Indeed, if the second set of rules was 

implemented in a data processing application, it would be helpful to carry 

the ‘“‘name”’ twice, first without spaces for collating purposes, and again 

with spaces for printing purposes. Then the ignoring of capitals except 

when two names are otherwise identical can be programmed more simply. 

It was in the light of examples such as the above that it was 

recognized that whether capital letters should collate low or high to the 

corresponding small letters was a matter of taste (that is, depended on the 

particular application), and that the interleaving of capital and small 

letters in a coded character set might be useful in some applications but, 

in general, would not serve a useful purpose. 

In fact, a more general realization emerged. With respect to alphabe- 

tics, numerics, and specials, the collating sequence depends on the appli- 

cation and will be different for different applications. It was this realiza- 

tion that said the interleaving of alphabetics was much less significant 

than other code criteria that spoke against interleaving.





26 
Code Extension 

and 
Examples 

A problem that eventually arises with almost any code is that the code 
positions become full, but new and additional requirements are put on the 
code. New equipment designed to operate with the code may need new 
control functions, or applications for new or old equipment may require 

additional graphic characters. How may these additional characters be 

provided, if there are no unused bit patterns in the code? This problem 
and its solution are the subject of what is called code extension. The 

solutions generally fall under the headings of substitution, precedence 

codes, and Escape sequences. 

26.1 SUBSTITUTION 

Examples of substitution, particularly to provide graphic characters, are 
common. Some have been described in this book; the “scientific”? and 

“commerical” duals of BCDIC (Chapter 4); the alphabetic extenders for 

certain European alphabets (Chapter 4); Katakana and other non-Latin 

alphabets (Chapter 18). 
Substitution to provide additional control functions is less frequent 

than graphic substitution, but not unknown. In fact, the designers of 

coded character sets, realizing that such a requirement will eventually, if 
not initially, be put on the code, have placed what are called general 

purpose control characters in the code. 

For example, in the 7-Bit Code and in EBCDIC, there are four 
control characters called Device Control 1, Device Control 2, Device 

Control 3, and Device Control 4 (DC1, DC2, DC3, and DC4, respec- 
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tively). The definition of these control characters is intentionally broad 
and unspecific—““A device Control character is used for the control of a 
device.” The nature of the control is not specified. When a particular 
device needed one or more of the Device Control characters, the code 

designers would define them specifically and for functions peculiar to that 

device. Some other kind of device would use one or more of the DC’s for 
some specific control functions, but the functions for the DC’s of one 

device need not, and probably would not, match the functions for the 
DC’s of the other devices. 

Under this philosophy, the code designers realized that interchange 
of data between these different kinds of devices would then be expected 
to be difficult or impossible without human intervention, but they pre- 
sumed that interchange of data between unlike devices would seldom if 
ever be required. When rare instances arose where such interchange was 
required, the humans operating the different devices would have to 
understand the difference in the DC’s, and accommodate it in some 

fashion. 
Four additional general-purpose characters, the so-called informa- 

tion separators, were designed into the 7-Bit Code and into EBCDIC. 
File Separator, Group Separator, Record Separator, and Unit Separator 
were defined broadly to be used to separate blocks of information. But 

how they were to be used to separate blocks, what philosophy of file and 
record structuring was to be used, was intentionally not specified. Such 
detailed specification would be left to the particular data processing 
application in which the separators would be used. Initially, a hierarchial 
philosophy of structuring information blocks was defined. A ‘“‘file’’ was 
larger than, and would enclose, “groups.” A “group” was larger than, 

and would enclose, “‘records.’”’ And a ‘record’? was larger than, and 

would enclose, “‘units.’”’ Eventually, the standards committees made this 

hierarchial specification optional; that is, the separators need not be used 
hierarchially, but if they were, then the hierarchy would be as described 
above. The standards committees realized that, as with the Device 

Controls, the unspecificity of the information separators could lead to 
difficulty of information interchange, but such difficulties could be worked 
out in the rare instances when they arose. 

26.2 PRECEDENCE CODES 

Another general technique for extending the repertoires of codes was the 

technique of precedence or shift characters. This technique has been 
described with respect to CCITT #2 (Chapter 3), and with respect to 

PTTC (Chapter 6). Under this technique, the meanings of a bit pattern in
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a specific subset of bit patterns (of the total set of different bit patterns) 
depends not only on the bit patterns itself, but also on which precedence 
character preceded it. By this technique, although the total number of 
different bit patterns of a code is mathematically prescribed, the total 

number of meanings associated with the bit patterns can be extended. 
In CCITT #2, a 5-bit code, there are 32 different bit patterns, but 52 

graphic meanings and 6 control meanings—a total of 58 different mean- 
ings. In PTTC, a 6-bit code with 64 different bit patterns, there are 94 

graphic meanings and 17 control meanings—a total of 111 different 
meanings. 

The designers of the 7-Bit Code, realizing that the future might well 
see the requirement for more than 128 different code meanings, placed 
two precedence characters in the code, Shift In and Shift Out. These two 

characters are also included in EBCDIC. The standards committees are 
(as this book is written) studying the ways in which these two precedence 

characters may be used for extension of the 7-Bit Code. 

26.3 ESCAPE SEQUENCES 

Another means of extending the repertoire of meanings of a code is by 
use of the Escape character. Under this technique, the Escape character 
and the succeeding character are to be regarded as an entity, defining 
some control function. The character directly following the Escape 
character is to be regarded as not having its normal meaning. The two 
characters to be regarded as an entity are called, in the literature, an 
Escape sequence. Meaning is associated with the Escape sequence. Es- 
cape sequences may consist of more than two characters and may be 

variable in length. (The philosophy of variable length Escape sequences is 
not described in this book.) It is to be noted that this technique is a form 
of a precedence code. It is interesting to observe the difference between 
this form of precedence code and the one described above. 

Under the techniques described for CCITT #2 and for PTTC, the 

precedence or shift character establishes a mode, which remains in effect 
until another shift character appears, which establishes, in its turn, its 

mode. Such characters are described in the literature as “‘locking shift 

characters’; that is, a shift character “‘locks’” a mode, which remains 

“locked” until the other shift character “unlocks” that mode and “locks” 
its mode. By constrast the Escape character affects the meaning of only 
the following character. It has been described in the literature as a 

nonlocking shift character. 
Another character in the code is called Data Link Escape (DLE). 

The DLE character is to function in a manner similar to the Escape
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character, but its use, and the meanings assigned to DLE sequences, is for 
use on data communication products only (hardware or software). DLE 
sequences will not be discussed in this book. 

As an example of the use of Escape sequences, let us look at PTTC. 
PTTC was designed before the 7-Bit Code was designed, and its nonlock- 
ing shift character was called Prefix, instead of Escape. There are 20 
Prefix sequences assigned in PTTC. The meanings assigned to them are 

control meanings, not graphic meanings. The second character of a Prefix 

sequence is a graphic character (with two exceptions). Since PTTC is a 
shifted 6-bit code, the graphic bit pattern of a Prefix sequence will have 

Prefix sequence Control meaning 
  

II PRE 1 or PRE Printer 1 on 

  

  

  

  

  

  

  

  

PRE 2 PRE x Printer 2 on 

PRE 3 PRE ; Punch 1 on 

PRE 4 PRE : Punch 2 on 

PRE 5 PRE % Printer 1 off 

PRE 6 PRE ’ Printer 2 off 

PRE 7 PRE ” Punch 1 off 

PRE 8 PRE * Punch 2 off 

PRE 9 PRE ( Reader 1 on, Reader 2 off 

PRE 0 PRE ) Reader 2 on, Reader 1 off 

PRE a PRE A Ribbon shift up 

PRE b PRE B Ribbon shift down 

PRE c PRE C Select single line feed 
PRE d PRE D Select double line feed 

PRE e PRE E Card punch duplicate 
PRE g PRE G Card punch alternate program 

PRE h PRE H Card punch release 

PRE j PRE J Reader skip stop 
  

PRE LF PRE LF Form feed 

PRE SP PRE SP Vertical tab 
  

Figure 26.1
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two graphic meanings, but this difference in graphic meaning does not 
affect the meaning assigned to the Prefix sequence itself. That is to say, 
the control meanings of Prefix sequences (like the control meanings of 
single character controls) are independent of the preceding shift character 
(Upper Case or Lower Case). The 20 Prefix sequences of PTTC and their 
meanings are shown in Fig. 26.1. 

Products using either Escape or Prefix sequences not only have to 

build in the hardware to execute the control meaning assigned to the 

sequence, but also have to suspend the normal reaction to the second 

character of the sequence. That is, once either an Escape or Prefix bit 

pattern has been detected in the data stream by the product, the product 

must then be set not to react normally to the bit pattern(s) immediately 
following. For example, when a ‘““PRE A” sequence appears in the data 
stream on the IBM 1050 (a product implementing PTTC) not only is the 

typewriter ribbon shifted up, but the letter A is not printed, nor is the 

typewriter carriage spaced. 

Escape sequences of two, and even three, characters have been 
implemented on modern printers, display devices, and terminals, provid- 
ing many and varied control functions. 

An interesting current development on the standards committees is 
that an Escape sequence itself (for certain Escape sequences) is being 
regarded as having locking-shift meaning. That is, a particular Escape 
sequence is to be regarded as establishing a particular mode of meanings 
to be associated with subsequent bit patterns in the data stream, which is 
to remain in effect until some other particular Escape sequence disestab- 
lishes that mode and establishes its own mode of meanings to be as- 
sociated with subsequent bit patterns in the data stream. Further details 
of this philosophy of code extension are not given in this book. It would 
take a book itself to explain and describe fully the intricacies of code 

extension envisaged by the standards committees under the current 
philosophy of Escape sequences. 

26.4 TEXT/360 

A particular example of code extension, text processing under Text/360 
(an IBM software product), will now be described. It is interesting to 

appreciate the design criteria placed on this system for text processing 

and to see how the design criteria affected the system design. 

26.4.1 Text Processing Defined 

First, it is necessary to understand what is meant by “text processing.” 

Most data processing applications are satisfied from a printing or display
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point of view with 26 alphabetics, 10 numerics, and a varied number of 

specials. The vast majority of fast, parallel printers provides character sets 
up to 64 characters. These various character sets, from 48 to 64, have one 

aspect in common. They have one set of alphabetics—26 letters in 
English-speaking countries, up to 29 letters in some European countries. 
And, in general, the alphabetics are block capitals (sometimes referred to 

as upper-case letters, but this is a misnomer in the context of only one set 

of alphabetics). 
In everyday life, books, magazines, newspapers, etc., are printed in 

two cases of alphabet, capital letters and small letters. The printing of a 
particular document may involve many different fonts of letters but only 
two cases. The question arose, Could such documents be printed by data 
processing equipment, and would it be economical to do so? 

The answer to the first part of the question is affirmative. What is 
required is a printing element with two alphabetic cases. Such printing 

elements are entirely feasible. In general, parallel printers with such 

elements are either more costly or they print more slowly (which in- 
creases printing costs), or both. This realization leads naturally to the 
second part of the question. Since most data processing applications are 
satisfied with one case of alphabetics and since the provision or use of 
parallel printing with two alphabetic cases leads to higher costs, it is, in 

general, uneconomical to use two alphabetic cases. 

However, there is a certain class of data processing where it is either 
economical or necessary to use two alphabetic cases. This class of 

applications is grouped under the name of text processing. Let us look at 
the characteristics of text processing. 

There are four identifiable requirements. A particular text-processing 

application may not have all of these requirements: 

1. Two cases of letters, for ease of human reading. Humans find that a 

page of text with capital and small letters is easy to read; that 

text with small letters only is less but not much less easily readable; 

and that text with capital letters only is much less easily read- 

able. For example, 

John and Peter went to Poughkeepsie. 
john and peter went to poughkeepsie. 
JOHN AND PETER WENT TO POUGHKEEPSIE. 

2. Two cases of letters for unambiguity. In chemical abstracting, tor 

example, carbon monoxide (CO) and cobalt (Co) can be disting- 

uished only if upper and lower case letters are used. 

3. A large body of text that is expected to require numerous changes of 

greater or lesser degree.
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4. Symbols not normally found on data processing printers. For 

example, 

"corners, intersections, vertical and horizontal lines for drawing 

charts, tables, boxes in flow diagrams; 

=" arrows for drawing flow charts and electronic circuits; 

= mathematical symbols, for use in some of the more exotic 

programming languages; 

=" accents and diacritical marks (for European, Russian, etc., 

names and book titles) in library bibliographic work. 

Some of these applications, where duocase alphabetic capability is 
the only requirement, can be processed without the use of a computer. A 
skilled operator of a typewriter with some means of storage—paper tape, 

magnetic tape, tape cassette/cartridge, magnetic cards, punched cards— 
can, and frequently does, perform text processing, including the frequent 
changes. (The initial and subsequent drafts of this book were prepared on 
an IBM Magnetic Tape Selectric Typewriter.) 

An available computer will enter the application when the skilled 

operator and typewriter with storage are not available..With.a computer, 

of course, a program is necessary, as well as an appropriate printing 

capability. 

26.4.2 Development 

Text/360 is the name of a program that is the extension of an earlier 
program, Text 90. Text 90 was a program written for the IBM 7090 
computing system. It was developed to meet a requirement which had 
arisen in internal operations. As a computing system is designed, and goes 
through succeeding stages of development to completion, the functional 

specifications change, often from day to day. The document containing 

the functional specifications changes in consequence. 
It was found that the process of typing and retyping these documents 

was too slow to keep up with the design and development schedules. It 

was suggested that a computer program, with appropriate input and 

output equipment, could produce these documents, and could produce 

them with sufficient rapidity to meet the schedule demands. The program 
was written, debugged, and used. It was called Text 90. The functional 

specifications for the System/360 were documented by Text 90. Some 

System/360 reference manuals for customers were printed by Text 90 
(and then reproduced by other printing and publishing methods). 

Text/360 was an extension of Text 90 which was written to operate 
on the System/360. It also was developed for internal operations. But it



466 Code Extension and Examples 

was judged it would be useful externally and it was therefore announced 
and made available to customers. The customer reference manual itself 
for Text/360 was printed by Text/360. 

Let us look at the criteria that were set for Text 90, and subsequently 

for Text/360. These criteria came from constraints on the input character 
set and requirements on the output (printed) character set. 

1. The output character set should contain 

= the Space character, 

= numerics, 

=" small alphabetics, 

=" capital alphabetics, 

=" specials normally found on the date processing printers of the 
time, 

=“ symbols for drawing charts, tables, programming flow charts, 
etc., 

# symbols for plotting graphs, 

“ mathematical symbols beyond those normally found on printers 
of the time. 

2. The input character set should 

" be keypunchable without multipunching; that is, the set should 
not exceed 48 characters numerically, for the 48-character 
keypunches of the day. This criterion, was extended for 
Text/360 to 64 characters, but the 48-character set was retained 

as an option; 

=" be optimum, from a keypunching productivity point of view; 

=" contain graphic characters and characters that have printable 
graphic representation for controlling the various processes of 
text processing—capitalization (both initial letters of words and 
complete words), editing, altering, underscoring, etc.—so that 
the input data could be listed completely. 

Two decisions were made before the criteria could be applied: (1) 
there would be 120 graphic characters and 6 control characters in the 
output set; and (2) the characters beyond 48 would be represented by 

either two- or three-character sequences. 

26.4.3 System/360 and EBCDIC 
The rest of the discussion will be in the context of Text/360, the 

System/360, and EBCDIC.
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There were some considerations that went into the final design. 

1. The frequency of use of small letters in text far exceeds the fre- 

quency of use of capital letters. In normal text, capital letters are 
used only as initial letters for sentences, names of people, towns, 

cities, countries, streets, etc. In text, titles might appear, which might 

be capitalized in their entirety, but titles are few, relative to lines of 
text. In a 48-character set, only one of the small or capital alphabe- 

tics can be represented as a single character; the other will have to be 
represented by at least a 2-character sequence. So small letters 
should be represented by single characters, the alphabetics found on 
the keypunch. 

2. Numerics will appear more frequently than special symbols in text. 

So numerics should be represented by single characters, the numerics 
found on the keypunch. 

3. Specials such as period and comma, which appear more frequently 
than other specials, should have single character representation. 

4. From keypunching statistics, it was known that numerics and al- 

phabetics are keypunched with a better production speed than spe- 

cials. Therefore, the final character, or characters, of a two- or 

three-character sequence should be a numeric or an alphabetic, not a 

special. 

5. From the preceding considerations, there was a conclusion that itself 

became a consideration. If the numerics and alphabetics were used as 
single characters (giving rise to 36 characters), and if each of two 
different precedence characters were used with the alphabetics and 
numerics (giving rise to an additional 236 characters), a maxi- 
mum of 3X36=108 characters would be required. If more than 

108 characters were required, either a third precedence character 

would be needed, or a double precedence character in a three- 

character sequence would be needed. 

Now some further design decisions were made. 

1. The output character set would consist of 120 graphics (to be 

described later). 

2. Graphic representation for the six control operations would be as 
follows: 

* for single capitalization; 

@ for continued capitalization (beginning and end of capitalization 
to be represented by the same graphic);
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$ for underscoring (beginning and end of underscoring to be 
represented by the same graphic); 

— for editing; 

+ for altering; and 

/ for graphic set extension. 

It is to be noted that the operation of single capitalization is also 
really graphic set extension, since it will be used to generate the 

upper-case alphabetics. 

3. The graphic set would contain the following 94 graphics of 

EBCDIC.* 

10 numerics 0 to 9 
26 lower-case alphabetics a to z 
26 upper-case alphabetics A to Z 

32 specials ey ee 

( ) + - * [| = $ 
< > | * ~~ % & # 

@¢ { \ } | °° 
Since it had been decided to provide 120 graphics and since the EBCDIC 

graphic set had been reduced to 90 characters, 30 additional graphics 

could be provided. These were as follows: 

6 mathematical symbols t= # 
9 plotting/charting symbols { | f[ 

10 superscript numerics ot ? 
1 superscript minus symbol 
3 subscript numerics 12 3 

“fn 99 1 subscript n 

| 

2
 

lV 

—_
> * 

[ 

Recall that + — / * @ $ were to be provided as input graphics 

representing the six control characters. However, it was desired that they 
also be in the output graphic set. Therefore, a 2- or 3-character input 

representation for them as output graphics must be found, even though 

they also appeared as single-character inputs for control characters. 

Some 13 specials had been provided as 2-character input representa- 

tions in Text 90. These 13 specials were available on the 64 character 

* This design decision was later slightly aborted (for reasons not known to the 
author). The later design decision was not to provide ¢ | ; and . Actually, ¢ was 

replaced in its EBCDIC code position (but just for the Text/360 applications) by 
<_.
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keypunches of the time frame of Text/360, and so are represented as 
single character inputs in Text/360. However, the Text 90 2-character 

representation for these 13 specials was permitted in Text/360 as an 
option. Thus there is a single character and also a 2-character input 
representation for these 13 specials: 

? > 
< > = — % 

The 120-graphic set was provided as shown in Fig. 26.2. 

& # 

  

  

  

  

  

  

  

          

Output graphics Input representation Total 

012::-9 0 1 2 -9 10 
abc:::z ABC:::Z 26 
ABC Z *A *B*C *Z, 26 

4 

Superscript ° * 7°" °° /0/1/2--+-+/9 10 

+ * @$ / - JA [X /Q D /Z Is 
(See Note 1 following) 11 

+f — J]: /H /C WV |B IP 

= # 2 it t 1 IV NZ IB HG I/O IIE 12 
— + HA IM IY 1/0 

ML [1A 

Subscript , 2 3 Hl’ f{/2 7/3 
Subscript , [IN 5 

Superscript ~ iS 

64 48 

? 1 > 3 9? I IT /E /[W |N 
ho KD cs "  < >| RY [G/F 14 
=—~ % & = — %® &|/O0 /J /K /M 
to << # /U /L 

| 7 ; 7 TK HC 2 

Total = 120 

Fig. 26.2 Text/360 120-graphic set
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Note 1. When + * @ $/ — are required as input graphics to represent 
controls, they are represented by themselves. 

Note 2. The Text/360 chain provides the 120 graphics above. If the 
Text/360 chain is replaced by another 120 character chain called in IBM 

literature the IBM TN Chain, seven graphics are replaced as follows: 

  

  

Text/360 Graphic TN Graphic 

— ¢ 
\ 1 
t s 

Subscript , Superscript * 
Subscript » Superscript ‘ 
Subscript 3 Superscript ” 
Subscript , ° (degree) 

The objectives of Text/360 were as follows: 

1. Small input set. 

2. Large output graphic set, sufficient for most text processing applica- 
tions. 

3. Control characters for text processing. 

4. All input representations, graphic and control, printable for debug- 
ging purposes. 

5. Input set (single, double, and triple character representations) op- 
timized for keypunching productivity. 

6. Code compatibility with EBCDIC. 

These objectives were achieved. 

26.5 SUMMARY 

Two general techniques of code extension, substitution and precedence 
characters, have been discussed. A particular example of code extension, 

Text/360, which uses both substitution and precedence characters, has 

been described. It might be observed that the chief difference of this 

method of code extension from those previously described is that all input 

representations, control and graphic, are keypunchable with single key 
depressions (that is, they do not require multipunching), and are printable 

for debugging purposes.
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The 

96-Column 
Card Code 

27.1 THE SMALL CARD 

During 1966, a new medium was being developed for the storage of 
data—a punched card, but a much smaller punched card than the tradi- 

tional 34x 73 inch card in broad use in the data processing industry. The 
basic design objective was the smallness of the card. If the card could be 
made small, the associated card-handling equipment would be corres- 
pondingly compact, and costs would be low. The objective was a card 
approximately one third the size of the normal punched card. 

27.2 CRITERIA 

All the normal punched card operations were envisaged for the small 

card; key punching, verifying, sorting, collating, and computer 
input/output. Design criteria were set for the small card: 

Criterion 1 

The small card should be capable of receiving as many characters as the 
regular punched card; that is, at least 80. 

Criterion 2 

All punching character positions of the card should be capable of being 
interpreted on the card. 

Criterion 3 

The “primary” graphic set should be a 6-bit, 64-character set. 

471
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Criterion 4 

It should be possible to punch 256 different hole patterns on the card; 

that is, the card should be capable of being an input/output medium for 

the System/360. 

Criterion 5 

The numerics should be BCD coded with the capability for positive and 
negative numerics. Negative numerics should be derivable by over- 
punching absolute numerics, analagously to the technique for the Hol- 

lerith Card Code. 

Criterion 6 

The Space character should be a no-holes hole pattern, as it was in the 
Hollerith Card Code. This would provide the capability to leave card 

columns or fields blank during the keypunching operation so that they 
could be punched with processed data during subsequent card operation. 

Criterion 7 

The numerics should have no zone punches. 

Criterion 8 

The translation relationship, bit code to/from card code, should be as 

simple as possible. 
During the discussions on a code for the small card, it was decided 

that the code should be an eight-row code, as contrasted with the 
twelve-row Hollerith code for the regular punched card. If possible, it 
should be a direct representation of EBCDIC—a hole on the card 
corresponding to a one bit in EBCDIC and the absence of a hole 
corresponding to a zero bit. There seemed to be a possibility that the 
small card code would not be an exact direct representation of EBCDIC. 
In order to avoid confusion in such an eventuality, the holes or bits of the 
code were named DCBA8421, from high to low order: 

Small card code DC BA 8 42 1 

EBCDIC byte 0 12 3 4 5 6 7 

27.3 THREE TIERS 

The necessary size of the holes, and their necessary vertical and horizon- 

tal separation, posed a problem with respect to interpretation on the card. 

The geography of the card would allow for three tiers, each tier designed 

to contain the eight rows of a character, as shown in Fig. 27.1.
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a rows Tier 2 
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2 

1 J 

D _~ 
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B 

a \ rows Tier 3 

4 

2 

1 A       
Fig. 27.1 Three-tier card, Version 1 

27.4 INTERPRETATION ON THE CARD 

Corresponding to the three tiers of punched characters, there would have 
to be at least three rows of unpunched card space at the top of the card to 
receive interpreting. The first step to solve this problem was to separate 

the D and C rows of each tier, as shown in Fig. 27.2. 

Criterion 3 called for a 64-character, 6-bit ‘“‘primary”’ graphic set. If, 

for these 64 characters, the D and C bits were zero, no holes would be 

punched, and the top of the card would be left unpunched to receive 

interpreting. Out of this realization grew the decision to interpret only the 

64-character “‘primary”’ subset, even though a full 256-character, 8-bit set 
could be punched if necessary. Keypunched input data, which posed the 
main requirement for interpreting, would consist of 64 graphics only, 
although output data could consist of 256 characters. 

The geography of the card had begun to dictate aspects of the coded 

character set. As it turned out, four rows were available to receive 

interpreting at the top of the card. Three tiers of 32 characters (96 
characters total) could be punched, but four rows of 32 spaces (128
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Fig. 27.2 Three-tier card, Version 2 
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Fig. 27.3 Three-tier card, final version
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spaces) were available for interpreting (see Fig. 27.3). Criteria 1, 2, and 4 

had also been met by these decisions. 

27.5 THE CHARACTER SET 

Attention was now turned to the actual character set to be specified. As 
EBCDIC had been originally specified, it contained 88 graphics and the 

Space character. The lower-case alphabet comprised 26 of these graphics, 
leaving a 62 graphic set. These 62 EBCDIC graphics and the Space 
character would constitute 63 of the 64 small card character set. These 
graphics, in their code positions, are shown in a partial EBCDIC code 
chart (Fig. 27.4). 

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

Column 0 | 4 | 2 | 3 4 | 5 | 6 7 8 | 9 | A | B c | D iz | F 

Bit 00 01 10 11 _. 

Pat. “| 
00 o1 10 11 00 01 0 11 00 01 10 11 00 01 10 11 

Row 

0 |oo000 sP - & 0 

1 0001 / A J 1 

2 |o010 B K S 2 

3 0011 Cc L T 3 

—— 

4 10100 ; D M U 4 

5 |0101 E N Vv 5 
oe 

6 0110 F oO W 6 

7 10111 Gc P xX 7 

8 1000 H Q Y 8 

9 1001 I R Z 9 

A |1010 c ! 

B |1011 . $ ’ # 

c |1100 < x 4 @ 

D {1101 ¢ ) _ ' 

E |1110 + 3 > = 

F }1111 | ™ ? "                                         

Fig. 27.4 EBCDIC graphics 

It was observed that if EBCDIC bits 0 and 1 were dropped, this set 

collapsed neatly into a 6-bit code, as shown in Fig. 27.5, which was 

virtually the required card code for the small card.
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Bt em 00 01 10 11 

‘ 

0000 SP & _ 0 

0001 A J / 1 

oo10 B K s 2 

oo11 c L T 3 

0100 D M U 4 

0101 E N V 5 

9110 F oO W 6 

0111 G P x 7 

1000 H Q Y 8 

1001 r R Zz 9 

1010 é ; XMXG{_Q 

1011 . $ > # 

1100 < * % @ 

1101 ( ) _ ' 

1110 + ; > = 

1111 | a 2 "     
Fig. 27.5 6-bit code, Version 1 

27.6 APPLICATION OF CRITERION 7 

Criterion 7 had specified no zone punches for the numerics. Analyses had 

shown that numeric data constituted about 75 percent of the data 

punched on regular cards. It was assumed that the same would hold true 

for small card applications. In order to have as few holes as possible 

punched on a small card, it was clear that numerics should have no zone 

punches. This suggested that the two high-order bits (Fig. 27.5) should be 

reversed. The result, using the BA8421 bit-naming notation, is 

shown in Fig. 27.6.
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OM em BA B A No Zone Bits 

y 

No Bits SP & - 0 

1 A J / 1 

2 B K s 2 

21 C L T 3 

4 D M U 4 

41 E N V 5 

42 F 0 W 6 

421 G P x 7 

8 H Q Y 8 

8 1 I R Zz 9 

8 21 $ > i# 

84 < * a @ 

84 1 ( } _ ' 

842 + ; > = 

8421 [ “ ? u 
  

Fig. 27.6 6-bit code, Version 2 

27.7. APPLICATION OF CRITERIA 5 AND 6 

Attention now turned to Criteria 5 and 6. Space should be No Punches, 
and negative numerics should be accommodated by overpunching positive 
numerics. 

An obvious possibility was to prescribe the code column containing 
J, K, L,...,R as being equivalent to negative numerics —1, —2, 
—3,...,—9, as they are in EBCDIC. Then the — in the top row of this 

column could stand for —0. But, since negative numerics must be 
derivable by overpunching absolute numerics, this would require 0 to be
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No Punches. Criterion 6 had specified the assignment of No Punches to 
the Space character. Here was a problem. 

The solution was seen when the graphics were rearranged back into 
their EBCDIC code positions, with the DCBA8421 code superimposed, 
as in Fig. 27.7 (The code positions with entries of the form and the 
small numbered squares below the code table will be explained later.) 

Cotumn 0 1 2 3 4 
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00 01 10 11 00 
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        Bottom and Right 
    

Fig. 27.7. EBCDIC, Version 1
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27.8 HOLE PATTERNS FOR MINUS, ZERO, AND MINUS ZERO 

The four code positions of the top row of Fig. 27.6 will have the hole 
patterns of BA, B, A, and No Punches. The problem is to distribute these 

four hole patterns along the top row of Fig. 26.7 so that Criteria 5, 6, and 
7 are met. Criterion 6 says that the Space character shall have the hole 

pattern of No Punches. This then leaves hole patterns BA, B, and A to 

accommodate the characters —, —0, and 0. Criterion 7 specified that all 

numerics should have no zone punches. This is clearly not possible, if 

Space is to be the No-Punches hole pattern; that is to say, although 
numerics 1 to 9 can have no zone punches, 0 must have a zone punch, 
since only hole patterns with zone punches remain, BA, B, and A. Since 0 
cannot have a hole pattern with no zone punches, the next best situation 
is to have a hole pattern with one zone punch only; that is, either B or A. 

The objective behind Criterion 7 was to minimize the number of 
holes in the hole patterns for numerics. A single hole as the hole pattern 

for 0, either A or B, really meets the spirit of this objective. The fact that 
the single hole of the hole pattern is a zone punch rather than a digit 
punch is not as important as the fact that 0 has a minimum number of 
holes (namely, one hole) in its hole pattern. 

So the problem now was to choose between B and A as the hole 
pattern for 0. Hole patterns for —0 and — also had to be determined. 
There were two possibilities: 

Possibility1. A for 0 Possibility2. B for 0 
B for - A for — 

BA for —0 BA for —0 

As shown in Fig. 27.6, the column containing J, K, L,...,R had been 

decided to have the zone-punch B. But as signed numerics, J, K, L,...,R 

will correspond to —1, —2, —3,..., —-9. The character in Fig. 27.7 
designated by must represent —0. The zone-punch B, then, must 
clearly represent the overpunched sign for negative numerics; that is, BA 
will represent —0. If B is to be the overpunch turning 0 into —0, then 0 
must start out as A. So of the two, Possibility 1 was preferable. There- 

fore, in Fig. 27.7, code positions [6], [14], and will have hole 
patterns of B, BA, and A, respectively. 

We now look again at the collapsed 6-bit set of Fig. 27.6. With the 

assignments for —, —0, and 0 as in the paragraph above, the graphics in 
the top row of the table will change, as shown in Fig. 27.8.
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We observe that & has not yet an assigned hole pattern, and that 
there is a hole pattern, A82, in the table (shaded) that has no assigned 

graphic. It has to be concluded that & will be assigned the hole pattern of 

A82. 

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

Pattern BA B A 

-0 - 0 SP 

1 A J / 1 

2 B K S 2 

21 ( L T 3 

A D M U 4 

4 1 E N Vv 5 

42 F 0 W 6 

421 G P x 7 

8 H Q Y 8 

8 1 I R Zz 9 

8 2 ¢ I 
h 

8 21 $ # 

84 < * % @ 

84 1 ( ) _ ' 

842 + > = 

8421 | a 2 "               
  

Fig. 27.8 6-bit code, Version 3 

27.9 MINUS ZERO 

Before returning to consideration of the 8-bit EBCDIC code table, there 
is another small problem to solve. When data is entered into a computer, 
and then listed, unaltered, for debugging purposes, those card fields which 
had overpunched numerics will list as J, K, L,...,R for —1, —2, 

—3,...,—9, respectively. The fact that alphabetics list for signed 

numerics in a debug listing is quite satisfactory to users. The important 

fact is that a graphic for —1 is distinguishable from a graphic for 1. In
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final output listings, of course, it is customary to separate out the minus 
sign, and list it adjacent to the numeric. But for debug purposes, alphabe- 

tics are quite acceptable. The problem is, what is to be listed for —0? 

What graphic should be assigned to EBCDIC code-position hex DO? 
The engineers designing the small card system recommended a 

graphic 0, since this was clearly representative as a graphic for —0. But 
EBCDIC had a graphic already assigned to code-position Hex D0; 
namely, the graphic } (closing brace). It was therefore insisted that the 
graphic to represent —0 be }. This was not attractive to the engineers for 

the small card system, for two reasons: 

1. The graphic } is not representative of the concept —0. 

2. To provide the graphic } without providing its companion graphic { 
seemed bizarre. 

Reason 1 was disposed of quickly. After all, J, K, L,...,R are not 

representative of the concepts —1, —2, —3,..., —9. 

Reason 2 was not disposed of so easily. To begin, the companion 

graphic { is assigned to EBCDIC, in code-position hex C0. So why not 

include it in the small card system’s graphic set? But all 64 graphic 
positions in the collapsed 6-bit set were assigned. If { were to be assigned, 

then one of the previously assigned graphics must be left out of the set. 

Which one? As it turned out, serious consideration was not given to this 
question, because a more subtle but more important aspect arose—the 

translation—simplicity aspect of Criterion 8. 

27.10 CRITERION 8, TRANSLATION SIMPLICITY 

The simplest possible translation relationship would be where the bit code 

would be on a one-to-one relationship with the card code—a bit in a bit 
pattern would become a hole in a hole pattern. This relationship had 
already been aborted by previous design decisions: 

= To reverse bit-code zone-bits 2 and 3 for card-code zone-punches B 

and A. Actually, an inversion of a bit, if applied uniformly to all bit 
patterns, does not make the translation circuitry any more complex. 

=" Assignments of hole-patterns No Punches, B, BA, and A to EBC- 

DIC code-positions hex 40, 60, DO, and FO, respectively, certainly 

are exceptions to, and therefore complicate, the bit-code—to—card- 

code relationships.
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= Assignment of hole pattern A82 to EBCDIC code-position hex 50 is 
an even more complicating exception than the exceptions stated just 
above. 

# Assignment of Al to / in the 6-bit code table (Fig. 27.8) results in 

Al being the assignment for hex 61 in the 8-bit code table (Fig. 

27.7). 

27.11 THE MUSICAL-CHAIRS EFFECT 

It should be realized that exceptions to bit-code-to—card-code translation 
relationships have a musical-chairs effect. For each exception, there au- 

tomatically results another one. 
‘ For example, hole-pattern A82 had been decided to correspond to 

hex-position 50. But hole-pattern A82 would “naturally” correspond to 
hex position A6. Therefore, some other hole patterns must be assigned to 
hex-position A6, and that assignment will necessarily be an exception 
also. 

The suggestion that { be assigned in the graphic set of the small card 
system meant that it would have to be included in the collapsed 6-bit set. 
But, even as the & received the exception hole pattern of A82, the hole 
pattern for { would have to be an exception also. If, for example, it had 

been decided to leave out the ¢ so that the { could be included, then the 
hole pattern for { would have to be the hole pattern previously assigned 
to ¢; namely, BA82. This would mean that hole-pattern BA82 would be 

assigned to the EBCDIC hex position for {; namely, hex CO. And this is 

clearly a translation exception. And, by the musical-chairs effect, a transla- 

tion exception would automatically be created somewhere else in the 
EBCDIC code table. 

Translation exceptions lead to an increase in translation complexity. 
An increase in translation complexity leads to an increase in translation 
circuitry and, hence, to an increase in cost. 

So the trade-off situation was 

provide } but not { 

which might seem bizarre, or | 

provide { as well as } 

and increase the cost of the system. Since a major objective for the small 
card system was low cost, the cost argument was decisive. Therefore, } 

was provided (for —0) and { was not provided.
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27.12 THE FINAL 6-BIT SET 

All design decisions had now been reached for the collapsed 6-bit set for 
the small card system. The result is shown in Fig. 27.9. This code table, 
then, specifies the card hole patterns for the 63 graphics and the Space 
character of the small card system. The partially completed 256- 
character, 8-hole card code for the small card is shown in Fig. 27.10. 
Exception hole patterns are indicated by the small numbers in squares. 

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

Pattern BA B A 

} - 0 SP 

1 A J / 1 

2 B K s 2 

21 Cc L T 3 

4 D M U 4 

4 1 E N Vv 5 

42 F 0 W 6 

421 G P x j 

8 H Q Y 8 

8 1 L R Z 9 

8 2 ¢ ! & 

8 21 $ > # 

B 4 < * x @ 

84 1 ( ) - t 

842 + 3 > = 

8421 | = 2 "               
  

Fig. 27.9 6-bit code, Version 4 

27.13, COMPLETION OF THE CARD CODE 

Attention was now focussed on completing the card code for the small 

card system. In Fig. 27.10, the specials in hex-columns 4, 5, 6, and 7 had 

been previously decided to have zone punches of BA, B, A, and No
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Hols 

Pat.   
Hole Patterns: 

  

  

  

  

  

ca) [Js EY 
[2] BA Block | Hole Patterns at: 

[3] [15] (21) Top and Left 

[2] A {z2] Bottom and Left 

[5] No Pch ti] Top and Right 

[s | A82 12] [18] Al Bottom and Right             

Fig. 27.10 96-column card code, Version 1
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Zone, respectively (see Fig. 27.9). The same set of zone punches had 

been assigned to the alphabetics and numerics in hex-columns C, D, E, 
and F. It was clear, then, that the code positions for the top rows of 
hex-columns 4, 5, 6, and 7 and the code positions for the bottom rows of 

hex-columns C, D, E, and F could not have zone-punches BA, B, A, and 

No-Zone. That is, for these eight code columns, zones for the block of 
bottom rows would be different than zones for the block of top rows. 

It is a fact of the theory of translation relationships that if a zone 
difference (bottom and top blocks) applies for 8 of the 16 code columns, 
translation simplicity will be enhanced if zone difference (bottom and top 
blocks) is also applied to the other 8 code columns. 

This then became a further criterion. It would also enhance transla- 
tion simplicity if the sequence of zone-assignments BA, B, A, and No 
Zone was applied both to hex-columns 0, 1, 2, and 3 and hex-columns 8, 
9, A, and B, respectively. 

27.14 FURTHER CRITERIA 

The two new criteria are now enunciated: 

Criterion 9 

The zone difference between hex-rows 0 through 9 and between hex-rows A 

through F, already decided for hex-columns 4, 5, 6, 7, and C, D, E, F, 

should also be applied to hex-columns 0, 1, 2, 3 and 8, 9, A, B. 

Criterion 10 

The sequence of zone-patterns BA, B, A, and No Zone should be applied 
to hex-columns 0, 1, 2, 3; to hex-columns 4, 5, 6, 7; to hex columns 8, 9, 

A, B; and to hex-columns C, D, E, F. 

Available zone patterns are DCBA, DCB, DCA, DC, CBA, CB, 

CA, C. A further fact of the theory of translation relationships is that 
translation simplicity would be enhanced if zone-punch D was applied to 

hex-columns 0 through 7, and not to hex-columns 8 through F; and if 

zone-punch C was applied both to hex-columns 0, 1, 2, 3 and hex- 

columns 8, 9, A, B, and not to hex-columns 4, 5, 6, 7 and hex-columns C, 

D, E, F. This application would be to hex-rows 0 through 9. By conse- 

quence of Criterion 9, the opposite assignment of D and C zones should be 
applied to hex-rows A through F. With the translation exceptions already 
noted in Fig. 27.9, this leads to an assignment of zone patterns as shown 
in Fig. 27.11.
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Fig. 27.11 96-column card code, Version 2 

27.15 EXCEPTION TRANSLATIONS 

As shown in Fig. 27.11, there were six exception translations. From the 

musical-chairs effect previously cited, we would expect there to be more 

translation exceptions than the number shown in Fig. 27.10. And this 

turns out to be so. 
The six hexadecimal positions to which exception hole patterns have 

been assigned are listed below in Table 27.1. Also shown are the
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nexadecimal positions from which the exception hole patterns originated, 
and the hole patterns which would have been expected in the exception 

positions. 

  

  

  

  

TABLE 27.1 Exception hole patterns 

Exception Exception Origin of Expected 
positions hole exception hole 

(hexadecimal) patterns hole patterns patterns 

40 No Punches FO DBA 
50 A82 6A DB 

60 B DO DA 
DO BA CO B 

FO A EO No Punches 

61 Al El DAI         

Examination of the columns ‘Exception positions” and ‘‘Origin of excep- 
tion hole patterns” in Table 27.1 reveals that hex-positions DO and FO 

are in both columns, but hex-positions 6A, C0, EO, and El are four 

further hex-positions in which the musical-chairs effect will be man- 

ifested. Also, examination of columns ‘Exception hole patterns’ and 

‘““Expected hole patterns’’ reveals hole patterns No Punches and B to be 

in both columns, but hole-patterns DBA, DB, DA, and DA1 are four 

further hole patterns to be distributed to. the four hex positions noted in 
the previous sentence, to complete the musical-chairs effect. 

The musical-chairs effect, then, extends Table 27.1 into Table 27.2 

shown below. The ten exception hole patterns, shown in Fig. 27.12, make 

up the 96-column card code, Version 3. 

TABLE 27.2. Musical-chairs effect 
  

  

  

Exception Exception Origin of Expected 

positions hole exception hole 

(hexadecimal) patterns hole patterns patterns 

6A DBA 40 A82 
CO DA 60 BA 

EO DB 50 A 
El DAI 61 Al        
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Column 

Hole 

Pat.   
Hole Patterns: 

  

  

  

  

  

G) B [13] Da 
[2] BA DAL Block | Hole Patterns at: 

[3] [2] [15] DB [21] 1 1 Top and Left 

[4] A [22] DBA 2 Bottom and Left 

[s] No Pch {] 2 

[e] A82 [2] Al             
Fig. 27.12 96-column card code, Version 3 

Examination of Tables 27.1 and 27.2 combined shows that each hex 

position in the “Exception positions” columns matches a hex position in 

the ‘“‘Origin of exception hole patterns” column, and each hole pattern 

in the ‘Exception hole pattern” column matches a hole pattern in the 

‘Expected hole pattern” column.
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27.16 REDUCTION OF TRANSLATION COMPLEXITY 

It is an interesting anomaly of translation relationships that if one 
exception is introduced, the consequent. translation complexity will be 

reduced if some additional compensating exceptions are forced in. This is 

not the musical-chairs aspect previously noted. This anomalous fact is 

best illustrated with examples. Consider Fig. 27.13, a code chart which 
would exhibit the optimally simple translation relationship between the 
eight holes of the 96-column card, D, C, B, A, 8, 4, 2, 1, and the eight 

bits of an EBCDIC byte, 0, 1, 2, 3, 4, 5, 6, 7. Then the holes-to- bits 

relationship is simply inverse for the high-order four and direct for the 
low-order four. 

96-column EBCDIC 

  

card hole bit 

D 0 

C = 1 This notation means that if there are D, C, B, 

B = 2 A holes, the 0, 1, 2, 3 bits respectively are 0. 

A = 3 

8 = 4° 
4 = 5 If there are 8, 4, 2, 1 holes, the 4, 5, 6, 7 bits 

2 = 6 respectively are 1. 

1 7 

Now suppose for some reason, it is required to swap the hole patterns for 
code positions (') and (°). 

Card hole pattern 
  

  

    

EBCDIC 

bit pattern Before swap After swap 

Code position (7)} 0010 1101 DCA 841 DCBAt12 
Code position (*)| 0000 0010 DCBA 2 DCA8 41 

Consider the situation in going from card hole patterns to EBCDIC 

bit patterns. As exceptions to the general translation equations above, 

additional circuitry must be added to 

1. detect hole-pattern DCBA2 and generate bit pattern 0010 1101, 

2. detect hole-pattern DCA841 and generate EBCDIC bit-pattern 

0000 0010.
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Fig. 27.13 Optimal 96-column card code 

Figure 27.13 is shown divided into four quadrants. The quadrants are 
distinguished one from another by two high-order zone bits 0 and 1, or, 

equally, by the two high-order zone holes, D and C. The swap that was 

proposed above took place wholly in quadrant 1. 

What would be the result if analagous swaps were made in quadrants 

2, 3, and 4? That is, swap (*) and (*), (°) and (°), (”) and (°).
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Hole Patterns: 
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[S] No Pch [1] pez [17] cat 
[e] a82 [iz] ca Al 

Fig. 27.14 96-column card code, final version 
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Hole Patterns at: 
  

Top and Left 
  

Bottom and Left 
    

            

The interesting result is that the detection circuitry can now ignore 
zone-holes D and C. That is to say, instead of having to detect and 
analyze all eight card rows, D, C, B, A, 8, 4, 2, 1, only six, B, A, 8, 4, 2, 1 

have to be detected and analyzed. Similarly, in going from bit patterns to 

hole patterns, the two high-order zone bits need not be detected and 
analyzed. In short, by forcing the exception translation of quadrant 1 into 
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quadrants 2, 3, and 4, detection and analysis circuitry have been reduced; 

the translation complexity has been reduced. 
It is also a fact that if the exception translation of quadrant 1 had 

been forced into only one other quadrant, the translation complexity 
would have been reduced, but not reduced as much as it would have been 
if the exception had been forced into all three other quadrants. 

With respect to the 96-column card code, given that certain transla- 
tion exceptions were required for reasons already given, the translation 
relationships were consequently complicated. By exercising their art to 
force further exception translations, the engineers did simplify the trans- 
lation complexity considerably. In Fig. 27.12, six translation exceptions 
are shown. Before the 96-column card code was finished, 22 exceptions 

were forced, as shown in Fig. 27.14. 

27.17 SIMPLIFICATION OF TRANSLATION COMPLEXITY 

A glance at the translation equations shown in Fig. 27.15 for the 
96-column card, Version 3 (Fig. 27.12) and in Fig. 27.16 for the 96- 

column card, Final Version (Fig. 27.14) reveals that considerable simp- 

lification took place in the equations for EO, E2, and E3, as shown below 
in the total counts of connectors. 

Version 3 | Final Version 
  

  

  

Common expressions 27 26 

Equations 51 34 

Total 78 60       

27.18 SUMMARY 

Criteria 1, 2, 3, 4, 5, 6 were met. Criterion 7 was not met by the hole 

pattern for numeric 0, but numeric 0 had only one hole in its hole 
pattern. The objective of Criterion 7 was to minimize the number of holes 
in the hole patterns for numerics; this objective was achieved. 

Criteria 3, 5, 6, and 7 led to exception translations. Given these 

exception translations, Criterion 8 was met as well as possible.
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Common expressions 

  

  

X=8A4a2n1 F=[40(8¥ w_2)] v [8 A 4] 

Y=8A4A2A1 G =8A(4A2) 

Z=8A4A2A1 8 H=8a[4a(2a 1)] 

K=DaCanaBaAd4al J=XADACABAA 

Equations 

BE0 ={X a[D a (Ca A)] ¥ [Da C) a (Bw AD} 

_ wv {Ya[D=(CABa~ A)} v (Fa D) v (Gv D)} 

E1=C 

E2={Ban {x a{Cv[Ca(Dv AI v(Za(DaCaA)]v¥ [Lv Fv H}} 
vy {((B AC) A (DA A) A X} 

E3 = {An {Xv[Cv (DACAB)} v Xv (Aa Da Cla[Xv (Ba Z)} 

E4=[8A(Ka Z)|v J 
  

E5 = 4 
EF6=[2aA (Ka 8)| v J 
E7 = 1 

Fig. 27.15 96-column card, Version 3 

Common expressions 

= 8al4a ad] 

  

X=8a4a2anl H 
Y=8a4a2al I=(D» A) 
Z=8a4a2al J=DABaAA 
F=[4a (8 v2)])v[8A4] K=XaJ 
G = 8a (4a 2) M=DaBanaAn4anl 

Equations 

E0 = {Xa (Dv A)}v {Y A[D = (Ba A)}} v (FA D) ¥ (G “4 DI} 
BE1=C 

E2={Ba{{Xa A]lv[ZaIv Yv Fv AY}v BAX” TS 
E3={Aa{Xa(DaB]¥[Za0 Da B]} v {A a X} 

E4 = {8A (MA 2)}v K 
E5 = 4 

E6 = {2a (Ma 8)} v¥ K 

E7=1 

Fig. 27.16 96-column card, Final Version
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The following reference terminology is used in these definitions: 

Contrast with 

Refers to a term that has an opposed or substantively different meaning. 

Synonym for 

Indicates that the term has the same meaning as another term, which is 

defined. 

Synonymous with 

Identifies terms that are synonyms for the term being defined. 

Acronym for 

An abbreviation generally consisting of the first letters of the words of a 

term. 

See 

Refers to multiple-word terms that have the same last word and are 

defined. 

See also 

Refers to related terms that have a similar, but not synonymous, meaning. 

Deprecated term for 

Indicates that the term should not be used. It refers to a preferred term, 

which is defined.
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A-Bit A bit in the A position of a Byte whose bit positions are named 
B, A, 8, 4, 2, 1 from high order to low order. 

Absolute Numeric A numeric with neither a negative nor a positive 
associated sign. Contrast with Positive Numeric, Negative Numeric, 

Signed Numeric. 

Accented Alphabetic An alphabetic, as in the French or Italian alphabets, 
with an associated accent, such as a grave accent, an acute accent, a 

circumflex accent. See also Diacritic Alphabetic. 

Alphabet A set of all the Alphabetics used in a language, including 
Diacritic Alphabetics and Accent Alphabetics. See also Cyrillic Alphabet, 
Duocase Alphabet, Latin Alphabet, Monocase Alphabet, Non-Latin AI- 
phabet. Contrast with Katakana Symbols. 

Alphabetic A letter in the Alphabet of a country. Generally taken to 

mean a letter of the Latin Alphabet, but sometimes must be par- 

ticularized, as Latin alphabetic, Cyrillic alphabetic, Greek alphabetic, 
Hebraic alphabetic, and so on. See also Small Alphabetic, Capital Al- 
phabetic. 

Alphabetic Character An Alphabetic together with its associated Bit 
Patterns or Hole Pattern. 

Alphabetic Extender Positions Positions reserved in EBCDIC for 
Graphics particular to a country. See also National Use Positions. 

American National Standard Code For Information Interchange A 
Coded Character Set consisting of 128, 7-bit Characters. There are 32 
Control Characters, 94 Graphic Characters, the Space Character, and the 

Delete Character. 

ANSI Acronym for the American National Standards Institute. 

AND A logic operator with the property that if A and B are Binary 
Variables, A AND B is 1 if both A and B are 1, and is 0 if A is 0 and B 

is 1 or if A is 1 and B is 0 or if A is O and B is 0. 

ASA Acronym for the American Standards Association, now the 
American National Standards Institute. 

ASCH Acronym for the American National Standard Code For Infor- 
mation Interchange. 

Baudot Code Synonym for CCITT #2. 

B-Bit A bit in the B position of a Byte whose bit positions are named B, 
A, 8, 4, 2, 1. 

BCD Acronym for Binary Coded Decimal. 

BCD Code A Code that has the characteristic that the low-order 4 bits 
of the Bit Patterns of the numerics are Binary Coded Decimal.
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BCDIC Acronym for the BCD Interchange Code. 

Binary Pertaining to a selection, a choice, or a condition that has two 

possible values or states. 

Binary Coded Decimal A coding representation in which the low-order 
4 bits of the Bit Patterns of the numerics are the binary equivalents of the 
decimal digits of the numerics. 

Binary Digit In the binary system, one of the digits 0 or 1. Contrast with 
Decimal Digits. Synonym for Bit. 

Binary Variable A variable that can take two possible values, or repres- 
ent two possible states. 

Bit Synonymous with Binary Digit. See also A-Bit, B-Bit, C-Bit, D-Bit, 
Parity Bit, Zone Bit, 0-Bit, 1-Bit, 2-Bit, 4-Bit, 8-Bit. 

Bit Code A set of Bit Patterns and associated Graphic and Control 
Meanings. 

Bit Combination Synonym for Bit Pattern. 

Bit Name The name of the position of a Bit within a Byte. Synonymous 

with Bit Number. 

Bit Number The number of the position of a Bit within a Byte. 
Synonymous with Bit Name. See also 0-Bit, 1-Bit, 2-Bit, 4-Bit, 8-Bit. 

Bit Pattern An ordered set of Bits, usually of fixed length. Synonymous 
with Bit Combination, Bit Representation. 

Bit Representation Synonym for Bit Pattern. 

Bit Sequence The binary sequence of the Bit Patterns of a code, from 
000---Oto 111---1. 

Bit Stream A string of Bit Patterns without regard to grouping by Bit 
Pattern. 

Bit String A string consisting solely of Bits. 

Block A string of characters for technical or logical reasons to be 

treated as an entity. 

Byte A Bit Pattern of fixed length. 

Byte Size The number or count of Bits in a Byte. 

Capital Alphabetic The alphabetics A, B, C,...,Z. Also includes the 

capital Diacritic Alphabetics. Contrast with Small Alphabetic. 

Card Code A set of Hole Patterns and associated Graphic and Control 
Meanings. 

Card Column On a punched card, a vertical Column. 

Card Row On a punched card, a horizontal Row. 

Cartridge See Chain Cartridge.
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C-Bit A Bit in the C position of a Byte whose bit positions are named 

D, C, B, A, 8, 4, 2, 1. 

C.C.LLT. Acronym for Comité Consultative International Telegraphi- 
que et Telephonique. 

CCITT 42 A 58-character, 6-bit Shifted Code, used nationally and 

internationally on telegraph lines. 

Chain Cartridge A cartridge holding a chain for a Chain Printer, allow- 
ing easy and simple replacement. 

Chain Printer An impact printer in which the type slugs are carried by 
the links of a revolving chain. See also Train Printer. 

Character A Bit Pattern and its associated Meaning. See also Alphabetic 
Character, Control Character, Delete Character, Escape Character, 

Graphic Character, Null Character, Numeric Character, Space Character, 

Special Character. 

Character Set Synonym for Coded Character Set. 

Clocking Track A track on which a pattern of signals is recorded to 
provide a timing reference. 

COBOL (Common business-oriented language.) A programming lan- 
guage designed for business data processing. 

Code Synonym for Coded Character Set. See also Baudot Code, BCD 

Code, Fieldata Code. 

Code Form A general term, including, for example, Coded Character 

Sets, Packed Numerics, Binary data, Bit String. 

Code Meaning The meaning assigned to a Bit Pattern of a Coded 

Character Set. 

Code Name The name assigned to a particular coded character set, such 

as ASCII, BCDIC, EBCDIC, PTTC. 

Code Position Synonym for Code Table Position. 

Code Table A compact matrix form of Rows and Columns for exhibiting 
the Bit Patterns or Hole Patterns and assigned Meanings of a Coded 

Character Set. 

Code Table Position The position or location of a Character in the Code 
Table for a Coded Character Set. There are two common conventions. 

For ASCII, the position is given as x/y, where x is the Code Table 

Column Number, and y is the Code Table Row Number. For EBCDIC, 

the position is given as mn, where m is the Hexadecimal Code Table 
Column Number, and n is the Hexadecimal Code Table Row Number. 

Synonymous with Code Table Location.
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Code Table Location Synonym for Code Table Position. 

Code Table Column A vertical Column in a Code Table. Synonymous 
with Table Column. 

Code Table Row A horizontal Row in a Code Table. Synonymous with 
Table Row. 

Coded Character Set A specific set of Bit Patterns or Hole Patterns to 

which specific Graphic Meanings and Control Meanings have been 
assigned. Synonymous with Code. 

Collating Number A number assigned to the Characters of a Coded 
Character Set, running from 0 to 63 (for BCDIC) and from 0 to 255 (for 

EBCDIC). The collating numbers give the Collating Sequence of the 
coded character set, from low to high. 

Collating Sequence An ordering assigned to the Characters of a Coded 
Character Set. 

Column A vertical column of a Coded Character Set either in a Code 

Table or on a punched card. See also Code Table Columns, Card 
Column. Contrast with Row. 

Column Number The number assigned to a Column of a Code Table. 
Contrast with Row Number. 

Comparator Hardware circuitry that compares the relative magnitudes 
of two bit patterns and indicates the results of that comparison. 

Compiler A program that transforms source-language statements of a 

programming language into computer-oriented language. 

Contiguous Alphabet A characteristic of a Code (such as ASCII) such 
that the Bit Patterns assigned to the Alphabetics have no gaps in the 
binary sequence of the Bit Patterns. Contrast with Noncontiguous Al- 
phabet. 

Control An action that initiates, modifies, or suppresses an operation. 

Control Character A specific Bit Pattern with an assigned Control 

Meaning. Contrast with Graphic Character. 

Control Meaning A particular operation that controls either a hardware 
or software function. 

Cyrillic Alphabet The Alphabet of Slavic languages. 

D-Bit A bit in the A position of a Byte whose bit positions are named 

D, C, B, A, 8, 4, 2, 1. 

Data Stream A variable-length string of Bit Patterns representing the 

data of a data processing application.
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Decimal Digit In the decimal system, one of the digits 0 through 9. 
Contrast with Binary Digit. 

Delete Character A control character used primarily to obliterate an 
erroneous or unwanted character, particularly in perforated tape. 

Device Control Character A character to control a device (as “On” or 

“Off’’) or to control functions within a device. 

Diacritic A symbol (such as diaeresis, “) used with a letter to indicate 

pronunciation. 

Diacritic Alphabetic An Alphabetic with a Diacritic. See also Accented 
Alphabetic. . 

Digit A Graphic that represents an integer. See also Binary Digit, 
Decimal Digit. 

Digit Punch In punched cards, the 1-Punch, 2-Punch, 3-Punch,..., 9- 

Punch. 

Digit Row In punched cards, the Card Rows for Digit Punches. 

Dual The mapping of more than one meaning to a single Bit Pattern or 

Hole Pattern. 

Duocase Pertaining to a keyboard machine (such as a typewriter) which 
can shift from one case to another. 

Duocase Alphabet An Alphabet with both Small Alphabetics and Capi- 

tal Alphabetics. 

EBCDIC Acronym for Extended BCD Interchange Code. 

Eight-Punch Synonym for 8-Punch. 

Eight-Row Synonym for 8-Row. 

Eleven-Punch Synonym for 11-Punch. 

Eleven-Row Synonym for 11-Row. 

Escape Character A code-extension Character used with a sequence of 
one or more succeeding Characters to indicate that the Characters which 
follow the sequence are to be interpreted according to a different Coded 

Character Set. 

Exclusive OR A logic operator with the property that if A and B are 
Binary Variables, then A Exclusive OR B is 1 if either but not both 
variables are 1, and is 0 if both are 1 or both are 0. 

Extended BCD Interchange Code A 256 character, 8-bit Coded 
Character Set. 

Extender, Alphabetic See Alphabetic Extender Positions. 

FIELDATA Code A 7-bit Coded Character Set developed by the 

United States Army for military communications system.
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Format Effector Character A Control Character to control the format- 

ting of data on a printed or displayed page. , 

FORTRAN (Formula translation.) A programming language primarily 
used to express computer programs by arithmetic formulas. 

Five-Punch Synonym for 5-Punch, 

Five-Row Synonym for 5-Row. 

Four-Punch Synonym for 4-Punch. 

Four-Row Synonym for 4-Row. 

Graphic A printed, typed, or displayed symbol to represent an Alphabe- 
tic, a Numeric, or a Special. 

Graphic Character A specific Bit Pattern or Hole Pattern together with 
an assigned Graphic Meaning. 

Graphic Meaning The Graphic associated with a Graphic Character. 

Graphic, Special See Special. 

Hex Synonym for Hexadecimal. 

Hexadecimal Pertaining to a selection, choice, or condition that has 

sixteen possible different values or states. Synonymous with Hex. 

Hole Pattern The pattern of holes within a single vertical Column of a 
punched card. 

Hollerith Card Code A 256-character, 12-row card code. 

IDENTITY A logic operator with the property that if A and B are 
Binary Variables, A IDENTITY B is 1 if both A and B are 1 or if both 
A and B are 0, and is 0 if A is 1 and B is O or if A is O and B is 1. 

INCLUSIVE OR A logic operator with the property that if A and B 
are Binary Variables, A INCLUSIVE OR B is 1 if A is 1 and B is 0 or if 
A is 0 and B is 1 or if both A and B are 1, and is 0 if both A and B are 

0 

ISO Acronym for International Organization for Standardization. 

Katakana Symbols A set of phonetic symbols used in Japan to represent 
the Japanese language 

Latin Alphabet The Alphabetics of the languages of English, Spanish, 
Portuguese, French, Italian, German, Swedish, Norwegian, Danish, and 

Finnish speaking countries. Contrast with Non-Latin Alphabet. 

Lower Case Alphabetic Deprecated term for Small Alphabetic. 

Lower Case Letter Deprecated term for small letter. 

Meaning The sense, significance, or understanding intended to be con- 

veyed by a Graphic character or a Control Character. See also Code 
Meaning, Control Meaning, Graphic Meaning.
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Mode Change Character A Control Character that sets or changes some 
particular mode of operation. 

Monocase Alphabet An Alphabet with Capital Alphabetics only or with 
Small Alphabetics only. 

National Use Positions Positions in the ISO 7-Bit Code reserved for 
graphics particular to a country. See also Alphabetic Extender Positions. 

Negative Numeric A Numeric with an associated negative sign. Contrast 
with Absolute Numeric, Positive Numeric, Signed Numeric. 

Nine-Punch Synonym for 9-Punch. 

Nine-Row Synonym for 9-Row. 

Noncontiguous Alphabet A characteristic of a Code (such as EBCDIC) 
that the Bit Patterns assigned to the Alphabetics have gaps in the binary 

sequence of Bit Patterns. Contrast with Contiguous Alphabet. 

Non-Latin Alphabet The Alphabetics of languages such as Russian, 
Greek, Hebraic, which are not Latin Alphabetics. Contrast with Latin 
Alphabet. 

Null Character The Character whose Bits are all zero bits. 

Numeric One of the digits zero through 9. See also Absolute Numeric, 

Negative Numeric, Positive Numeric, Signed Numeric. 

Numeric Character A Numeric together with its assigned Bit Pattern or 

Hole Pattern. 

One-Bit Synonym for 1-Bit. 

One-Punch Synonym for 1-Punch. 

One-Row Synonym for 1-Row. 

OR See EXCLUSIVE OR, INCLUSIVE OR. 

Packed Decimal Representation of a decimal value by two contiguous 
4-bit BCD Bit Patterns within an 8-bit Byte. 

Packed Numeric Deprecated term for Packed Decimal. 

Paper Tape And Transmission Code A 111-character, 6-bit Shifted 
Code that is used on paper tape for data transmission. 

Paper Tape And Transmission Code For BCD Environments A 111- 
character, 6-bit Shifted Code for use with computers with BCDIC as the 
internal code. 

Paper Tape And Transmission Code For EBCD Environments A 111- 
character, 6-bit Shifted Code for use with computers with EBCDIC as the 

internal code. 

Parity Bit A check Bit appended to a string of Bits to make the sum of 
all the Bits, including the Parity Bit, always odd or always even.
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Pattern See Bit Pattern, Hole Pattern. 

Position See Code Position, Code Table Position, National Use Posi- 
tion. 

Positive Numeric A Numeric with an associated positive sign. Contrast 
with Absolute Numeric, Negative Numeric, Signed Numeric. 

Printer See Chain Printer, Train Printer. 

PTTC Acronym for Paper Tape And Transmission Code. 

PTTC/BCD Acronym for Paper Tape And Transmission Code For BCD 
Environments. 

PTTC/EBCD Acronym for Paper Tape And Transmission Code For 
EBCD Environments. 

PTTC/6 Deprecated acronym for PTTC/BCD. 

PTTC/8 Deprecated acronym for PPTC/EBCD. 

Punch See Digit Punch, Zone Punch, 0-Punch, 1-Punch, 2-Punch, 3- 
Punch, 4-Punch, 5-Punch, 6-Punch, 7-Punch, 8-Punch, 9-Punch, 11- 
Punch, 12-Punch. 

Representation The physical form or manner in which the Characters of 
a Coded Character Set are recorded or transmitted on some medium, 

such as magnetic tape, magnetic card, magnetic disks, magnetic core, 

paper tape, punched card, data transmission line. 

Row A horizontal row of a Coded Character Set either in a Code Table 

or on a punched card. See also Code Table Row, Card Row, 0-Row, 

1-Row, 2-Row, 3-Row, 4-Row, 5-Row, 6-Row, 7-Row, 8-Row, 9-Row, 

11-Row, 12-Row. Contrast with Column. 

Row Number The number assigned to a Row of a Code Table. Contrast 
with Column Number. 

Sequence See Bit Sequence, Collating Sequence. 

Seven-Punch Synonym for 7-Punch. 

Seven-Row Synonym for 7-Row. 

Shifted Code A Code in which the meaning of a Bit Pattern depends not 
only on the Bit Pattern itself but also on a particular preceding Bit 

Pattern in the string of Bit Patterns, the preceding Bit Pattern being 

called a ‘“‘precedence Character” or a “‘shift Character.” 

Signed Numeric A Numeric with either a positive or negative associated 
sign. Contrast with Absolute Numeric, Negative Numeric, Positive 
Numeric. 

Small Alphabetic The alphabetics a, b, c,...,z. Also includes small 

Diacritic Alphabetics. Contrast with Capital Alphabetic.
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Space Character A Graphic Character that causes the print or display 
positions to move one position forward (that is, to the right) without 
producing the printing or display of any visible graphic. 

Special A Graphic other than an Alphabetic or a Numeric. Synonymous 

with Special Graphic. 

Special Character A Special together with its associated Bit pattern or 
Hole Pattern. 

Special Graphic Synonym for Special. 

Stream See Bit Stream, Data Stream. 

String See Bit String. 

Subset A Coded Character Set, each Character of which is a Character 

of a larger Coded Character Set. 

Table Column Synonym for Code Table Column. 

Table Row Synonym for Code Table Row. 

Three-Punch Synonym for 3-Punch. 

Three-Row Synonym for 3-Row. 

Track The portion of a moving data medium such as drum, disk, or tape, 
that is accessible to a given reading or recording head position. 

Train Printer An impact printer in which the type slugs are carried by a 
revolving train. Contrast with Chain Printer. 

Transmission Control Character A Control Character to control inter- 
communications on data transmission lines. 

Twelve-Punch Synonym for 12-Punch. 

Twelve-Row Synonym for 12-Row. 

Twelve-Row Card A punched card with twelve punchable Card Rows. 

Two-Punch Synonym for 2-Punch. 

Two-Row Synonym for 2-Row. 

Upper-Case Alphabet Deprecated term for Capital Alphabetic. 

Upper-Case Letter Deprecated term for capital letter. 

USASCII Deprecated term for ASCII. 

USASI Acronym for the United States of American Standards Institute, 

now called the American National Standards Institute. 

Zero-Bit Synonym for 0-Bit. 

Zero-Punch Synonym for 0-Punch. 

Zero-Row Synonym for 0-Row. 

Zone Bit For BCDIC, one of the two high-order Bits; for EBCDIC, one 

of the four high-order Bits.
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Zone Punch On a punched card, a 12-Punch, an 11-Punch, or a 

0-Punch for some Hole Patterns. 

0-Bit A Bit whose value is zero. 

1-Bit (a) A Bit whose value is one. (b) In the BA8421 or the 

DCBA8421 nomenclature for bit positions, a Bit in the 1 position. 

2-Bit In the BA8421 or DCBA8421 nomenclature for bit positions, a 

Bit in the 2 position. 

4-Bit In the BA8421 or DCBA8421 nomenclature for bit positions, a 

Bit in the 4 position. 

8-Bit In the BA8421 or DCBA8421 nomenclature for bit positions, a 
Bit in the 8 position. 

0-Punch A punch in the 0-Row of a punched card. Synonymous with 

Zero-Punch. 

1-Punch A punch in the 1-Row of a punched card. Synonymous with 
One-Punch. 

2-Punch A Punch in the 2-Row of a punched card. Synonymous with 

Two-Punch. 

3-Punch A punch in the 3-Row of a punched card. Synonymous with 

Three-Punch. 

4-Punch A punch in the 4-Row of a punched card. Synonymous with 
Four-Punch. 

5-Punch A punch in the 5-Row of a punched card. Synonymous with 
Five-Punch. 

6-Punch A punch in the 6-Row of a punched card. Synonymous with 
Six-Punch. 

7-Punch A punch in the 7-Row of a punched card. Synonymous with 

Seven-Punch. 

8-Punch A punch in the 8-Row of a punched card. Synonymous with 
Eight-Punch. 

9-Punch A punch in the 9-Row of a punched card. Synonymous with 

Nine-Punch. 

11-Punch A punch in the 11-Row of a punched card. Synonymous with 

Eleven-Punch. 

12-Punch A punch in the 12-Row of a punched card. Synonymous with 
Twelve-Punch. 

0-Row The horizontal Row in a punched card that receives 0-Punches. 

1-Row The horizontal Row in a punched card that receives 1-Punches. 

2-Row The horizontal Row in a punched card that receives 2-Punches. 

3-Row The horizontal Row in a punched card that receives 3-Punches.
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4-Row 

5-Row 

6-Row 

7-Row 

8-Row 

9-Row 

Glossary 

The horizontal Row in a punched card that receives 4-Punches. 

The horizontal Row in a punched card that recieves 5-Punches. 

The horizontal Row in a punched card that receives 6-Punches. 

The horizontal Row in a punched card that receives 7-Punches. 

The horizontal Row in a punched card that receives 8-Punches. 

The horizontal Row in a punched card that receives 9-Punches. 

11-Row The horizontal Row in a punched card that receives 11-Punches. 

12-Row The horizontal Row in a punched card that receives 12-Punches.
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