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Abstract 
     

This report presents a theoretical study of the transmission of infor- 
     mation in the case of discrete messages and noiseless systems. The study 

     begins with the definition of a unit of information (a selection between 
     two choices equally likely to be selected), and this is then used to deter- 
     mine the amount of information conveyed by the selection of one of an 
     arbitrary number of choices equally likely to be selected. Next, the average 
     amount of information per selection is computed in the case of messages con- 
     sisting of sequences of independent selections from an arbitrary number of 
     choices with arbitrary probabilities of their being selected. A recoding 
     procedure is also presented for improving the efficiency of transmission by 
     reducing, on the average, the number of selections (digits or pulses) re- 
     quired to transmit a message of given length and given statistical character. 
     The results obtained in the case of sequences of independent selections are 
     extended later to the general case of non-independent selections. Finally, 
     the optimum condition is determined for the transmission of information by 
     means of quantized pulses when the average power is fixed. 
     



THE TRANSMISSION OF INFORMATION 
     

Introduction 
     

It is the opinion of many workers in the field of electrical communi- 
     cations that the communication art is today at a major turning point of its 

     development. The objective of almost all electrical communication systems 
     has been, up to now, to eliminate distance in some form of human activity or 
     relationships between men. Telegraph, telephone and television are typical 
     examples of such communication systems. We may add to these teletype, tele- 
     control and telemetering. It is interesting to note that the names of all 
     these communication systems involve the prefix tele, meaning "at a distance". 
     Although, for obvious reasons, forms of communication over distances 

     much greater than the ranges of human senses and reach were first to receive 
     attention, the magnitude of the distance involved is not of primary impor- 
     tance from a logical point of view in the concept of communication. Com- 
     munication is basically any form of transmission of information, regardless 
     of the distance between the transmitter and the receiver. In a broader 
     sense, the field of communication includes any handling, combining, comparing 
     or employing of information, since such processes involve and are intimately 
     connected with the transmission of such information. 
     It is clear, then, that most human activities involve communication in 

     a broad sense, and, in particular, those activities which are considered of 
     higher intellectual type because they depend to a high degree on the process 
     of "thinking". Thinking itself, in fact, involves a natural communication 
     system of a complexity far beyond that conceivable for any man-made system. 
     The above considerations point clearly to a very wide field of useful 

     applications of the communication art which has hardly been touched as yet. 
     It is to be expected that each application should present problems of a 
     higher order of complexity than those encountered in the past. Consequently, 
     it is also to be expected that the solution of these problems should neces- 
     sitate the use of more powerful analytical tools and, particularly, should 
     require a more fundamental study of the process of transmission of informa- 
     tion. As a matter of fact, the first and most significant step in the 
     direction of such a study was made by Norbert Wiener (1) in connection with 
     the development of predictors for antiaircraft fire control. The statistical 
     nature of this problem led him to the realization that all communication 
     problems are fundamentally of a statistical nature, and must be handled 
     accordingly. He argued that the signal to be transmitted in a communication 
     system can never be considered as a known function of time, because if it 
     were a priori known it could not convey any new information and therefore 
     would not need to be transmitted. On the other hand, what can be known 
     



a priori about a signal to be transmitted is its statistical character - 
     that is, for instance, the probability distribution of its amplitude. In 
     addition, it is equally clear, that noise, which plays such an important 
     part in communication problems, can be described only in statistical terms. 
     It follows that all communication problems are inherently statistical in 
     nature, and that disregarding this fact may lead to unexplainable inconsist- 
     encies in addition to precluding a deeper understanding of such problems. 
     The statistical theory of optimum prediction and filtering developed 

     by Wiener led further to the realization of the need for a basic and general 
     criterion for judging the quality of communication systems. In fact, the 
     mean-square error criterion used by Wiener in this part of his work is dic- 
     tated by mathematical convenience rather than by physical considerations; 
     consequently it may not be useful in certain practical problems. The search 
     for a more appropriate criterion leads naturally to the question of what is 
     the operation that a communication system must perform. If we take as an 
     example a telegraph system, it might seem at first obvious that such a system 
     must reproduce at the output each and every letter of the input message in 
     the proper order. We may observe, however, that if one letter is received 
     incorrectly, the word containing it is still perfectly understandable in 
     most cases, and so, of course, is the whole message. Moreover, the message 
     would still be comprehensible if, for instance, all the vowels were elimi- 
     nated (which is what is done in written Hebrew). On the other hand, the 
     incorrect transmission of a digit in a number would make the received mes- 
     sage incorrect. 
     

It appears therefore that the transmission of the information conveyed 
     by a written message is what we wish to obtain and that this is not neces- 

     sarily equivalent to the transmission of all the letters contained in the 
     written message. More precisely, it appears that the different symbols, 
     letters or figures contained in a written message do not contribute equally 
     to the transmission of information - so much so, that some of them may be 
     completely unnecessary. Similar conclusions are reached by considering 
     other types of communication systems. In particular, the recent work on 
     the Vocoder (2) and the clipping of speech waves (3) has provided consider- 
     able evidence in the same general direction. 
     The above considerations are relevant to another problem with which 

     communication engineers are becoming more and more concerned, namely, that 
     of bandwidth reduction. As a matter of fact, the Vocoder was developed 
     primarily for the purpose of reducing the bandwidth required for speech 
     transmission. It is clear that if different parts of a message are not 
     equally important, some saving in bandwidth might be possible by providing 
     transmission facilities which are proportional to the importance of these 
     



different parts. The bandwidth problem, in turn, is intimately connected 
     with the noise-reduction problem. In fact, all the different types of 
     modulation developed for the purpose of noise and interference reduction 
     require a bandwidth wider than that required by amplitude modulation. This 
     method of paying for an improved signal-to-noise ratio with an increased 
     bandwidth appears to be the result of some fundamental limitation which, 
     however, the conventional approach to communication problems has failed to 
     
clarify. 
     

The above discussion of some of the problems confronting or likely to 
     confront the communication engineer indicates clearly the necessity of pro- 

     viding a measure for the "thing" which is to be transmitted and which has 
     been vaguely called "information". Such a measure will then permit a quan- 
     titative and more fundamental study of the process involved in the trans- 
     mission of information which, in turn, will lead eventually to the design 
     of better and more efficient communication devices. A considerable amount 
     of work in this direction has already been done independently by Norbert 
     Wiener (4) and Claude Shannon (5). The work of Wiener is particularly out- 
     standing because of its philosophical profoundness and its importance in 
     many branches of science other than communication engineering. Mention 
     should be made also of the pioneering work of Hartley (6) and of the more 
     recent work of Tuller (7). 
     This paper presents the work done by the author in the past year on 

     the transmission of discrete signals through a noiseless channel. Although 
     most of the results obtained have already been published by Wiener and 
     Shannon, it is felt that the method of approach used here is sufficiently 
     different to justify this redundant presentation. 
     

I. Definition of the Unit of Information 
     
  
     
In order to define, in an appropriate and useful manner, a unit of 
     information, we must first consider in some detail the nature of those 

     processes in our experience which are generally recognized as conveying 
     information. A very simple example of such processes is a yes-or-no answer 
     to some specific question. A slightly more involved process is the indica- 
     tion of one object in a group of N objects, and, in general, the selection 
     of one choice from a group of N specific choices. The word "specific" is 
     underlined because such a qualification appears to be essential to these 
     information-conveying processes. It means that the receiver is conscious 
     of all possible choices, as is, of course, the transmitter (that is, the 
     individual or the machine which is supplying the information). For instance, 
     saying "yes" or "no" to a person who has not asked a question obviously does 
     not convey any information. Similarly, the reception of a code number which 
     



is supposed to represent a particular message does not convey any informa- 
     tion unless there is available a code book containing all the messages with 
     the corresponding code numbers. 
     Considering next more complex processes, such as writing or speaking, 

     we observe that these processes consist of orderly sequences of selections 
     from a number of specific choices, namely, the letters of the alphabet or 
     the corresponding sounds. Furthermore, there are indications that the sig- 
     nals transmitted by the nervous system are of a discrete rather than of a 
     continuous nature, and might also be considered as sequences of selections. 
     If this were the case, all information received through the senses could be 
     analyzed in terms of selections. The above discussion indicates that the 
     operation of selection forms the basis of a number of processes recognised 
     as conveying information, and that it is likely to be of fundamental impor- 
     tance in all such processes. We may expect, therefore, that a unit of 
     information, defined in terms of a selection, will provide a useful basis 
     for a quantitative study of communication systems. 
     Considering more closely this operation of selection, we observe that 

     different informational value is naturally attached to the selection of the 
     same choice, depending on how likely the receiver considered the selection 
     of that particular choice to be. For example, we would say that little 
     information is given by the selection of a choice which the receiver was 
     almost sure would be selected. It seem appropriate, therefore, in order to 
     avoid difficulty at this early stage, to use in our definition the particular 
     case of equally likely choices - that is, the case in which the receiver has 
     no reason to expect that one choice will be selected rather than any other. 
     In addition, our natural concept of information indicates that the informa- 
     tion conveyed by a selection increases with the number of choices from which 
     the selection is made, although the exact functional relation between these 
     two quantities is not immediately clear. 
     On the basis of the above considerations, it seems reasonable to define 

     as the unit of information the simplest possible selection, namely, the 
     selection between two equally likely choices, called, hereafter, the "ele- 
     mentary selection". For completeness, we must add to this definition the 
     postulate, consistent with our intuition, that N independent selections of 
     this type constitute N units of information. By independent selections we 
     mean, of course, selections which do not affect one another. We shall adopt 
     for this unit the convenient name of "bit" (from "binary digit"), suggested 
     by Shannon. We shall also refer to a selection between two choices (not 
     necessarily equally likely) as a "binary selection", and to a selection from 
     N choices, as an N-order selection. When the choices are, a priori, equally 
     likely, we shall refer to the selection as an "equally likely selection". 
     

  
     



We can now proceed to develop ways of measuring the information content of 
     discrete messages in terms of the unit just defined. Most of this paper 
     will be devoted to the solution of this problem. 
     

II. Selection from N Equally Likely Choices 
     

Consider now the selection of one among a number, N, of equally likely 
     choices. In order to determine the amount of information corresponding to 

     such a selection, we must reduce this more complex operation to a series of 
     independent elementary selections. The required number of these elementary 
     selections will be, by definition, the measure in bits of the information 
     given by such an N-order selection. 
     Let us assume for the moment that N is a power of two. In addition 

     (just to make the operation of selection more physical), let us think of 
     the N choices as N objects arranged in a row, as indicated in Figure 1. 
     

Binary 
     Number 
     

Fig. 1 Selection procedure for 
     equally likely choices. 

     

  
     These N objects are first divided in two equal groups, so that the object 
     to be selected is just as likely to be in one group as in the other. Then 
     the indication of the group containing the desired object is equivalent to 
     one elementary selection, and, therefore, to one bit. The next step con- 
     sists of dividing each group into two equal subgroups, so that the object 
     to be selected is again just as likely to be in either subgroup. Then one 
     additional elementary selection, that is a total of two elementary selec- 
     tions, will suffice to indicate the desired subgroup (of the possible four 
     subgroups). This process of successive subdivisions and corresponding ele- 
     mentary selections is carried out until the desired object is isolated from 
     



the others. Two subdivisions are required for N = 4, three for N = 8, and, 
     
in general, a number of subdivisions equal to log2 N, in the case of an 
     N-order selection. 
     

The same process can be carried out in a purely mathematical form by 
     assigning order numbers from 0 to N-1 to the N choices. The numbers are 

     then expressed in the binary system, as shown in Figure 1, the number of 
     
binary digits (0 or 1) required being equal to log2 N. These digits represent 
     an equal number of elementary selections and, moreover, correspond in order 
     to the successive divisions mentioned above. In conclusion, an N-order, 
     equally likely selection conveys an amount of information 
     

HN = log2 N . (1) 
     The above result is strictly correct only if N is a power of two, in 

     
which case HN is an integer. If N is not a power of two, then the number of 
     elementary selections required to specify the desired choice will be equal 
     to the logarithm of either the next lower or the next higher power of two, 
     depending on the particular choice selected. Consider, for instance, the 
     case of 1 - 3. The three choices, expressed as binary numbers, are then 
     

00,01,10 . 
     

If the binary digits are read in order from left to right, it is clear 
     that the first two numbers require two binary selections - that is, two 

     digits, while the third number requires only the first digit, 1, in order to 
     be distinguished from the other two. In other words, the number of elemen- 
     tary selections required when N is not a power of two is equal to either one 
     
of the two integers closest to log2 N]. It follows that the corresponding 
     amount of information must lie between these two limits, although the sig- 
     nificance of a non-integral value of H is not clear at this point. It will 
     be shown in the next section that Eq.(1) is still correct when N is not a 
     
power of two, provided HN is considered as an average value over a large 
     number of selections. 
     

III. Messages and Average Amount of Information 
     
  
     
We have determined in the preceding section the amount of information 
     conveyed by a single selection from N equally likely choices. In general, 

     however, we have to deal with not one but long series of such selections, 
     which we call messages. This is the case, for instance, in the transmission 
     of written intelligence. Another example is provided by the communication 
     system known as pulse-code modulation, in which audio waves are sampled at 
     equal time intervals and then each sample is quantized, that is approximated 
     by the closest of a number N of amplitude levels. 
     



Let us consider, then, a message consisting of a sequence of n succes- 
     sive N-order selections. We shall assume, at first, that these selections 

     are independent and equally likely. In this simpler case, all the different 
     sequences which can be formed equal in number to 
     S = N^n, (2) 

     are equally likely to occur. For instance, in the case of N = 2 (the two 
     choices being represented by the numbers 0 and 1) and n = 3, the possible 
     sequences would be 000, 001, 010, 100, 011, 101, 110, 111. The total number 
     of these sequences is S = 8 and the probability of each sequence is 1/8. 
     In general, therefore, the ensemble of the possible sequences may be con- 
     sidered as forming a set of S equally likely choices, with the result that 
     the selection of any particular sequence yields an amount of information 
     

HS = log2 S = n log2 N. (3) 
     In words, n independent equally likely selections give n times as much 

     information as a single selection of the same type. This result is certainly 
     not surprising, since it is just a generalization of the postulate, stated 
     in Section II, which forms an integral part of the definition of information. 
     It is often more convenient, in dealing with long messages, to use a 

     quantity representing the average amount of information per N-order selection, 
     rather than the total information corresponding to the whole message. We 
     define this quantity in the most general case as the total information con- 
     veyed by a very long message divided by the number of selections in the 
     
message, and we shall indicate it with the symbol HN, where N is the order 
     of each selection. It is clear that when all the selections in the message 
     are equally likely and independent and, in addition, N is a power of two, 
     
the quantity HN is just equal to the information actually given by each 
     selection, that is 
     

HN = 1/n log2 S = log2 N . (4) 
     We shall show now that this equation is correct also when N is not a power 

     
of two, in which case HN has to be actually an average value taken over a 
     sufficiently long sequence of selections.* 
     The number S of different and equally likely sequences which can be 

     formed with n independent and equally likely selections is still given by 
     Eq.(2), even when N is not a power of two. On the contrary, the number of 
     elementary selections required to specify any one particular sequence must 
       
     

* The author is indebted to Mr. T. P. Cheatham, Jr. (of this Laboratory) for the 
     original idea on which is based both this proof and the corresponding recoding 

     procedure (see Section IV). 
     



be written now in the form 
     

BS = log2 S + d , (5) 
     where d is a number, smaller in magnitude than unity, which makes BS an 

     integer and which depends on the particular sequence selected. The average 
     amount of information per N-order selection is then, by definition, 
     

HN = lim 1/n(log2 S + d) . (6) 
     

Since N is a constant and since the magnitude of d is smaller than unity 
     while n approaches infinity, this equation together with Eq.(2) yields 
     

HN = log2 N . (7) 
     We shall consider now the more complex case in which the selections, 

     although still independent, are not equally likely. In this case, too, we 
     wish to compute the average amount of information per selection. For this 
     purpose, we consider again the ensemble of all the messages consisting of 
     n independent selections and we look for a way of indicating any one partic- 
     ular message by means of elementary selections. If we were to proceed as 
     before, and divide the ensemble of messages in two equal groups, the selec- 
     tion of the group containing the desired message would no longer be a 
     selection between equally likely choices, since the sequences themselves 
     are not equally likely. The proper procedure is now, of course, to make 
     equal for each group not the number of messages in it but the probability 
     of its containing the desired message. Then the selection of the desired 
     group will be a selection between equally likely choices. This procedure 
     of division and selection is repeated over and over again until the desired 
     message has been separated from the others. The successive selections of 
     groups and subgroups will then form a sequence of independent elementary 
     selections. 
     

One may observe, however, that it will not generally be possible to 
     form groups equally likely to contain the desired message, because shifting 

     any one of the messages from one group to the other will change, by finite 
     amounts, the probabilities corresponding to the two groups. On the other 
     hand, if the length of the messages is increased indefinitely, the accuracy 
     with which the probabilities of the two groups can be made equal becomes 
     better and better since the probability of each individual message approaches 
     zero. Even so, when the resulting subgroups include only a few messages 
     after a large number of divisions, it may become impossible to keep the 
     probabilities of such subgroups as closely equal as desired unless we pro- 
     ceed from the beginning in an appropriate manner as indicated below. The 
     



messages are first arranged in order of their probabilities, which can be 
     easily computed if the probabilities of the choices are known. 
     

The divisions 
     

in groups and subgroups are then made successively without changing the order 
     of the messages, as illustrated in Figure 2. In this manner, the smaller 
     subgroups will contain messages with equal or almost equal probabilities, so 
     that further subdivisions can be performed satisfactorily. 
     It is clear that when the above procedure is followed, the number of 

     binary selections required to separate any message from the others varies 
     
Probabilities of Groups Obtained 
     

by Successive Divisions 
     

Fig. 2 Recoding of messages consisting of 2 third-order 
     selections, for choice probabilities p(0) = 0.7, p(1) = 0.2, 

     p(2) = 0.1, H3 
     

= - [0.7 log2 0.7 + 0.2 log2 0.2 + 0.1 log2 0.1] = 1.157 
     

For original code 
     

For new code 
     

H3 
     eta = log2 3 = 0.73 ; 

     

 = 2H3 = 0.993 . 
     eta (Bg)av. 

     

  
     



from message to message. Messages with a high probability of being selected 
     require less binary selections than those with lower probabilities. This 
     fact is in agreement with the intuitive notion that the selection of a 
     little-probable message conveys more information than the selection of a 
     more-probable one. Certainly, the occurrence of an event which we know 
     a priori to have a 99 per cent probability is hardly surprising or, in our 
     terminology, yields very little information, while the occurrence of an 
     event which has a probability of only 1 per cent yields considerably more 
     information. More precisely, as shown below, if P(i) is the probability 
     of the ith message, the number of binary selections required to indicate 
     
this message will be an integer B3(i).) close to -1og2 P(i). In fact, P(i) 
     is just the probability of the last subgroup obtained by successively 
     
halving (approximately) the probability of the whole ensemble of messages 
     (which is unity) a number of times equal to B3(i), so that P(i) approx 2^-BS(i) 
     By making the messages sufficiently long - that is, the number n of N-order 
     
selections sufficiently large - the integer BS(i) can be made to differ in 
     percentage from -log2 P(i) by less than any desired amount. Hence, in this 
     limiting case, we can write 
     

BS(i) = -log2 P(i) . (8) 
     Let us consider now a sequence of M selections of messages, each message 

     consisting of n N-order selections (forming a sequence of nM selections). 
     By making the number M sufficiently 1arge, we can be practically sure that 
     the ith message will appear in the sequence with a frequency as close to 
     P(i) as desired. Therefore the number of binary selections required on the 
     average to select one message, that is, "the mathematical expectation of 
     
BS", will be 
     

S-1 
     

E(BS) = sum P(i) BS(i) . (9) 
     

i=0 
     

The average amount of information per N-order selection is then, from 
     Eqs. (8) and (9). 
     

that is, the limit of the ratio of the number of binary selection required, 
     on the average, to select one message to the number of N-order selections 
     in the message. 
     

Now let p(k) be the probability of the kth 
     

choice (of the N), and nk 
     

-10- 
     



be the number of times the kth choice is selected in the ith message 
     (sequence of n selections). The probability of the ith message is 
     

The number of binary selections required to indicate this message can be 
     written as 
     

with any degree of accuracy desired. In the limit when n approaches infinity 
     these binary selections become elementary selections, that is, binary selec- 
     
tions between equally likely choices. We must now compute E(BS) according 
     to Eq.(9). The number of sequences of selections, that is, messages, to 
     which correspond the same values of P(i) and BS(i), is equal to the number 
     of different permutations of the choices selected in the ith sequence; that 
     

It follows that the average value of BS(i) is given by 
     

where the nk and p(k) are always positive and subject to the conditions 
     

-11- 
     



The overall summation in Eq.(13) is made over all possible combinations of 
     
integral positive values of the nk which satisfy Eq.(14). 
     In order to compute the values of E(BS) we begin by expressing the 

     factorials in Eq.(13) by means of Stirling's formula (8)(9). 
     

n! = sqrt(2pi n) n^n e^-n , (16) 
     valid for large values of n. We obtain then 

     

where 
     

The variables xk = nk/n are always positive, smaller than unity and subject 
     to the constraint 
     

It is convenient, at this point, to consider the function f(x) as a 
     

continuous, rather than a discontinuous, function of the xk and to transform 
     the summation of Eq.(13) into an integral. We observe, in this regard, that 
     
when nk varies from zero to n, xk varies from zero to one. It follows that 
     to a unit increment of nk (nk takes only integral values) corresponds an 
     increment of xk equal to 1/n. Therefore, when n approaches infinity, to the 
     unit increments of the nk correspond the differentials dxk = 1/n. In con- 
     clusion, the summation of Eq.(13) can be transformed (10) into an integral 
     and Eq.(10) then becomes 
     

The integration is extended over the region of the hyperplane defined by 
     

-12- 
     



Eq.(19), in which all the xk are positive and smaller than one. It will be 
     noted that in Eq.(20) x0 is considered as a function of all the other xk. 
     

so as to limit the integration to the above-mentioned hyperplane. 
     To compute the integral appearing in Eq.(20), we observe first that the 

     integral of f(x) alone over the same region represents the summation of the 
     probabilities of all possible messages consisting of n selections, provided, 
     of course, that n is sufficiently large. Therefore, the integral of f(x) 
     must be equal to unity for all large values of n. On the other hand, as 
     
shown in Appendix I, f(x) has a peak at a point which approaches xk = p(k) 
     when n approaches infinity. The height of this peak is proportional to 
     (N-1)/n^2. It follows that when n approaches infinity, f(x) becomes a delta- 
     
function, or unit impulse, located at xk = p(k). The integral of Eq.(20) 
     is, therefore, equal to the value for xk = p(k) of the rest of the integrand, 
     that is, of the summation. Eq.(20) yields finally 
     

N-1 
     

HN = - sum p(k) log2 p(k) , (22) 
     

k=0 
     

which is then the average amount of information per N-order selection. 
     The conclusions which can be reached from the evaluation of the integral 

     in Eq.(20) extend far beyond Eq.(22). It is easy to see that if the function 
     

N-1 
     

sum xk log2 p(k) 
     k=O 
     

were any other finite function of the xk, the limiting value of the integral 
     would still be equal to the value of the function for xk = p(k). In other 
     words, the expectation (or average value) of any function of the xk is equal 
     to the value of the function itself for xk = p(k). From a physical point of 
     view, we can say that the ensemble of possible sequences of selections can 
     be divided in two groups. The first group consists of sequences for which 
     
the frequencies xk of occurrence of the different choices differ from the 
     probabilities p(k) of the choices by less than amounts which approach zero 
     as 1/sqrt n when n approaches infinity. The total probability of the sequences 
     in this group approaches unity when n increases indefinitely, and therefore 
     the number of sequences in this group approaches 
     

-13- 
     



N-1 
     - np(k)   nHN 

     M = product [p(k)]    = 2 . (23) 
     k=0 

     

The second group consists of all other sequences, and its total probability 
     approaches zero when n approaches infinity. 
     The sequences of the first group are all equally probable and, there- 

     fore, the selection of one of them out of the group requires a number of 
     binary selections equal to 
     

log2M = nHN . (24) 
     

In other words, the sequences of the first group can be represented by means 
     
of sequences of n HN binary digits, that is HN digits per N-order selection, 
     All the other sequences together, regardless of the way in which they are 
     
represented, cannot increase by any finite amount, beyond HN, the number of 
     binary digits required on the average per N-order selection. 
     

The expression for HN obtained above indicates that HN can be considered 
     as the expectation of log2 [1/p(k)]. In other words, we may say that the 

     selection of a particular choice k conveys an amount of information equal to 
     the logarithm-base-two of the reciprocal of its probability. This inter- 
     pretation is fundamental. It will be shown later to apply also to the 
     general case of non-independent selections, in which case p(k) will be 
     substituted by the conditional probability that the kth choice will be selec- 
     ted, based on the knowledge of all preceding selections. 
     

It is easy to see from Eq.(22) that HN vanishes only when all but one 
     of the p(k) are equal to zero, in which case the one different from zero 

     
must be equal to unity. In other words, HN vanishes only when the choice 
     which will be selected is known a priori with unity probability. In this 
     instance, it is intuitively clear that no information is being transmitted. 
     
On the other hand, HN is a maximum (as shown in Appendix I), when all the 
     p(k) are equal, that is, when there is no a priori knowledge at all about 
     the selections. Under these circumstances, Eq.(22) reduces to Eq.(7). since 
     
p(k) = 1/n. The manner in which HN varies with the probabilities of the 
     choices is illustrated in Figure 3, for the particular case of N = 2. 
     The amount of information conveyed by a message of given length was 

     defined above as the number of independent elementary (binary, equally likely) 
     selections required, on the average, to specify such a message. The notion 
     of a minimum number of binary selections required did not enter the defini- 
     tion. It should be intuitively clear, however, that the minimum number of 
     binary selections required, on the average, to specify a message is equal 
     to the average information conveyed, or, in other words, the number of 
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Fig. 5 The amount of information per 
     

H2 = - {p(0) log2 p(0)       binary selection as a function of the 
     

probability of either choice. 
     

+ [1-p(0)] log2 [1-p(0)]} 
     

binary selections becomes a minimum when the selections are equally likely 
     and independent. To prove this identity, we observe that the amount of 
     information conveyed by a sequence of independent binary selections is a 
     maximum when the selections are equally likely. Conversely, therefore, it 
     is always possible to represent any sequence of m binary, not equally likely 
     selections with a number of elementary selections smaller, on the average, 
     than m. It follows that no binary representation of a message can be ob- 
     tained with a number of selections smaller than the amount of information 
     conveyed. It is clear, of course, that all message representations, which 
     employ independent equally likely selections, require, on the average,the same 
     number of selections. It will be shown later that a larger number of 
     selections is required whenever non-independent selections are used. 
     It is appropriate to point out here that the mathematical form of 

     Eq.(22) suggests a very interesting analogy between information and entropy, 
     
as expressed in statistical mechanics. In fact, HN appears formally as the 
     entropy of a system whose possible states have probabilities p(k). For a 
     physical interpretation of this analogy, the reader is referred to the work 
     of Norbert Wiener (Ref. 1). 
     

IV. Codes and Code Efficiency 
     

The preceding sections have been devoted to the definition of the unit 
     of information and to the computation of the average amount of information 

     per selection in the case of messages consisting of sequences of independent 
     
N-order selections. It was pointed out in Section III that HN represents 
     the minimum number of binary selections required, on the average, to perform 
     an N-order selection with given choice probabilities. Therefore, if we take 
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the number of binary selections employed as a basis for comparing different 
     
methods of conveying the same information, HN represents a theoretical limit 
     corresponding to maximum efficiency. 
     The knowledge of such a theoretical limit is extremely important, but 

     perhaps even more important is the ability to approach this limit in practice. 
     
In our case, fortunately, the procedure followed in computing HN (that is, 
     the theoretical limit) indicates a convenient method for approaching this 
     limit in practice. Let us consider again all the sequences of n N-order 
     selections (in which, however, n may be a small integer), and arrange them 
     in order of increasing probability. If we wish to separate any one partic- 
     ular sequence from the others by means of successive division in almost 
     equally probable groups, as discussed in the preceding section, the number 
     
of divisions required, on the average, that is, E(BS), will be larger 
     than nHN. However, if we increase n, that is, the length of the sequences, 
     we find that E(BS)/n keeps decreasing and approaches HN when n approaches 
     infinity. It must be kept in mind, in this regard,that E(BS)/n does not 
     decrease necessarily in a monotonic manner, but may have an oscillatory 
     behavior as a function of n.* It follows that an increase of n may actually 
     
produce an increase of E(BS)/n. For instance (as shown in Figure 4), in the 
     case of N = 2, p(0)=- 0.7, p(1) = 0.3, the value of E(BS)/n is 0.905 for 
     n = 2, 0.909 for n = 3, and 0.895 for n = 4, the limiting value being 
     
H2 - 0.882. 
     The above discussion indicates that, in transmitting a message consisting 

     of a large number of selections, we should transmit the selections not indi- 
     vidually, but in sequences of n as units, the number n being as large as 
     permitted by practical considerations. The transmission of each of these 
     units is then performed by means of sequences of binary selections corres- 
     ponding in order to the successive divisions of the ensemble of all possible 
     sequences of n N-order selections, as indicated in Figures 2, 4, and 5. It 
     will be noted that, although the sequences of binary selections are not equal 
     in length, it is always possible to identify the end of any of them in a long 
     message. In fact, the first m selections of any sequence of length larger 
     than m are always different from any of the sequences consisting of exactly 
     m selections. 
     

If it is desired to perform the transmission by means of N'-order selec- 
     tions (N' being any integer), we can proceed in the same manner as in the 

     case of binary selections, the only difference being that we must divide 
     successively the ensemble of all possible sequences in N' groups instead of 
     just two. After each division, the groups containing the desired sequence 
       
     
* This fact was first pointed out to me by L. G. Kraft of this laboratory. 
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will then be indicated by means of an N'-order selection. 
     The operation described above is, effectively, a change of code, that 

     is, we may say, of the conventional language in which the message is written. 
     Therefore this operation will be referred to as "message recoding". The 
     advantage resulting from this recoding is conveniently expressed in terms 
     
of the code efficiency 
     eta = HN/log2 N , (25) 

     that is, the ratio of the information transmitted on the average per selec- 
     tion, to the information which could be transmitted with an equally likely 
     selection of the same order. The efficiency of a binary code resulting from 
     the recoding of sequences of N-order selections can be computed most con- 
     veniently in the form 
     

eta = nHN/E(BS) , (26) 
     where n is the number of N-order selections used in the recoding operation. 

     
Note that nHN is the average amount of information per sequence of n N-order 
     selections and H(BS) represents the amount of information which could be 
     transmitted, on the average, by one of the sequences of binary selections 
     in which the original sequences are recoded, if these binary selections were 
     equally likely. If the new code is of N' order, we must substitute for 
     
E(BS) the product of log2 N by the number of N'-order selections required, 
     on the average, to specify a sequence of n N-order selections. 
     A final remark must be made regarding the recoding operation. Since 

     the process of successive divisions of an ensemble of sequences into equally 
     probable groups cannot be carried out exactly, it is not clear at times 
     whether one sequence should be included in one group or in another. Of 
     course, we wish to perform all divisions in such a way as to obtain at the 
     end the most efficient code. Unfortunately, no general rule could be found 
     for determining at once how the divisions should be made in doubtful cases 
     in order to obtain maximum code efficiency. However, so long as the divi- 
     sions are made in a reasonable manner the resulting code efficiency will not 
     differ appreciably from its maximum value. 
     We have implicitly assumed in the foregoing discussion that we know 

     a priori the probabilities p(k) of the choices for a message still to be 
     transmitted. It seems appropriate at this point to discuss in some detail 
     this assumption, since the practical value of the results obtained above 
     depends entirely on its validity. When we state that the probability of a 
     particular choice has a value p(k) we mean that the frequency of occurrence 
     of that choice in a message originating from a given source is expected to 
     be close to p(k). The longer is the message, the closer we expect the 
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frequency to approach p(k). It must be clear, however, that we have no 
     assurance that the frequency of occurrence will not differ considerably from 
     the probability even in the case of a very long message, although such a 
     situation is very unlikely to arise. 
     In practice, p(k) must be estimated experimentally following the reverse 

     process, that is, by inference from the measurement of the frequency in a 
     number of sample messages. If the frequencies in the sample messages are 
     reasonably alike, or, more precisely, if their values are scattered in the 
     manner which might be expected on the basis of the length of the messages 
     used, we may feel relatively safe in taking their average value as a good 
     estimate of the probability. In other words, we may expect that the fre- 
     quency in any other message originating from the same source will be reason- 
     ably close to the average value obtained. If this is the case, the source 
     of such messages is said to have a stationary statistical character. We can 
     conceive the case, however, in which the frequencies in the sample messages 
     available are so widely scattered that hardly any significance can be attrib- 
     uted to their average value. Such a result may mean that the source has not 
     a stationary statistical character, at least for practical purposes, in which 
     case the concept of probability loses any physical significance. Fortunately, 
     however, the sources of interest appear to have a stationary character for 
     any practical purpose. In addition, the estimates of the probabilities of 
     the choices do not need to be too close. It should be clear, in this respect, 
     that the fact that a code has been designed for a particular set of choice 
     probabilities does not mean that only messages with the same statistical 
     character can be transmitted. It means only that such a code will transmit 
     most efficiently, that is, with the smallest number of selections - messages 
     with the choice frequencies equal to the assumed probabilities. Moreover, 
     we can expect that the efficiency of transmission will not depend in a criti- 
     cal manner on the actual frequencies of the messages to be transmitted. A 
     proof that this is actually the case is given below. 
     Suppose that a code which is optimum for a set of choice probabilities 

     p'(k) is used to transmit messages with choice probabilities p(k). If we 
     consider again all possible sequences of n selections, the expression for 
     the number of binary selections required, on the average, to indicate one 
     
particular sequence, E(B'S), is still given by Eq.(13), where, however, the 
     p(k) which appear in the form log2 p(k) should be changed into p'(k). It 
     follows that, in the limit when n approaches infinity, the number of binary 
     selections per N-order selection will approach, according to Eq.(22), the 
     value 
     N-1 

     

H'N = - sum p(k) log2 p'(k) . (27) 
     k=0 
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It is clear from this equation that H'N varies rather slowly with any one of 
     the p;(k) unless the corresponding p(k) is close to zero or unity. H'N is, 
     of course, a minimum when p'(k) = p(k). The case of N = 2 is illustrated in 
     Figure 6 for p(0) = 0.5 and p(0) = 0.7. We may conclude, therefore, that 
     the statistical characteristics assumed a priori can be rather different from 
     those of the messages actually transmitted, without the efficiency being 
     lowered too much. 
     

Fig. 6 Behavior of H'N, as a function of 
     

p'(0) for binary messages. 
     

H'N = -[p(0) log2 p'(0)+(1-p0)log2 (1-p'(0))]
     

V. The Case of Non-Independent Selections 
     

Thus far we have been considering only messages of a particularly 
     simple type, namely, messages consisting of sequences of independent selec- 

     tions. Obviously, the statistical character of most practical messages is 
     much more complex. Any particular selection depends generally on a number 
     of preceding selections. For instance, in a written message the probability 
     that a certain letter will be an "h" is highest when the preceding letter 
     is a "t". In a television signal the light intensity of a certain element 
     of a scanning line depends very strongly on the light intensities of the 
     corresponding elements in the preceding lines and in the preceding frames. 
     In fact, the light intensity is very likely to be almost uniform over wide 
     regions of the picture and to remain unchanged for several successive frames. 
     The simplifying assumption that any one selection is independent of the 

     preceding selections, although quite unrealistic, does not invalidate com- 
     pletely the results obtained in the preceding sections, but merely reduces 
     their significance to that of first approximations. Intuitively, the average 
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amount of information conveyed by a sequence of given length is decreased 
     by the a priori knowledge of any correlation existing between successive 
     selections. Therefore, the value given by Eq.(22) will always be larger 
     than the correct value for the average amount of information per selection, 
     and the same is true of the code efficiency given by Eq.(25). Similarly, 
     any recoding operation performed in the manner discussed in Section IV will 
     result in a higher efficiency of transmission, but not so high as could be 
     obtained by taking into account the correlation between successive selections. 
     The procedure for computing the average amount of information per selec- 

     tion and for recoding messages is still essentially the same as that used in 
     Sections III and IV, even when the dependence of any selection on the pre- 
     ceding selections is taken into account. The only difference is that the 
     probability of a particular sequence will not be equal simply to the product 
     of the probabilities of the choices in it, since these are no longer inde- 
     pendent. We must still arrange all the possible sequences of given length 
     n in order of probability, and separate the desired sequence by successive 
     divisions of the ensemble of sequences in groups as equally probable as 
     possible. The number of divisions required, on the average, divided by the 
     
number n of selections will approach HN when n approaches infinity. 
     Let Pn(i) be the probability of the ith sequence of n selections, and 

     HS(n) the average amount of information per sequence of n selections when 
     successive sequences are assumed to be independent. We have then 
     

N^n - 1 
     

HS(n) = -sum Pn(i) log2 Pn(i) . (28) 
     i=0 

     

Let us consider next a sequence of n+1 selections and let Pn+1(i;k) be the 
     conditional probability that the ith sequence (of the S = N^n sequences of n 
     selections) is followed by the kth choice (of the N). We have then 
     

N-1      N^n - 1 
     

HS(n+1) = -sum sum Pn(i) Pn+1(i;k) log2 Pn(i) Pn+1(i;k) , (29) 

     
k=0      i=0 
     

which, since 
     

N-1 
     

sum Pn+1 (i;k) = 1 , (30) 
     
k=0 
     

becomes 
     

N-1    N^n - 1 
     

HS(n+1) = HS(n) - sum sum Pn(i) Pn+1(i;k) log2 Pn+1(i;k) . (31) 
     k=0    i=0 
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The increment of information resulting from the (n+1)th selection is then, 
     
on the average, 
     

N-1    N^n - 1 
     

HN(n+1) = -sum sum Pn(i) Pn+1(i;k) log2 Pn+1(i;k) . (32)

     
k=0    i=0 
     

Expressing now HS(n) in terms of the successive increments, we obtain 
     

n      

HS(n) = sum HN(m) . (33) 
     

m=1 
     

The final correct value of the average amount of information per selection 
     can then be written in the form 
     

n      

HN = lim (1/n) sumHN(m) . (34) 
     

To proceed further in our analysis, we must distinguish between two 
     types of statistical character of practical importance. We shall say that 

     the output of a certain source is statistically uniform if each and any 
     selection depends in the same manner on the mth preceding selection, as seems 
     to be the case in a written message. We shall say that the output is peri- 
     odically discontinuous if it is possible to divide any output sequence in 
     sub-sequences of fixed and equal length, so that each and any selection 
     depends in the same manner on the mth preceding selection of the same sub- 
     sequence but is independent of all selections of the preceding sub-sequences. 
     This is the case when messages transmitted in succession are similar in 
     character and equal in length but entirely unrelated to one another, as, for 
     example, in facsimile transmission. The above differentiation of statistical 
     character is not an exhaustive classification but only a characterization of 
     two special cases of practical interest in which different results are ob- 
     tained. 
     

Considering now in more detail the increments of information HN(n+1)
     our intuition indicates that the average amount of information conveyed by 

     any additional selection can be, at most, equal to the value obtained when 
     the selection is independent of all preceding selections. Mathematically, 
     it must be 
     

N-1 
     

HN(n+1) < HN(1) = - sum p(k) log2 p(k) . (35) 
     k=0 

     

A proof of this inequality is given in Appendix II. In addition, it is 
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intuitively clear also that, in the case of uniform statistical character, 
     the average amount of information conveyed by the (n+1)th selection of a 
     sequence can be, at most, equal to the amount of information conveyed by the 
     nth selection, since the latter has less preceding selections on which to 
     depend. Mathematically, we expect that, for statistically uniform sequences, 
     

HN(n+l) < HN(n) . (36) 
     A proof of this inequality is given also in Appendix II. Eq.(36) is satis- 

     fied with the equal sign when the (n+1)th selection, and therefore any fol- 
     lowing selection, depends only on the n-1 preceding selections. 
     Eq. (36) shows that the limit in Eq.(34) is approached in a monotonic 

     
manner. In addition, we expect HN(m) to approach monotonically a limit with 
     increasing m, since the dependence of any selection on the preceding selec- 
     tions cannot extend, in practice, over an indefinitely large number of selec- 
     tions. Suppose, for instance, that this dependence extends only over the 
     
n0-1 preceding selection. Then HN(m) becomes constant and equal to HN(n0) 
     when m is larger than n0, and Eq.(34) yields 
     HN = HN(n0) . (37) 

     This result is correct, of course, only in the case of statistically uniform 
     
sequences. 
     

In the case of a periodically discontinuous statistical character, 
     Eq.(36) is valid only when the nth and the (n+1)th selections belong to the 

     same sub-sequence. If this is not the case, the (n+1)th selection must be 
     the first selection of a sub-sequence, and therefore is independent of all 
     
preceding selections. It follows that HN(m) is a periodic function of m with 
     period equal to the length n' of the sub-sequences, and that the limit of 
     Eq.(34) is approached in an oscillatory manner. If we compute this limit by 
     
increasing n in steps equal to n'o, it is easily seen that Eq.(34) yields 
     

a value larger than that given by Eq.(37), as was expected. 
     The recoding procedure in the case of messages consisting of non-inde- 

     pendent selections is still the same as in the case of independent selections. 
     The efficiency of transmission, still given by Eq.(25), increases (although not 
     necessarily monotonically), with the number of selections used as units in the 
     recoding process, and approaches unity when the number increases indefinitely. 
     It is worth emphasizing that in the recoding process any sequence, even if 
     statistically uniform, is considered as periodically discontinuous. In fact, 
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the groups of selections recoded as units are effectively sub-sequences 
     which are treated as though they were totally unrelated. It follows that, 
     if the recoding operation of a statistically uniform sequence is performed 
     
on groups of n0 selections, the efficiency of transmission after recoding 
     can be at most equal to 
     

In the case of statistically discontinuous sequences, it would seem 
     reasonable to make the number of selections in the recoding groups an 

     integral fraction or multiple of the length of the sub-sequences. 
     A final remark is in order regarding the fitting of the recoding pro- 

     cedure to the statistical character of the messages to be transmitted. It 
     may happen, as it does in the case of television signals, that the depend- 
     ence of any one selection on the mth preceding selection does not decrease 
     monotonically when m increases, but behaves in an oscillatory manner. In 
     this case, one should first reorder the selections before recoding, in such 
     a manner that selections which are closely related take positions close to 
     one another in the sequence. This idea of reordering the selections in the 
     sequence can be generalized as follows. Any type of transmission of informa- 
     tion can be considered as the transmission, in succession, of patterns in 
     a two-dimensional or multi-dimensional space, time being one of the dimen- 
     sions. Then the problem of ordering selections in an appropriate manner 
     can be generalized to the problem of how best to scan these patterns. It 
     is clear, on the other hand, that such a scanning problem is also at the 
     root of the problem of reducing the bandwidth required by television signals. 
     The generalized scanning problem seems to be, therefore, of fundamental 
     practical, as well as theoretical, importance. However, no work can yet be 
     reported on this subject. 
     

VI. Practical Considerations 
     

The main purpose of this paper was to provide a logical basis for the 
     measurement of the rate of transmission of information. It has been shown 

     that an appropriate measure for the rate of transmission in the case of 
     sequences of selections can be provided by the minimum number of binary 
     selections required, on the average, to indicate one of the original selec- 
     tions. We were then led naturally to consider the problem of actually per- 
     fonming the transmission of the original sequences by means of as few binary 
     or higher-order selections as possible. We did not consider, however, the 
     physical process corresponding to such selections - that is, their trans- 
     mission by electrical means. 
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A convenient way of transmitting binary selections in a practical 
     communication system is by means of pulses with two possible levels, one and 

     zero. This is just the technique employed in pulse-code modulation. The 
     maximum rate at which information can be transmitted in this case is simply 
     equal to the number of pulses per second which can be handled by the elec- 
     trical system - which we know to be proportional to the frequency band 
     available. However, as soon as we start dealing with electrical pulses 
     rather than logical operations like selections, an additional item must be 
     considered in the problem, namely, the power required for the transmission. 
     In the case of two-level pulses, the average power corresponding to the maxi- 
     mum rate of transmission of information is equal to one-half the pulse power, 
     since the zero and one levels are equally probable. 
     If pulses with N rather than two levels equally spaced in voltage are 

     
used, the maximum rate of transmission is equal to log2 n times the number of 
     pulses per second which can be handled by the system. The average power 
     required becomes, in this case, 
     

where W0 is the power corresponding to the lowest (non-zero) voltage level. 
     The theoretical limit stated above for the rate of transmission of 

     information certainly has practical significance when the limiting factors 
     in the physical problem are the frequency band available and the number of 
     pulse levels permitted by technical and economical considerations. It is 
     to be noted, in this regard, that the effect of noise is here taken into 
     account, to a first approximation, by setting a lower limit to the voltage 
     
difference between pulse levels, and therefore to W0. For a detailed dis- 
     cussion of the effect of noise, the reader is referred to the work of 
     Shannon (5). 
     

Eq.(40) shows, on the other hand, that the average power increases 
     approximately as N^2, while the rate of transmission is proportional only to 

     
log2 N. It follows that, if no limitation is placed on the frequency band 
     employed, the smallest value of N should be used - that is, two. This value 
     has, in addition, the very important practical advantage that the receiver 
     is not required to measure a pulse, but only to detect the existence or the 
     lack of a pulse. It might happen, on the other hand, that the frequency 
     band and the average power are the limiting factors, while any reasonable 
     number of pulse levels can be allowed. This case represents quite a dif- 
     ferent problem from those considered above, and the maximum rate of trans- 
     mission of information is no longer obtained by making the pulse levels 
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(that is, the choices) equally probable, as one might think at first. For 
     example, more than one unit of information per pulse can be transmitted with 
     
an average power W = W0/2, by using pulses with three levels not equally 
     probable. It seems worth while, therefore, to determine the maximum amount 
     of information which can be transmitted per pulse, for a given average power 
     
W, a minimum level power W0, and an unlimited number of pulse levels equally 
     spaced in voltage. 
     

Let, therefore, p(O) be the probability of occurrence of the zero level 
     (no pulse), and p(k) the probability of the kth level. The amount of infor- 

     mation per pulse is given by 
     

and the average power by m 
     

We wish to maximize H with respect to the p(k), subject to the condition 
     expressed by Eq.(42) and, of course, the usual condition 
     

The maximization procedure is carried out in Appendix III, and yields 
     

The values of p(1)/p(0) and p(0) are plotted in Figure 7 as functions 
     
of W/W0. The value of Hmax is plotted as a function of the same variable 
     in Figure 8. The latter curve shows, for instance, that the maximum amount 
     
of information per pulse for W=W0/2 is 1.14, that is, 14 per cent higher 
     than the value obtained by using two equally probable levels. 
     The procedure for approaching in practice the theoretical limit obtained 

     above by appropriate recoding of the messages is very similar to that dis- 
     cussed in Section IV. It differs only in that the ensemble of all sequences 
     of given length must now be divided in groups with probabilities p(0), p(1)... 
     p(k)..., instead of in equally probable groups. The number of pulse levels 
     to be used in practice (it should be infinite in theory) must be selected 
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Fig. 7 Behavior of p(1)/p(0) and      Fig. 8 Maximum information per 
     p(0) as functions of W/W0.             pulse, Hmax, as a function of W/W0. 

     

on a compromise basis, and the values of the p(k) must then be readjusted, 
     accordingly to make 
     

In addition to the effect of limitations on the average power, another 
     important practical consideration has been neglected in the preceding sec- 

     tions. All the types of recoding procedures suggested, for approaching in 
     practice the theoretical limits derived above, require the use of devices 
     capable of storing the information for a certain length of time in both the 
     transmitter and the receiver. Such storage devices are needed to stretch 
     or compress the time scale according to the probability of the group of 
     original selections being recoded for transmission. 
     Satisfactory storage units are not yet available. In addition, even 

     were they available, their use would undoubtedly add considerably to the 
     complexity of communication systems. On the other hand, any substantial 
     increase of transmission efficiency is fundamentally based on time stretch- 
     ing. In fact, since the logarithm of the probability of the choice or 
     sequence of choices selected is a measure of the information conveyed by 
     the selection (see p. 14), the time rate at which information is conveyed 
     in actual signals may vary considerably with time. Even so, a communication 
     

-27- 
     



system must be able to handle at any time the peak rate which may be present 
     in the signal. It follows that any system not employing storage devices to 
     stretch or compress the time scale is bound to have an efficiency lower than 
     the ratio of the average rate to the peak rate at which information is fed 
     to it. It is worth mentioning in this connection that in certain types of 
     communications, such as telegraph and television, the input and output sig- 
     nals do not have inherently fixed time scales. This is the same as saying 
     that such forms of communication inherently incorporate storage devices. 
     In the case of the telegraph, the written messages at the input and at the 
     output are effectively storage devices. In the case of television, the 
     image to be televised and the cathode-ray tube perform the same function. 
     Although no reduction of frequency band for a given noise level can 

     be obtained without storage devices, appropriate coding may lead to some 
     reduction of average power. This reduction can be obtained by assigning 
     sequences of pulses requiring the smallest energy to the most probable 
     messages, and vice versa. In the particular case of pulse-code modulation, 
     for instance, this can be done as follows. We arrange all digit combinations 
     in order of increasing amount of energy required and the sampling levels in 
     order of decreasing probability. We assign then the digit combinations to 
     the sampling levels in the resulting order. Such a coding method requires, 
     however, more flexible coding and decoding units than those used in present- 
     day systems. 
     

Before concluding this section, it should be made clear that the 
     improvement of transmission efficiency discussed above and the resulting 

     possible reduction of bandwidth requirements for a given signal power have 
     little to do with the bandwidth reduction obtained by means of the Vocoder 
     or other similar schemes. The Vocoder (2), for instance, does not improve 
     the efficiency of transmission, but achieves a reduction in bandwidth by 
     eliminating that part of the speech signal which is not strictly necessary 
     for the mere understanding of the words spoken. Obviously, the recoding 
     of messages according to their statistical character and the elimination 
     of unnecessary information represent fundamentally different but equally 
     important contributions to the solution of the bandwidth-reduction problem. 
     

Appendix I 
     

Maximization of f(x) 
     

In determining the values of the xk for which f(x), as given in Eq.(18), 
     is a maximum, it is more convenient to operate on the function 

     

-28- 
     



whose maxima and minima at non-singular points coincide with those of f(x). 
     
The xk are the variables in the maximization process, but are subject to the 
     constraint 
     

Using Lagrange's method, we equate to zero the partial derivatives, with 
     
respect to the xk of the function 
     

where \ is a constant to be determined later. We obtain then N equations 
     

It is clear that when n approaches infinity these equations can be satis- 
     
fied simultaneously only when xk = pk, in which case Eq.(I-2) is also satis- 
     fied. In addition, the function f(x) is neither discontinuous nor a minimum 
     
at the point xk = pk, so that the existence of a maximum at this point does 
     not require any further mathematical proof. 
     

Maximization of HN 
     

The function HN given by Eq.(22) must be maximized with respect to the 
     p(k) which are, of course, subject to the constraint 

     

Following the same method as above, we obtain N equations of the form 
     

This set of equations can be satisfied only if all the p(k) are equal. 
     
Again it is clear that HN is neither discontinuous nor a minimum when all 
     the p(k) are equal, and therefore it must be a maximum. 
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Appendix II 
     

Proof That HN(n+1) \< HN(1) 
     

We wish to show, first, that the increment of the amount of informa- 
     tion 

     

is a maximum when Pn+1(i;k) = p(k), the probability of the kth choice, that 
     is, when the additional selection is independent of all preceding selections. 
     
Mathematically, we must maximize the function HN(n+1) with respect to the 
     N^n+l variables Pn+1(i;k), subject to the conditions 
     

and 
     

Following Lagrange's method, we equate to zero the derivates with 
     

respect to the Pn+1(i;k) of the function 
     

where the \1 and uk are constants to be determined later. We obtain then, 
     for each pair of values of i and k, an equation of the form 
     

The solution of the N^n+1 equations of this type, together with Eqs.(II-2) 
     and (II-3), is clearly 
     

Therefore, the increment of information HN is a maximum for Pn+1(i;k) = p(k), 
     since this is the only point at which a maximum can exist and a maximum must 
     exist at some point. This result can also be stated in the form 
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HN(n+1) \< HN(1) , (II-8) 
     where 

     
is the average amount of information per selection, that is, the average 
     increment of information, when each selection is independent of all preced- 
     ing selections. 
     

Proof That HN(n+l) < HN(n) 
     

Let us consider a sequence of n selections as consisting of a first 
     

selection followed by a sequence of n-1 selections. Let Pn(h;j) be the 
     conditional probability that the selection of the hth choice is followed by 
     the selection of the jth sequence from the N^n-1 possible sequences of n-1 
     
selections. Let also Pn+1(h,j;k) be the conditional probability that the 
     kth choice is selected after the hth choice and the jth sequence. We shall 
     still indicate with p(k) the probability of the kth choice and, similarly, 
     with p(h) the probability of the hth choice. Using these new symbols, 
     Eq.(II-l) becomes 
     

We wish to show that, for a statistically uniform sequence, HN(n+1) is a 
     maximum when Pn+1(h,j;k) is independent of h. Mathematically, we must again 
     maximize the function HN(n+1) with respect to the N^n+1 variables Pn+1(h,j;k), 
     subject to the conditions 
     

and 
     

where Pn-1(j) is the probability of the jth sequence of n-1 selections, and 
     Pn(j;k) is the conditional probability that the kth choice will be selected 
     after the jth sequence. These two probabilities must, in turn, satisfy the 
     condition 
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which, however, does not concern us, since it does not involve directly the 
     
Pn+1(h,j;k). It must be clear, on the other hand, that the Pn(j;k) are kept 
     constant in the maximization process. In other words, the dependence of the 
     (n+1)th selection on the n-1 preceding selection is fixed in this case, while 
     in the case discussed previously it was allowed to vary. In addition, since 
     we are dealing with a statistically uniform sequence, the (n+1)th selection
     depends on the n-1 preceding selections in the same manner as the nth selec- 
     tion depends on its n-1 preceding, that is, on all the preceding selections. 
     

Proceeding in the same manner as in the proof that HN(n+l) \< HN(1), 
     we find that, for given Pn(j;k), the Pn+1(h,j;k) make HN(n+1) a maximum 

     when they are independent of h, that is, of the first selection of the 
     
sequence. Mathematically speaking, the maximum occurs when Pn+1(h,j;k) - 
     Pn(j;k). It follows that Eq.(II-10) yields, with the help of Eq.(II-11), 
     

HN(n+1)max = 
     

This result can also be stated in the form 
     

HN(n+1) \< HN(n) . (II-15) 
     It must be clear that, in the case of non-statistically uniform sequences, 

     
Pn(j;k) may be an entirely different function than that representing the 
     dependence of the nth selection on the first n-1 selections of the sequence, 
     since, for instance, the (n+1)th selection can be entirely independent of 
     the preceding selections while the nth selection is not. It follows, in this 
     
latter case, that Eq.(II-14) is not valid, and HN(n+1) can be as large as 
     
HN(1). 
     

Appendix III 
     

We wish to maximize the average amount of information per pulse, H, for 
     a given average power and an unlimited number of pulse levels equally spaced 

     in voltage. Mathematically, this amounts to maximizing the function given 
     by Eq.(41), subject to the conditions imposed by Eqs.(42) and (43). Follow- 
     ing Lagrange's method, as in Appendices I and II, we obtain an infinite set 
     of equations of the form 
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1 + ln p(k) = \ + k^2 u , (III-1) 
     

where \ and u are indeterminate constants. The first of these constants, \, 
     can be eliminated by subtracting the equation with k=0 from all the other 
     equations of the set, which take then the form 
     

ln p(k) - ln p(0) - k^2 u . (III-2) 
     

The remaining constant, u, is then eliminated by subtracting k^2 times 
     Eq.(III-2) - with k=O - from the other equations of the same set. We obtain 
     in this manner a set of equations of the form 
     

[ln p(k) - 1n p(0)] - k^2 [ln p(1) - ln p(0)] = 0 (III-3) 
     

It follows that 
     

Eqs.(42) and (43) can now be written in the forms 
     

The values of p(1)/p(0) are plotted in Figure 7 as functions of W/W0. From 
     these values, the p(k) are immediately obtained by means of Eq.(III-4). 
     The maximum value of the average amount of information H can now be 

     obtained without difficulty by substituting for the p(k) in Eq.(41) the 
     values determined above. We have then, after appropriate manipulation of 
     the equation, 
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Using now Eq.(III-5), We obtain finally 
     

The value of Hmax is plotted in Figure 8 as a function of W/W0, using the 
     values of p(1)/p(0) and p(0) given in Figure 7. 
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