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Preface

During the last decade computational complexity has become one of the
most active research areas within the mathematical theory of computation.
Workers in computational complexity seek to derive efficient algorithms for com-
putational problems of practical interest, to prove the optimality of particular
algorithms relative to well-defined measures of computational efficiency, and to
derive general lower bounds on the time or space intrinsically necessary for the
performance of computational tasks. The specific problems considered are drawn
from diverse areas, including numerical computation, symbolic algebraic computa-
tion, combinatorics, computational logic and the manipulation of data structures.
The mathematical tools called upon are correspondingly diverse, ranging from alge-
braic geometry through computability theory. Nevertheless, some characteristic
proof techniques and approaches to algorithm construction are emerging as com-
plexity theory matures and strives for unification.

Two of the papers in the present volume concern the relation between deter-
ministic and nondeterministic computing devices. Hartmanis and Hunt discuss the
so-called LBA problem—whether nondeterministic Turing machines operating with-
in linear space have more power as recognizers than deterministic linear-space Tur-
ing machines. While the problem remains unsolved, this paper reduces it to deter-
mining whether certain specific decision problems can be solved deterministically
in linear space; one such decision problem is the equivalence of regular expressions.
The paper by Fagin defines generalized spectra and shows that they are essentially
coextensive with languages recognized by nondeterministic Turing machines oper-
ating in polynomial time. Using a mixture of techniques from logic and automata
theory, he exhibits specific “complete” generalized spectra. These results are
motivated in part by the open P vs. NP question: whether nondeterministic
Turing machines operating in polynomial time can recognize languages not recog-
nizable by deterministic polynomial-time Turing machines.

Fischer and Rabin derive lower bounds on the computational complexity of
the decision problem and on the inherent length of proofs for two classical decid-
able theories of logic: the first-order theory of the real numbers under addition,
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and Presburger arithmetic. Their results may be construed as implying that no deci-
sion procedure for either of these theories can be guaranteed to operate within a prac-
tical time bound, and no proof format can guarantee proofs of convenient length.

The papers by Aanderaa and by Paterson, Fischer and Meyer employ an
“overlap” technique for deriving lower bounds on computing time. Aanderaa set-
tles a long-standing conjecture by showing that, for real-time computation, k-tape
Turing machines are more powerful than (k — 1)-tape Turing machines, for all
k > 2. Paterson, Fischer and Meyer derive new lower bounds on the time required
for the multiplication of numbers by on-line multi-tape Turing machines.

The paper by Fischer and Paterson exploits a formal similarity between pat-
tern matching in strings and integer multiplication to derive a new, asymptotically
efficient algorithm for a version of the former problem.

The last three papers in the volume study the computational complexity of
fundamental processes in numerical computation. Gentleman shows that no method
of expanding a determinant by minors requires fewer multiplications than expand-
ing by column minors. Schultz studies the worst-case error bounds that can be
achieved by certain linear approximations to continuous functions. Kung and
Traub derive lower and upper bounds on the efficiency of iterative algorithms for
approximating real numbers.

This volume is the proceedings of a symposium held in New York City on
April 18 and 19, 1973, under the joint sponsorship of the American Mathematical
Society and the Society for Industrial and Applied Mathematics. Financial sup-
port was provided by the National Science Foundation and the Office of Naval
Research. Thanks are due to Stephen A. Cook, John E. Hopcroft and Shmuel
Winograd for their help in the selection of the speakers at that symposium.

RicHARD M. KARP
SEPTEMBER 1974 EDITOR
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The LBA Problem And Its Importance
In The Theory Of Computing

J. Hartmanis* and H. B. Hunt, II**

Abstract. In this paper we study the classic problem of determining
whether the deterministic and nondeterministic context-sensitive languages are
the same or, equivalently, whether the languages accepted by deterministic and
nondeterministic linearly bounded automata are the same. We show that this
problem is equivalent to several other natural problems in the theory of com-
puting and that the techniques used on the LBA problem have several other
applications in complexity theory. For example, we show that there exists a
hardest tape recognizable nondeterministic context-sensitive language L; such
that L, is a deterministic context-sensitive language if and only if the deter-
ministic and nondeterministic context-sensitive languages are the same. We show
furthermore that many decision problems about sets described by regular expres-
sions are instances of these tape-hardest recognizable context-sensitive languages.
Thus, it follows that nondeterminism in Turing machine computations (using
at least linear tape) cannot save memory over deterministic Turing machine
computations if and only if the equivalence of regular expressions can be de-
cided by a deterministic linearly bounded automaton. It also follows that the
equivalence of regular expressions can be decided by a nondeterministic linearly
bounded automaton if and only if the family of context-sensitive languages is
closed under complementation.

AMS (MOS) subject classifications (1970). Primary 68A20, 68A10; Secondary 02F15,
02F20.
*This research has been supported in part by the National Science Foundation grant
GJ-33171X.
** This research was supported by a National Science Foundation Fellowship in Com-
puter Science.
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1. Introduction. In this section we sketch the history of the LBA problem
and outline the results in this paper.

Linearly bounded automata were first defined and investigated by John
Myhill in 1960 [13]. As Myhill points out, the definition of a linear bounded
automaton was motivated by an observation made by Rabin and Scott about two-
way finite automata with erasing. This remark appeared in a technical report on
which the well-known Rabin and Scott paper Finite automata and their decision
problems was based. The observation was that two-way finite automata, which
can erase imput symbols, can accept nonregular sets and that the equivalence
problem for these automata is recursively undecidable. These observations never
appeared in the published paper, but the short paragraph in the original technical
report sufficed to convince Myhill that this model with erasing only was artificial
and that the automation should be permitted to erase and print on the tape
squares occupied by the initial input word. Thus these automata are just one-
tape Turing machines which can use for computation as much tape as is needed
to write down the input word. Since this definition bounds the available tape
linearly to the length of the input word Myhill called them linearly bounded
automata.

The importance of linearly bounded automata was further emphasized when
their connection with language theory was discovered. In the late fifties and early
sixties Chomsky initiated an intensive study of formal languages and defined
four classes of grammars with the corresponding languages: the regular, context-
free, context-sensitive and recursively enumerable languages. After it was realized
in 1962 that the context-free languages were exactly the languages accepted by
nondeterministic push-down automata, the regular, context-free and recursively-
enumerable languages could all be defined by their grammars or, equivalently, by
the automata which accepted them. The context-sensitive languages remained the
only exception.

In 1963 Landweber [10] showed that every set or language accepted by a
deterministic linearly bounded automaton was a context-sensitive language. In
1964 Kuroda [9] introduced the nondeterministic linearly bounded automaton
and showed that the family of languages accepted by the nondeterministic linearly
bounded automata is exactly the same as the family of languages generated by
the context-sensitive grammars.

These results revealed another natural connection between families of formal
languages and families of automata; but they also raised the now classic LBA prob-
lem (or the first LBA problem):



THE LBA PROBLEM 3

Are the languages accepted by deterministic and nondeterministic

linearly bounded automata the same? Or equivalently, are the

deterministic and nondeterministic context-sensitive languages the

same? Abbreviated, DCSL = NDCSL?
If DCSL = NDCSL then the family of context-sensitive languages is closed
under complementation. On the other hand, it still could happen that DCSL #
NDCSL but the family of context-sensitive languages is closed under complemen-
tation. Thus we are led to the second LBA problem:

Are the context-sensitive languages closed under complementation?

Both of these problems are basically problems about the minimal amount
of memory needed to perform a computation. In general, such problems are
quite, difficult and so far in computational complexity theory we have had little
success in determining lower complexity bounds for specific computations. The
above-mentioned LBA problems appear to be no exception. At the same time,
our inability to answer them indicates that we have not yet understood the
nature of nondeterministic computations.

Considerable progress on the first LBA problem was made in 1969 by W.
Savitch in his doctoral dissertation [14]. Savitch showed that every nondetermin-
istic Turing machine using L(n)-tape, L(n) = log n, can be simulated by a deter-
ministic Turing machine using no more than [L(n)]?-tape. Thus the nondeter-
ministic context-sensitive languages can all be recognized by n?-tape bounded
deterministic Turing machines. The result was suprising since all previous simula-
tion methods required an exponential amount of tape. Furthermore, Savitch
showed that there exists one nondeterministic L(n) = (log n)-tape recognizable
language L, such that if L, is recognizable deterministically in (log 7)-tape,
then, for all tape bounds L(n), L(n) = log n, the nondeterministic and determin-
istic recognizable languages are the same. Thus if nondeterminism can be eliminated
for the (log n)-tape recognizable language L, then DCSL = NDCSL and we
see that we have a sufficient condition for the LBA problem. Unfortunately,
this was shown only to be a sufficient condition for DCSL = NDCSL.

In this paper we show that we can find necessary and sufficient conditions
for DCSL = NDCSL in terms of one nondeterministic context-sensitive language
by constructing a hardest deterministic tape recognizable context-sensitive lan-
guage L,. Thus we get that DCSL = NDCSL if and only if L, isa determin-
istic context-sensitive language.

Similarly, the family of context-sensitive languages is closed under
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complementation if and only if the complement of L,,L,, is a2 nondetermin-
istic context-sensitive language.

Actually the results are stronger in that DCSL = NDCSL implies that the
deterministic and nondeterministic tape bounded computations are the same for
all tape bounds L(n) = n. Furthermore, there exists a recursive translation which
map¢ every nondeterministic Turing machine onto a deterministic one using no
more tape than the nondeterministic one (provided it used at least linear tape).

Similarly, if the family of context-sensitive languages is closed under com-
plementation, then there exists a recursive translation which maps every Iba onto
another lba accepting exactly those sequences not accepted by the first.

Next we show that the LBA problems can be reduced to equivalent
problems about very simple nonwriting automata or flowchart computations.
Consider finite automata with k read-only heads which can move in both direc-
tions on the input and sense when two. heads are scanning the same tape square.
Then, utilizing our previous results and an observation by Savitch, we show that
there exists a language L, over a one-symbol alphabet, L, C a*, which is
recognizable by a 7-head nondeterministic finite automaton and has the property
that L, is recognizable by a k-head deterministic finite automaton if and only
if DCSL = NDCSL.

Again, L o is recognizable by a k-head nondeterministic finite automaton
if and only if the family of CSL’s is closed under complementation which happens
iff the family of languages over a one-symbol alphabet recognizable by multi-
head automata is closed under complementation.

Thus we will show that if nondeterminism can be eliminated in one specific
7-head finite automaton by using more heads then it can be eliminated in all
Turing machine computations using no less than linear tape. A similar result
holds for flowcharts where we must eliminate nondeterminism by using more
variables.

To relate the LBA problems to a different problem area we show that the
complexity of the LBA problems is equivalent to many decision problems about
sets described by regular expressions. In this case the proofs exploit an observation
due to Meyer and Stockmeyer [12] about the descriptive power of regular expres-
sions. It turns out that for any nondeterministic lba M, there exists a determin-
istic 1ba which for any input y to M, can write down a regular expression
R(y) describing the set of all invalid computations of M, on input y. There-
fore the input y is accepted by M, if and only if there is a valid computation
by M; on y, which happens if and only if L[R(y)] # =*, where L(R)
denotes the language described by R. Thus we see that if a deterministic lba
can check whether a regular expression describes a set not equal to =*, every



THE LBA PROBLEM 5

nondeterministic 1ba M, can be replaced by a deterministic 1ba, using the above
procedure. Furthermore, since the set of all regular expressions R not describ-
ing Z* is, easily seen to be, a nondeterministic csl, we get the following result:

DCSL = NDCSL if and only if L3 = {R|R regular expression, L(R) # ="}

is a deterministic context-sensitive language.

Similarly one proves that the family of context-sensitive languages is closed
under complementation if and only if Ly isa csl.

A generalization of this result leads to a metatheorem about properties of
regular expressions which link the LBA problems to the tape complexity of many
other decision problems about regular sets.

Let P be any property on the regular sets over Z = {0, 1} such that

(1) P(Z*) = True, and

(2) the set of languages U, oz« {x\LIP(L) = True} is properly contained
in the family of regular sets over £ where xX\L ={wlxw€ L }.

Let

L ={R|R is a regular expression over {0, 1} and P[L(R)] = False}

be a nondeterministic csl. Then L is a deterministic csl if and only if DCSL =
NDCSL.
Similarly,

L= {RIR is a regular expression over {0, 1} and P[L(R)] = True}

is a nondeterministic csl if and only if the family of nondeterministic cls’s are
closed under complementation.

To illustrate the power of this result we list five other decision problems
about regular sets such that any one of them can be recognized by a det Iba if
and only if NDCSL = DCSL, and furthermore if the complement of any one of
these languages is a csl then the context-sensitive languages are closed under com-
plementation. In all examples R and S are restricted regular expressions over
{0, 1}:

{R, ILR) * LY},

{RILR) * 2%,

{RIL(R) is coinfinite},

{RIL(R) # REVERSAL L(R)},

{RILR) # LR™)}.

2. Hardest tape and time recognizable CSL. In this section we give the first
of two proofs that there exists a hardest tape and time recognizable context-
sensitive language and show, furthermore, that the LBA problem is equivalent to
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the problem of eliminating nondeterminism in nonwriting automata or flowchart
computations.

For the sake of completeness we recall that a linearly bounded automaton
is a one-tape Turing machine whose input is placed between end markers and
the TM cannot go past these end markers. Thus all the computations of the
Iba are performed on as many tape squares as are needed to write down the input
and since the 1ba can have arbitrary large (but fixed) tape alphabet, we see that
the amount of tape for any given lba (measured as length of equivalent binary
tape) is linearly bounded by the length of the input word. If the TM defining
the Iba operates deterministically we refer to the automaton as a deterministic
Iba, otherwise as a nondeterministic Iba or simply an lba.

Since the connection between linearly bounded automata and context-sensi-
tive languages is well known we will also refer to the languages accepted by non-
deterministic and deterministic Iba’s as nondeterministic and deterministic context-
sensitive languages, respectively.

The essence of the first proof is to write down a universal context-sensitive
language so that no other csl can be more difficult to recognize. The suprising
thing is that this can be done very easily. Below we give a “universal” csl.

L, = {#M3# CODE (x,x, *** x,)#Ix,x, *** x, is accepted by Iba M,}.

Thus the sequences in L, consist of a simple encoding of an lba, M,, followed
by an encoded form of an input accepted by M;. The input encoding

CODE (x,x, *** x,) is any straightforward, symbol by symbol encoding of
sequences over alphabets of arbitrary cardinality (the input and tape alphabet of
M) into a fixed alphabet, say {0, 1, #}, with the provision that |CODE (x;)| >
the cardinality of the tape alphabet of M,.

It is easily seen that L, is a csl since it can be accepted by a nondetermin-
istic lba M which simulates M, on input x, *** x,. Since M, uses no more
tape than required to write down the input, the encoded input CODE (x; *** x,)
gives enough tape for M to simulate M,. Thus L, is a context-sensitive language
and we get the next result in terms of L,.

Tueorem 1. 1. L, € NDCSL.

2. L, € DCSL iff NDCSL = DCSL.

3. L, €ENDCSL iff the family of context-sensitive languages is closed under
complementation.

PROOF. From the construction of L, we know that L, isa csl. This
follows, as mentioned above, since the codes for the input symbols x; of M,
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are long enough to encode all tape symbols of M,. Thus NDCSL = DCSL
implies that L, is recognized by a deterministic Iba.

On the other hand, if L, is recognizable by a deterministic 1ba M p then
DCSL = NDCSL since for every ndlba M, we can recursively construct an
equivalent deterministic lba M. D) The dlba M, p(iy operates as follows: For
input x, ***x,, Mp, writes #M,;#CODE (x,x, *** x,)# on its tape and
starts the dlba Mp on this input and accepts the input iff My accepts its input.
Because of the definition of My, the input #M#CODE (x x, *«+x,)# is accepted
by My, if and only if the input x, *** x, isaccepted by M, and therefore
Mp () and M; accept the same set. Furthermore, since the length
#M# CODE (x,x, * * * x,,)# islinearly bounded by the length of x,x, ***x,

(for any fixed i) we see that M p(;) is a deterministic Iba. Thus NDCSL =
DCSL, as was to be shown.

The third part of this theorem follows by a similar argument.

It is interesting to note that if L, can be recognized on a deterministic 1ba
then all nondeterministic tape computations using L/(n) = n-tape can be replaced
by equivalent deterministic computations using no more tape. Furthermore, there
is a recursive translation which maps the nondeterministic Turing machines onto the
equivalent determinisitc Turing machines.

COROLLARY 2. DCSL = NDCSL if and only if there exists a recursive trans-
lation o such that for every nondeterministic TM M,, which uses L(n) > n-tape,
M ) is an equivalent deterministic TM using no more than L (n)-tape.

o(i
ProoF. The “if ” part of the corollary is obvious.
To show the “only if ” part, let M, be any nondeterministic 7M accepting
the set A4, CZ* and using L(n) > n-tape. We first define two auxilliary languages
used in the proof. Let

A = {#w# M, oninput w uses more than (z + |w|— 1) tape squares}.

Clearly, A; is a nondeterministic csl, since we can run M, nondeterministically on
input w and see whether for some choice of moves more than (¢ + |w| — 1)-tape
is required. But if DCSL = NDCSL then A; is accepted by a deterministic Iba
M.
Next, we define
A] = {#w#'|M, accepts w using no more than (|w| + ) tape squares}.

Again, A; is accepted by a nondeterministic lba and therefore, by our
assumption, A is accepted by a deterministic 1ba Mj.
We now show that from M, and M;, which can be obtained recursively from
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M,; by Theorem 1, we can recursively obtain M, which accepts 4, using
no more than L/n) deterministic tape.

M,y operates as follows:

1. Forinput w=x, *~*x,, My, findsthe largest ¢, (if it exists) such
that #w#70 isin A; by successively checking #w #, #w #2, #w#3, -+
with the deterministic 1ba M;.

2. On #w#", M, simulates the deterministic lba M, and accepts the
input w if M) accepts #w#'0.

Clearly, M, accepts A, on deterministic tape L/n), as was to be shown.

From the above results we see that if DCSL = NDCSL then all other
deterministic and nondeterministic tape-bounded computations using more than
a linear amount of tape are the same. On the other hand, we have not been able
to force the equality downward. For example, we have not been able to show
that if all deterministic and nondeterministic tape-bounded computations using
L (n) > 2"-tape are the same, then DCSL = NDCSL.

Similarly, it could happen that DCSL = NDCSL but that the (log n)-
bounded deterministic languages are properly contained in the nondeterministic
(log n)-bounded computations.

Our next result shows that the previous theorem can be generalized to hold
for a wide class of tape-bounded languages. Similar results have also been obtained
by R. V. Book [1] using AFL theoretic techniques.

We say that f: N = N is a semihomogeneous function if for all ¢ > 0
there exists a k, such that f(cn) <k, f(n). Thus f(n) = n® isa semihomo-
geneous function but f(n) = 2" is not. We say that f(n) is nondeterministic
tape constructible iff there exsits a nondeterministic TM which for input a"
computes f(n) using no more than f(n) tape squares.

Let
#CODE (x,x, **° x,)# |M,| < |CODE (x,x, **°* x,)l,
= . XX, ***x, isaccepted by M, using
#My# # no more than f(n)-tape, and
ICODE (x;)| > cardinality of tape
alphabet of M, |.

L,

We assume that all codes of input and tape alphabet symbols of M, have the
same length.

THEOREM 3. Let f be a nondeterministic tape constructible, semihomogen-
eous function such that, for all k, k 2 1, f(kn) = kf(n) > 0. Then L, is
nondeterministic f(n)-tape recognizable. Furthermore, Lf is deterministic
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f(n)-tape recognizable iff the deterministic and nondeterministic f(n)-tape recog-
nizable languages are the same.

PROOF. Let Lf be defined as above and note that f(kn) = kf(n) implies,
for all n, f(n) = c * n, for a fixed constant ¢ > 0.

Then the following algorithm describes an f-tape bounded nondeterministic
TM which recognizes L. ,

1. Check |M;| <|CODE (x;x, *** x,)I

2. Verify that the format is correct and that the proper coding is used.

3. On a work track of the tape mark off |Z|f(n) squares for scratch space,
Z is the tape alphabet of M;.

4. Simulate M; on x =xx, **°x, using the scratch space from 3.
Accept the input iff M; accepts x. Note. We have enough tape since the simu-
lation needs to encode no more than f(n) tape symbols of M,.

The space required to execute (1) and (2) is linear in n. To execute steps
(3) and (4) we need |Z|f(n) tape squares. But IZIf(n) <f(IZln) <k« f(n),
thus L, is nondeterministic f(n)-tape acceptable.

On the other hand, if L, is deterministic f (n)-tape acceptable, then there
exists a deterministic f(n)-tape bounded TM M’ such that L(M") = L, We
use M’ to find for every nondeterministic f(n)-tape bounded TM an equivalent
deterministic f(n)-tape bounded machine. For any TM M; construct M,
as follows:

1. Short inputs are accepted by table look-up. For input x,x, =**x,
such that |CODE (x,x, ***x,)| = IM|, M, writes out

#CODE (x,x, = ** x,)#
Mo #

2. M, applies M’ to the new input from (1). The tape required by
M,y isless than k,n +f(k;n) which is less than k,n +k, f(n), since f
is semihomogeneous. But then the required tape can be bounded by cf(n) and
we see that M, is a deterministic f(n)-tape bounded TM, as was to be
shown.

Note that in Theorem 3 we could replace the condition f(kn) = kf(n) by
the weakened condition f(kn) = (log k)f(n), and still carry through the proof.
Thus we know, for example, that there exists hardest tape recognizable languages
for functions such as: n'/2, n*/3, n?/3, etc. Combining this observation with

our previous result we get

COROLLARY 4. For any positive rational number r the language Ln, is
f(n) = n"-nondeterministic tape recognizable. Furthermore L , is deterministic
n
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n"-tape recognizable iff all n" nondeterministic tape bounded computations can
be so recognized.

So far all considerations have involved tape as our computational complexity
measure. It turns out that the hardest tape recognizable language L, is also a
hardest time recognizable context-sensitive language. We cast our result in terms
of polynomial time computable languages.

THEOREM.S. All context-sensitive languages can be recognized in determin-
istic polynomial time (nondeterministic polynomial time) if and only if the
csl L, can be recognized in deterministic polynomial time (nondeterministic
polynomial time). '

PROOF. Recall that
L, = {#M,#CODE (x,x, ** x,)#lx,x, *** x, is accepted by lba M;}.

Clearly, if csl’s are accepted in polynomial time then so is the csl L,.

If Ly is accepted in polynomial time by a multi-tape Turing machine M
then for any 1lba M; we can recursively obtain a TM M, (1) accepting the same
language in polynomial time. M, ;) operates as follows: For inputin x,x, <
X,s M,y writes down #M;#CODE (x,x, *** x,)# and then simulates M -
on this input. Clearly, if M operates in polynomial time then so does M, oty
as was to be shown.

It is worth mentioning that Greibach [4] has recently exhibited a context-
free language which plays the same role among context-free languages as L,
does for context-sensitive languages. Namely, this context-free language is the
hardest time and tape recognizable csl and there also exist two recursive transla-
tions mapping context-free grammars onto Turing machines recognizing the langu-
age generated by the grammar in the minimal time and on the minimal amount of
tape, respectively. Though at this time we do not know what is the minimal time
or tape required for the recognition of context-free languages.

Before proceeding with the study of context-sensitive languages we will
state two conjectures about tape requirements for the recognition of context-free
languages.

CONJECTURE 1. There exists a context-free language which cannot be
recognized nondeterministically on (log n)-tape (though we know that all context-
free languages are deterministically recognizable on [log n]?-tape [11]).

CONJECTURE 2. If L is a nonregular context-free language which can be
recognized deterministically on (log log n)-tape, then L is not a context-free
language. We know that there exist (log log n)-tape recognizable context-free
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languages [11], but in all such cases the complement is not a context-free language
and its recognition does not require counting (i.e., (log n)-tape). On the other
hand, intuitively it seems that if L and L are nonregular context-free languages
then the recognition process must involve counting and therefore must require at

least (log n)-tape.

Finally we note that the methods used to construct the “universal” csl L,
can be used to construct other “universal” languages. We illustrate this by con-
structing the language r 1» Which plays the same role for nondeterministic
polynomial time-bounded computations as L, does for the context-sensitive
languages.

let DPTIME and NDPTIME designate the families of languages accepted
by deterministic and nondeterministic polynomial time-bounded Turing machines,
respectively.

We will say that a language L is p-complete iff L is in NDPTIME and
forall L, in NDPTIME there exists a deterministic polynomial time-bounded
function f; such that

x isin L, iff f{x) isin L.

Let L, = {#M,#CODE (x,x, + -+ x,)#> M"|x x, -+« x_ is accepted by
the one-tape, nondeterministic T™M M, in time t}.

THEOREM 6. The language f 1 Is accepted in nondeterministic linear time
by a four-tape TM. Furthermore, r , isin DPTIME iff NDPTIME = DPTIME.

PrOOF. It is easily seen that a four-tape TM M’ can accept L y in linear
time. We indicate how M’ uses its tapes: On the first sweep of the input M’
checks the format of the input, copies M; from the input on the first working
tape and #3M o the second working tape. The third working tape is used
to record the present state of M, (in a tally notation) during the step-by-step
simulation of M. It is seen that with the available information on its working
tapes M' can simulate M, on the input in time 2|Ml¢t (for an appropriate,
agreed upon representation of M,). Thus M’ operates in nondeterministic linear
time and accepts L ;- Therefore, r , isin NDPTIME and the assumption that
NDPTIME = DPTIME_implies that L', isin DPTIME.

To prove that L in DPTIME nnphes that DPTIME = NDPTIME,
assume that L is accepted by a deterministic TM M" operating in determinis-
tic time n”. Then for any nondeterministic TM M; working in time n? we
canrecursively construct a TMM, (,) operating in deterministic polynomial time as follows:

1. For input x,x, *** x,, M, writes down
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q
#M, #CODE (x,x, * + + x,)# > M,
2. M, starts the deterministic machine M" on the sequence in (1) and
accepts the input x,x, ***x, iff M" accepts its input.
Clearly, M; and M, ;) are equivalent; furthermore M, operates deter-
ministically in time less than

2[31MIn% + | #M,#CODE (x,x, * * * x,)IP < CnP9,

Thus M, ,, operates in deterministic polynomial time, as was to be shown.

The previous proof shows that if L, isin DPTIME, then we can recur-
sively obtain for every M, running in time 79 an equivalent deterministic TM
running in time O[n?9]. Unfortunately, for a given TM we cannot recursively
determine the running time and thus we do not know whether M; runs in
polynomial time or not. Even if we know that M; runs in polynomial time we
can still not recursively determine the degree of the polynomial.

Our next result shows that, nevertheless, we can get a general translation
result. For a related result see [3].

THEOREM 7. DPTIME = NDPTIME iff there exists a recursive translation
o and a positive integer k, such that for every nondeterministic TM M, which
uses time T{n) >n, My, ) isan equivalent deterministic TM working in time

O[T (n)*].

PROOF. The “if ” part of the proof is obvious. To prove the “only if”
part assume that DPTIME = NDPTIME. We will outline a proof that we can
recursively construct for any M,, running time T,(n) >n, an equivalent deter-
ministic TM M, (;, operating in time O[T,(n)*], for a fixed k.

In our construction we use two auxillary languages:

B = {#w#'|M, accepts w in less than ¢ time},
By = {#w#'|M, oninput w takes more than ¢ time}.

Clearly, both languages can be accepted in nondeterministic linear time. Therefore,
by our previous result, we can recursively construct two deterministic machines
M, and M;" which accept B; and B,, respectively, and operate in time
O[nP]. From M, and M, we can recursively construct the deterministic
TM M, (;), which operates as follows:

1. Forinput w, M, finds the smallest ¢, such that #w #°0 is not
in B/. This is done by checking with M’ successively #w#, #w#2, #w#3,+++.
. #3‘; M,y starts M, on input #w #°0 and accepts w iff M, accepts

w#'0,
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Clearly, M, ;) is equivalent to M, and M, operates in time

O[Z np] = O[T,mP*"].
1

By setting k =p + 1, we have completed the proof.
We conclude by observing that L', is a p-complete problem, as defined
above.

3. Nonwriting devices and flowcharts. Next we will show that the LBA
problem is equivalent to problems about eliminating nondeterminism in some very
simple nonwriting automata. Then we will use this result to show that the LBA
problem is also equivalent to eliminating nondeterminism from a single 10-variable
elementary flowchart by using more variables.

A k-head finite automaton (or a multi-head finite automaton) is a one-tape
Turing machine with k& read-only heads, k =1, 2, 3, * - - . The input string
is written on the tape with special end markers at both ends of the input, and
the finite automaton is so designed that the read heads cannot leave the input. The
automaton is an accepting device and an input is accepted if, after starting the
automaton in its starting state with all heads on the left end marker, the automaton
enters an accepting state and halts. We assume that the automaton is capable of
sensing when two heads are on the same tape square. We distinguish between
deterministic and nondeterministic multi-head automata.

We first establish a relationship between linearly bounded languages and
(log n)-tape bounded languages over one-letter alphabets, due to Savitch [15].

For any language 4 over an alphabet = = {a,, a,, - * -, a,}, 4 C =% let

TALLY (4) = {1"™)|w" in 4},

where n maps each word w in Z* onto the number n(w) which w denotes
in k-adic notation, that is,
t

n@; 8, *°ca)= 2K

=17
(where we interpret a; as i).
Clearly, this mapping establishes a one-one correspondence between strings
over £ and nonnegative integers; zero is denoted by the null string.

LEMMA 8. The language A, A C Z* with |Z| =k, isaccepted by a
deterministic (nondeterministic) linearly bounded automaton if and only if
TALLY (A4) is accepted by a deterministic (nondeterministic)(log n)-tape bounded
Turing machine.
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PrROOF. Since going from 4 to TALLY (4) the length of every string
is increased exponentially, for input 1" the (log n;)-tape bounded Turing
machine has as much tape available as the lba has for input ;. Thus a (log n)-
tape bounded Turing machine can accept TALLY (4) if an Iba can accept A.
Conversely, if A ={1"!} isaccepted by a (log )-tape bounded TM, then {n},
where n; is written in k-adic notation with & > 2, can be accepted by an
Iba which simulates the (log n)-tape bounded TM. Since this Iba has enough tape
to carry out the simulation we have the desired result.

Thus we immediately obtain the following result.

COROLLARY 9. The deterministic and nondeterministic context-sensitive
languages are the same if and only if the deterministic and nondeterministic
(log n)-bounded languages over one-letter alphabets are the same.

At the same time it is known that

LEMMA 10. The language A, A C Z*, is accepted by a deterministic
(nondeterministic) multi-head finite automation if and only if A is accepted by
a deterministic (nondeterministic) (log n)-tape bounded Turing machine.

PrROOF. (For a more complete proof see [5].) The basic idea of the proof
is that a (log n)-tape bounded TM can count up to 7 (k-times) and thus can
encode the k-head positions of a k-head automaton, say in binary form, on the
(log n)-tape and use this encoding for a stepwise simulation of the k-head finite
automaton. Thus every set accepted by a k-head automaton is also accepted by
a (log n)-tape bounded TM.

Conversely, every (log n)-tape bounded Turing machine can be simulated by
a k-head finite automaton which encodes the tape content of the (log n)-tape
bounded Turing machine by its head positions on the input tape. Since on a
(log n)-tape we can record no more than nP different patterns (for some p),
we see that on input of length », p heads can encode all these patterns. With
a few additional bookkeeping heads, utilizing the encoded (log n)-tape bounded
TM tape content, the k-head automaton can simulate the (log 7)-tape bounded
TM. Thus every (log n)-tape bounded language can be accepted by a multi-head
automaton. Since these considerations hold for deterministic as well as nondeter-
ministic automata, we have completed the outline of the proof.

From this we get Savitch’s result.

COROLLARY 11. The deterministic and nondeterministic context-sensitive
languages are the same if and only if the languages over a one-letter alphabet
accepted by the deterministic and nondeterministic multi-head finite automata are
the same,
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Next we show that we can strengthen this result by using the language
TALLY (L,), where L, is the “universal” csl defined before.

THEOREM 12. 1. The language TALLY (L,) is recognizable by a k-head
nondeterministic automaton.

2. TALLY (L,) is recognizable by a deterministic (k, + p)head automaton
iff DCSL = NDCSL.

PROOF. Since L, is a ndcsl we know, from our previous results, that
TALLY (L,) is accepted by a ky-head nondeterministic automaton. (k, can
be explicitly computed from L,.)

Similarly, if TALLY (L,) can be accepted by a deterministic (k, + p)-
head automaton then we know that L, can be accepted by a dlba, and vice
versa. But then, using Theorem 1, we get that TALLY (Z,) is deterministically
recognizable on some (k, + p)-head automaton iff DCSL = NDCSL, as was to
be shown.

The next result shows that the number of heads k, in the previous result
can be reduced to 7 heads. For L Ca* define Ll*] = {@"*la" in L}.

COROLLARY 13. 1. The language [TALLY (L,)]'*®) isaccepted by a 7-
head nondeterministic finite automaton.

2. [TALLY (Z,)] (%ol s accepted by a deterministic mulit-head automaton
iff DCSL = NDCSL.

The proof follows from the next lemma.

LEMMA 14. Let A, AC a®, be a set accepted by a nondeterministic k-
head finite automaton. Then Al¥1 = {a"kla” in A} is accepted by a 7-head
nondeterministic finite automation and A is accepted by a deterministic multi-
head finite automaton if and only if ALkl accepted by a deterministic multi-
head finite qutomaton.

PROOF. The main tool in this proof is the method of encoding the position
of the k-heads of a finite automaton M on the input a” by one head of an
automaton M, an input a"* and then using six additional read-only heads to
carry out a simulation of M by M,. The essential steps in the simulation are
described below. First we note that with five read heads a deterministic finite
automaton can check whether the input a® is such that ¢ = n*, for some n.
Thus the format of the input can be checked and a head can be placed on the
nth tape square if ¢ = n*.

To encode the k¥ heads of M on input & as one head position of M,
on input a"k, order the & heads arbitrarily and place the “encoding” head of
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M, on the rth tape square 1 <r <n* with
r—1=@d, -1)+d, - Dn+@d; - Dn® ++++ + @, - Dn*"!

iff the ith head of M, 1<i<n, is on the d;th tape square. After this by a
lengthy but straightforward argument one can show that M,; can carry out a
step by step simulation of M and thus M accepts input ¢" if and only if
M, accepts input a"k.

Clearly, if A can be accepted by a deterministic multi-head finite automaton
then so can Al*¥1 for any k. If AU¥1 can be accepted by a deterministic
p-head finite automaton M, then we can design a p(k + 1)-head deterministic
automaton M, which accepts A.

For input a” the automaton M, will simulate M, on input a"* as
follows: M; uses the first p heads to mimic the p heads of M,, aslong
as these heads stay on the first n tape squares. If a head of M, goes further
than the first n tape squares (recall that the simualted input is #* long) then
k heads are used on the input of length 7 to count how far the head has moved.
Since we can count up to n* with k heads on an input of length n, the
(k + 1)p heads suffice for M; on input a" to simulate M, on input an*,
Thus M, accepts 4" if and only if M, accepts a"k, but then M; accepts
A. Thus Al*¥] s a deterministic language if and only if A is. This completes
the proof.

Next we show that the previous results have a natural interpretation for
flowchart computations, thus relating the classic nondeterminism problem for
context-sensitive languages to a somewhat more programming oriented problem.

We say that a flowchart is elementary (or an E-flowchart) if and only if it
is a flowchart made up of the assignment statements

x=x-1,
x=y,
and the tests
x=0,
x=y.

An E-flowchart is deterministic if and only if every assignment statement
and every test branch leads to exactly one assignment statement or test. If some
assignment statement or test branch leads to more than one assignment or test,
or leads to one or more assignments and tests, then the flowchart is nondeterministic.
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The flowcharts are used as accepting devices of sets of integers. The integer
n is accepted if and only if the flowchart computation with the first variable
set equal to 7 ends at some exit labelled with “accept.” Otherwise the input is
rejected. (Note that the accepting condition can be handled in many different
ways. For example, we could have demanded that the computation halts and
that a specified variable is set to one for accepting and zero for rejecting.)

THEOREM 15. There exists a set of integers L accepted by a nondeter-
ministic E-flowchart with 10 variables such that the following two statements
are equivalent.

1. L is accepted by a deterministic E-flowchart.

2. DCSL = NDCSL.

PROOF. The proof consists of a reasonably straightforward simulation of
multi-head automata by E-flowcharts and vice versa.

In simulating the flowcharts on k-head automata the head positions on the
input tape encode the contents of the variables of the flowchart and vice versa.
The three additional variables are aieeded to obtain a subflowchart which performs
the assignment x := x + 1 for x less than the input variable and to perman-
ently store the input. This completes the outline of the proof.

For related results see Warkentin and Fischer [16].

We do not know whether the number of heads or the number of flowchart
variables can be reduced further in the two previous results. We conjecture, how-
ever, that this is the case. We believe that it would be worthwhile to investigate
the nondeterministic A-head automata languages over a one-symbol alphabet for
k=2 and 3. The case of 2 heads seems simple and it would be very interesting
to determine whether all 2-head nondeterministic finite automata can be replaced
by equivalent deterministic multi-head finite automata. It is our hope that these
k-head automatawith small values of & may provide a place where some further
insights can be gained into the LBA problem and, more generally, into the nature
of nondeterminism in computing.

We also believe that the linearly bounded automata with oracles deserve
further investigation. The main problem here is to determine whether there exist
recursive oracles such that the deterministic and nondeterministic 1ba language
accepted with these oracles are different.

It is interesting to note that T. Baker [2] has shown that there are recursive
oracles for which the deterministic and nondeterministic polynomial time-bounded
TM computations are the same and that there are other oracles for which they
are different.
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4. Decision problems about regular expressions. In this section we show
that the LBA problem can be related to several natural decision problems about
regular expressions. This approach yields many hardest tape recognizable langu-
ages which appear more natural than the “universal” context-sensitive language
constructed in the second section.

The main tool in this work is the observation made by Meyer and Stock-
meyer [12] that restricted regular expressions can be used to describe invalid
Iba computations very economically. Thus these results, as well as many other
results about the complexity of various decision problems ([6], [7], [12]), should
also be viewed as results about the descriptive power of regular expressions.

A restricted regular expression or simply a regular expression is any valid
expression over the alphabet consisting of X, °, +, * and the delimitors
( , ). The operators -, + and * have their well-known meaning of concaten-
ation, set union and Kleene closure. For a regular expression R the set of
sequences described by R is designated by L(R).

Next we look at valid lba computations which will be used to link the LBA
problem to the complexity of several decision problems about regular expressions.
Consider an lba M with tape alphabet T and state set @ working on an input
Yy =2Xx; ***Xx,. At each discrete time interval during the computation we can
describe the state of the computation by giving the tape content, the head posi-
tion of M and its state. If the computation is deterministic then after & steps
of computing there will be a unique configuration describing the situation and for
a nondeterministic Iba there will be a set of possible configurations. To make
these ideas more precise we will refer to a sequence

X% 000 X1 (@ X)Xyt Xy,

as an instantancous description. This sequence means that the tape content is

X, ***Xx,, thelbaisin state ¢ and the reading head is scanning the jth

tape symbol x;. Thus an instantaneous description is any string in [7+(Q x 7)] *
which contains exactly one symbolin Q x I If the start state is g, then

@g> x1)%, * ** x,, is an initial configuration and any configuration containing

a halting state is a final configuration. One instantaneous description ID,,,
follows ID, if and only if there exists a move of M which changes ID; in

one operation to ID,,,. A valid computation of M oninput y =x; ***x,

is a sequence of instantaneous descriptions

#IDO #ID] #ID2 Foo- ID,#
where ID, is the initial configuration on the input x; *** x,, ie,

IDy =g, Xg)%y%x;5 * * * X,
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ID, is a final configuration and for all i,0<i<¢,ID,,, follows ID;, We
denote the set of all valid computations of M on input y by R,,(y). Thus
we see that y is accepted by M if and only if R, (y) # & or, equivalently,
the set of invalid computations of M and y, R,,(¥), must not contain all
sequences, i.e.,

Iy() =Ry # =*

The main observation [due to Meyer and Stockmeyer] is that, for every
Iba M and input y, the set of invalid computations of M on y is a regular
set and that it can be described by a restricted regular expression such that

IOl < eyl

and furthermore that a deterministic lba can map y onto I,,(y). This is the
critical step in the argument which links lba computations to regular expressions.
Thus we have the following result:

THEOREM 16 (MEYER AND STOCKMEYER). Let M be a nondeterministic iba
with tape symbol set T, state set Q, and set of designated accepting states F,
with F CQ. Let all accepting states be final. Let q, be the unique start state
of M. Let y=x,x, ***x, beaninputto M.

Then there is a deterministic lba M' such that M', starting with
#x,x5 ¢ o x,# on its tape, ﬁlt_s_ with a regular expression By over X
on its tape such that L(B,) = Ry (y) = I,(»).

ProOF. We only sketch the idea of the proof. For a complete proof see
[6].

By is the union of:

B,  the set of strings that do not begin
with #(qq, x,)%; * *° X, #;

B,  the set of strings that do not contain
a symbol (qf, t), where q,€F;

B3  the set of words that make a mistake
between one i.d. and the next (i.e.,
ID,;,, does not follow from ID;
by one application of a move rule of

of M).
But

By =[C-#)V#-[Z - @o >V Qo xy)
I = %) Uy * [+++ Uy - [E = #)] +++TI - Z*
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The reader should note the similarity of the above to Horner’s method for eval-
uating polynomials, i.e.,

ao +alx +a2x2 4 oo +anxn =ao +x[al +x[a2 +ono+x[an] ono]]’

8, =F —éu {q,}xT)]',
fGF

B= U 2*e0, 0,05 ZV12 (23 _ £,(0,,0,,05)] + 2%,
01,02,0362

where f,: 23 > 223 which maps correct triples of symbols into
correct triples. Essentially B says that mistakes occur 7 symbols apart.

The remainder of the proof consists in noting that lﬁyl <Cy - lyl and
that given y, the time required to deterministicaly write out By is bounded by
a polynomial in lﬁyl.

Using Theorem 16 a simple coding argument yields the following:

THEOREM 17. Let
L,={R,,R))IR, and R, are regular expressions
over {0,1} and L(R,) # LR,)}.
Then L, € NDCSL and L, € DCSL iff NDCSL = DCSL.

Proor. If L, isin DCSL then we can check L(f,) # =* on a determin-
istic Iba and from Theorem 16 it follows that DCSL = NDCSL.

To see that L, is in NDCSL, we note that to verify L(R,) # L(R,) we
need only to give a string x one symbol at a time and verify that

X € [LR,)NLR,)] VILR )N LR,

This can be done on a nondeterministic 1ba in a straightforward way, which
completes the proof.

We next extend Theorem 17 to prove a metatheorem about the determinis-
tic tape complexity of many decision problems about the regular sets. Define

XN ={wlxwE€L} and L/x={wlwx €L}.

THEOREM 18. Let P be any predicate on the regular sets over {0, 1}
such that

1. P({0, 1}*) is True, and

2. P, =U,cfo,1)* ®\LIPL) =True} [or P =U,cpo,1}* {L/xIPL) =
True}] is not the set of all regular sets over {0, 1}.
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Then {R|R is a regular expression over {0, 1} and P[L(R)] = False}
in DCSL implies NDCSL = DCSL.

Similarly, {RIR is a regular expression over {0, 1} and P[L(R)] = True}
in NDCSL implies that NDCSL is closed under complementation.

PROOF. Let L, be aregular set over {0, 1} notin P,. Let hy(0) =00
and #y(1) = 01. Then given R, a regular expression over {0, 1} we can
effectively find in linear space and deterministic polynomial time in [R;| a regular
expression R; such that

LR) =hy®R)) - 10- 0+ 1)*
+(©00+01)*-10- Ly +(@0 +01)* - 10+ 0+ 1)*
=ho(L®R)) + 10 - 0 + 1)* + (00 +01)* - 10 - L,
+(0+0D*[A+0+1+11(00 + 1)*].
Case 1. L(R;) = (0 + 1)*. Then
ho(LR)) = (00 +01)* and L(R)=(0+1)*.
Hence, P(L(R;)) = True.

CGase 2. LRR)# (0 + 1)*. Then 3x €(0 +1)* — L(R,). Hence hy(x) €

(00 + 01)* — hy(L(R,). But
P(L(R;)) = True implies ho(x) IONLR) =L, € P,.

Hence P(L(R)) is False. Therefore, P(L(R;)) = True if and only if L(R,)=
© +1n)*

Thus if P(L(R;)) = False is decidable by a dlba then so is L(R,)) # (0 + 1)*,
and, therefore, by our previous results it follows that NDCSL = DCSL, as was to
be shown.

COROLLARY 19. DCSL = NDCSL iff any one of the following languages
is in DCSL, Similarly, NDCSL is closed under complementation iff the complement
of any one of the following languages is in NDCSL:

1. {RIR is a regular expression and L(R)# {0, 1}*};

2. {R|R is a regular expression and L(R)# LR™)};

3. {RIR is a regular expression and L(R)# L(R)REV};

4. {RIR is a regular expression and L(R) is coinfinite};

5. (Vk=21) {RIR is a regular expression and L(R) is not k-definite}.

It is interesting to note that in the proofs of Theorem 16 and 17 we only used
regular expressions of star-height 1 (i.e., no nested *’s). Thus if there exists a
regular expression R, of star-height 1 not in P,, then Theorem 18 can be
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changed to read “{R|R is a regular expression over {0, 1} of star-height 1 and
P[L(R)] = False} in DCSL implies DCSL = NDCSL.” We also note that all
the languages in Corollary 19 can be chosen to be of star-height 1. Thus we get,
for example, the following:

COROLLARY 20. The language {RIR is a regular expression of star-height 1
and L(R)+# L(R*)} is a tape and time hardest csl.

It is natural to ask if there are other regular sets R, besides {0, 1}* for
which {RIR is a regular expression and L(R) # R,} is a tape and time hardest
csl. We say that a language L is bounded iff there exist strings w;, ***,w,
such that L Cwy *«+ wy. If L is not bounded, then L is said to be unbounded.
For a regular set R, over {0, 1}, R, is unbounded iff there exist strings 7, s, x, y
€1{0, 1}* such that Ry D7 (0x + 1y)* - 5 (see [17]).

THEOREM 21. For all unbounded regular sets R, over {0, 1}, {RIR is
a regular expression and L(R) # Ry} is a tape and time hardest csl.

PROOF. We only sketch the proof. Since R, is an unbounded regular set
over {0, 1}, there exist strings 7, 5, x, ¥ €{0, 1}* such that Ry D r(@x +1y)*s.
For all regular expressions R;, a regular expression R; can be constructed
such that

LR)=r-hLR)) -s+RyN~r.(Ox +1p)* -5

where & is the homomorphism defined by #(0) = Ox and A(1) = 1y. But

L(R)) =R, iff LR;)=1{0,1}*. Since this construction requires only linear

space and deterministic polynomial time in [R,| on a deterministic Iba, the theorem
follows.

From the above observations we know that even if we restrict ourselves to
regular expressions of star-height 1, the language {(R, R)ILR,) # L(Ri)} is a
hardest tape and time csl. If Kleene’s star is dropped completely, we get a p-com-
plete problem.

ProrosiTION 22. Let R,,Ri be regular expressions over 0, 1, +, *. Then
L={®R;, R)ILR) #* L(Ri)} is a p-complete language.

PROOF. See [6].
For other related results see [18].

5. NDPTIME parallels. In this section several parallels of the results in
8§82 and 3 are presented. Let PSPACE denote the family of languages accepted
by deterministic or nondeterministic polynomially tape bounded TM’s. Our first
result is an analogue of Corollary 2,
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THEOREM 23. DPTIME (NDPTIME) = PSPACE iff there exists a recursive
translation o and a positive integer k, such that, for every nondeterministic
IM M;, which uses tape Ln) >n, M, is an equivalent deterministic (non-
deterministic) TM working in time O[L,(n)]*.

PROOF. If M; and M, in the proof of Corollary 2 are deterministic
(nondeterministic) polynomially time bounded TM’s, then so is My
Similarly the following parallel of Corollary 4 holds.

PROPOSITION 24. For all positive rationals r, the language Ln, € DPTIME
(NDPTIME) iff DPTIME (NDPTIME) = PSPACE.

The proof of Proposition 24 is obvious and is left for the reader.

Next we present a parallel of 8—12. Let DPTIME,, (NDPTIME,,,) denote
the family of languages over {1} accepted by deterministic (nondeterministic)
polynomial time bounded TM’s. Let DEXP (NDEXP) denote the union over all
positive integers & of the families of languages accepted by 2*" deterministic
(nondeterministic) time bounded TM’s.

THEOREM 25. (1) DPTIME,, = NDPTIME,,, iff DEXP = NDEXP.

(2) NDPTIME,, is closed under complementation iff NDEXP is.

ProoOF. The proof is based on the properties of the TALLY function intro-
duced in §3. Let w=w, ***w, €{1,2}*. Let TALLY (W) =2, w, * 2;
then TALLY is a bijection from {1, 2}* to {1}*. Forall w€ {1, 2}*,
2wl _ 1 < |TALLY (W) < 2!+t _ 2, For all y € {1},

ITALLY"! ()| — 1 <log (I¥|) < ITALLY"! (y)| + 1.

The remainder of the proof is similar to that of Lemma 8 and is left to the reader.

Finally we note that there are hardest time recognizable languages in
NDPTIME;,. It can be shown that there exists a language L, € NDEXP such
that for all L, ENDEXP there exists a deterministic polynomial time bounded
function f; for which x €L, iff f(x) €L, and |fy(x)| <c/x|, where ¢
depends only upon f;. (A construction analogous to that of L, in the proof of
Theorem 1 yields such a language. Another such language is mentioned in [20].)
For any such L, let L, = TALLY (L,). Then L, € NDPTIME;, and for all
L, € NDPTIME,,, there exists a deterministic polynomially time bounded function
f; forwhich x € L, iff f(x) € L,. Thus L, is a hardest time recognizable
language in NDPTIME,,,. It is difficult to see how L, can be pcomplete. We
feel that L, is a good candidate for a language in NDPTIME that is both not in
DPTIME and not p-complete.
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6. DFA and log n tape-bounded TM’s. An analogue of the results in §4 is
presented for deterministic finite automata (DFA). Let D log n (ND log ) denote
the families of languages accepted by deterministic (nondeterministic) log 7 tape-
bounded TM’s. Our results are based on the theorem due to Jones [19]: {M|M
isa DFA and L(M)+ @&} is a hardest tape language in ND log n.

Following Jones a language L, is said to be log-reducible to a language L,,
written Ly <,,.L,, if there is a function f computable by a deterministic off-
line TM Mf such that x €L, iff f(x) €L,, where

(2) M, has a two-way read-only input tape, a two-way read/write work tape,
and a one-way write only output tape;

(b) M, given any input word x, halts with f(x) on its output tape, and

(c) M, never scans more than O(log (Ix])) squares on its work tape.

We note that if L, is acceptable by some deterministic log # tape-bounded
T™M, then so is L.

PROPOSITION 26 (JONES [191). NDlog n<,,, {M|M isa DFA and L(M)
#* @),

PrOOF. See [19].
As an immediate corollary we note that ND log 7 <,,, {M|M is a DFA
and L(M) # {0, 1}*} as well.

THEOREM 27. Let P be any nontrivial predicate on the regular sets over
{0, 1} such that Pyq, ={L'|L' =x\L, x €{0, 1}*, P(L) is true} or Py, =
{L'\L' =L/x, x €{0, 1}*, P(L) is true} is not equal to the set of all regular
sets over {0, 1}. Then NDlogn <, {M|M isa DFA and P(L(M)) is
false}. Similarly, {M|M isa DFA and P(L(M)) is true} € ND log n implies
that ND log n is closed under complementation.

PROOF. We only sketch the proof. Let L, bea regular set over
{0, 1} notin P, g,.

CGase 1. P is true for some R,, where R, Dr- (0 + 1)* for some r €
{0, 1}*. Forall DFAM,; a DFA M, can be constructed such that

LM =r hLM)) 10O +1)* +r- (00 +01)* 10 L,
+RyN~r-(00+01)*.10- (0 +1)*,
where h is the homomorphism defined by h(0) = 00 and A(1) = 01. Then
PL(My)) is true iff L(M,) = {0, 1}*.
Case I1. For no set R, and string r are both P(R,) true and Ry Dr -

(0 + 1)*. Let P(R,) betrue. Forall DFAM, a DFAM, can be constructed
such that L(M;)=L(M,) - (0 + 1)* + R,. Then P(L(M)) is true iff L(M) = &.
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In both cases M, can be constructed from M, by a deterministic log n
tape-bounded transducer satisfying conditions (a), (b), and (c) above.
We note one corollary analogous to Corollary 19.

COROLLARY 28. D log n = ND log n iff any one of the following languages
isin D log n. Similarly, ND logn is closed under complementation iff the
complement of any one of the following languages is in ND log n:

1. For all regular sets R, over {0, 1}, {M\Misa DFA and L(M)+# L(Ry)};

2. {MI\M isa DFA and L(M) is cofinite}, and

3. (Vk=21) {M|M isa DFAand L(M) is not k-definite}.

Finally the conclusion of Theorem 18 can be strengthened as follows:
{RIR is a regular expression over {0, 1} and P(L(R)) = False} >,,, NDCSL.
(See [18].) Using known results about nondeterministic tape hierarchies, the
following holds:

PROPOSITION 29. For all unbounded regular sets R, over {0, 1} and
for all positive rationals r <1, {R|R is a regular expression and L(R) # L(R,)}
is not accepted by any n" tape-bounded nondeterministic TM.

We conclude by noting that the many parallels illustrated in this paper
between the LBA problem and the “DPTIME = NDPTIME” questions, and between
the complexity of predicates on the regular expressions and DFA deserve further
study. The similarity between Theorems 18 and 27 is surprising as is the descrip-
tive power of both the regular expressions and the DFA. In truth there is much
more to the regular sets, DFA, regular expressions, etc., than one would have
thought.
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Abstract. Lower bounds are established on the computational com-
plexity of the decision problem and on the inherent lengths of proofs for two
classical decidable theories of logic: the first-order theory of the real numbers
under addition, and Presburger arithmetic—the first-order theory of addition on
the natural numbers. There is a fixed constant ¢ > 0 such that for every (non-
deterministic) decision procedure for determining the truth of sentences of real
addition and for all sufficiently large n, there is a sentence of length n for
which the decision procedure runs for more than 2°" steps. In the case of
Presburger arithmetic, the corresponding bound is zzcn. These bounds apply
also to the minimal lengths of proofs for any complete axiomatization in which
the axioms are easily recognized.

1. Introduction and main theorems. We present some results obtained in
the Fall of 1972 on the computational complexity of the decision problem for
certain theories of addition. In particular we prove the following results.

Let L be the set of formulas of the first-order functional (predicate) cal-
culus written using just + and =. Thus, for example, ~ [x + y = y + 2]
Vx +x=x isaformula of L,and Vxdy[x + y = y] is a sentence of L.
Even though this is not essential, we shall sometimes permit the use of the
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individual constants 0 and 1 in writing formulas of L. We assume a finite
alphabet for expressing formulas of L, so a variable in general is not a single
atomic symbol but is encoded by a sequence of basic symbols.

Let N = (N, +) be the structure consisting of the set N ={0, 1, 2, -}
of natural numbers with the operation + of addition. Let Th(N) be the first-
order theory of N, i.e., the set of all sentences of L which are true in N. For
example, VxVy[x + y = y + x] isin Th(N). Presburger has shown that
Th(N) is decidable [6]. For brevity’s sake, we shall call Th(N) Presburger
arithmetic and denote it by PA.

THEOREM 1. There exists a constant ¢ > Q0 such that for every decision
procedure (algorithm) AL for PA, there exists an integer n, so that for every
n > n, there exists a sentence F of L of length n for which AL requires
more than 22°" computational steps to decide whether F € PA,

The previous theorem applies also in the case of nondeterministic algorithms.
This implies that not only algorithms require a super-exponential number of com-
putational steps, but also proofs of true statements concerning addition of natural
numbers are super-exponentially long. Let AX be a system of axioms in the
language L (or in an extension of L) such that a sentence F € L is provable
from AX (AX F F) if and only if F € PA. Let AX satisfy the condition
that to decide for a sentence F whether F € AX, i.e., whether F is an axiom,
requires a number of computational steps which is polynomial in the length |F| of F.

THEOREM 2. There exists a constant ¢ > 0 so that for every axiomatiza-
tion AX of Presburger arithmetic with the above properties there exists an integer
no so that for every n > n, there exists a sentence F € PA such that the
shortest proof of F from the axioms AX is longer than 22 en, By the length
of a proof we mean the number of its symbols.

With slight modifications, Theorem 2 holds for any (consistent) system AX
of axioms in a language M in which the notion of integer and the operation +
on integers are definable by appropriate formulas so that under this interpretation,
all the sentences of PA are provable from AX. The ordinary axioms ZF for
set theory have this property.

The result concerning super-exponential length of proof applies, in this more
general case, to the sentences of M which are encodings of sentences of PA
under the interpretation, i.e., to sentences which express elementary properties of
addition of natural numbers.

The previous results necessarily involve a cut-point n,(AL) or ny(AX) at
which the super-exponential length of computation or proofs sets in. It is signifi-
cant that a close examination of our proofs reveals that n,(AL) = O(JAL|) and
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ny(AX) = O(JAX[). Thus computations and proofs become very long quite
early in the game.

The theory PA of addition of natural numbers is one of the simplest most
basic imaginable mathematical theories. Unlike the theory of addition and multi-
plication of natural numbers, PA is decidable. Yet any decision procedure for
PA is inherently difficult.

Let us now consider the structure R = (R, +) of all real numbers R with
addition. The theory Th(R) (in the same language L) is also decidable. In
fact, to find a decision procedure for Th(R) is even simpler than a procedure
for PA; this is mainly because R is a divisible group without torsion. Yet the
following holds.

THEOREM 3. There exists a constant d > 0 so that for the theory Th(R)
of addition of real numbers, the statement of Theorem 1 holds with the lower
bound 29",

Similarly for the length of proofs of sentences in Th(R).

THEOREM 4. There exists a constant d > Q so that for every axiomatiza-
tion AX for Th(R) the statement of Theorem 2 holds with the lower bound
29n,

COROLLARY 5. The theory of addition and multiplication of reals (Tarski’s
algebra [10]) is exponentially complex in the sense of Theorems 3 gand 4.1

Ferrante and Rackoff [2] strengthen results of Oppen [5] to obtain decision
procedures for Th(R) and PA which run in deterministic space 2" and 227" (and
hence in deterministic time 0(22"') and 0(222d")), respectively, for certain con-
stants c and d. That time 22°" is sufficient even for Tarski’s algebra has been an-
nounced by Collins [1] and also by Solovay [8] who extends a result of Monk [4].
Any substantial improvement in our lower bounds would settle some open questions
on the relation between time and space. For example, a lower bound of time 2"
for the decision problem for Th(R) would give an example of a problem solvable
in space S(n) =2°" but not in time bounded by a polynomial in S¢z) (cf. [9]).

Variations of the methods employed in the proofs of Theorems 1-4 lead to
complexity results for the (decidable) theories of multiplication of natural numbers,
finite Abelian groups, and other classes of Abelian groups. Some of these results
are stated in §7 and will be presented in full in a subsequent paper.

The fact that decision and proof procedures for such simple theories are
exponentially complex is of significance to the program of theorem proving by
machine on the one hand, and to the more general issue of what is knowable in
mathematics on the other hand.

1 This result was obtained independently by V. Strassen.
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2. Algorithms. Since we intend to prove results concerning the complexity
of algorithms, we must say what notion of algorithm we use. Actually our methods
of proof and our results are strong enough to apply to any reasonable class of
algorithms or computing machines. However, for the sake of definiteness, we
shall assume throughout this paper that our algorithms are the programs for Turing
machines on the alphabet {0, 1}.

We proceed to give an informal description of these algorithms. The machine-
tape is assumed to be one-way infinite extending to the right from an initial left-
most square. At any given time during the progress of a computation, all but a
finite number of the squares of the tape contain 0. An instruction has the form:

“4: If O then print X,, move M, go to one of i, ip,***;

if 1 then print X, move M, go to one of j,, j;,***.”

Here i, i, i,,***, j;, J,,*** are natural numbers, the so-called instruction
numbers; X, and X, are either O or 1;and M, and M, are either R or
L (for “move right” and “move left,” respectively).

The possibility of going to one of several alternative instructions embodies
the nondeterministic character of our algorithms. Another type of instruction is:

“i: Stop.”

Instructions are abbreviated by dropping the verbal parts. Thus, “3: 0, 1, L, 72,
5;1,1, R, 15, 3.” is an example of an instruction. A program AL is a sequence
I,*++, I, of instructions. For the sake of definiteness we assume that the
instruction number of I; is i and that I, is the instruction “n: Stop.” Fur-
thermore AL is assumed to be coded in the binary alphabet {0, 1} in such a
way that “Stop” also serves as an end-word indicating the end of the binary word AL.

Let x € {0, 1}* be an input word. To describe the possible computations
by the algorithm AL on x, we assume that x is placed in the left-most posi-
tions of the machine’s tape and the scanning head is positioned on the left-most
square of the tape. The computation starts with the first instruction J,. A halt-
ing computation on x is a sequence C = (1‘1’ s, I,m) of instructions of AL
sothat 7, =1 and i, = n. Ateachstep 1 <p < m, the motion of the
scanning head, the printing on the scanned square, and the transfer to the next
instruction I‘p+1 are according to the current instruction I,p. The length KC)
of C is, by definition, m.

It is clear that a truly nondeterministic program may have several possible
computations on a given input X.

3. Method for complexity proofs. Having settled on a definite notion of
algorithm, we shall describe a general method for establishing lower bounds for
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theories of addition which are formalized in L. We do not develop our methods
of proof in their fullest generality but rather utilize the fact that we deal with
natural or real numbers to present the proofs in a more readily understandable
and concrete form. The refinements and generalizations which are needed for
other theories of addition will be introduced in a subsequent paper.

THEOREM 6. Let f(n) be one of the two functions 2" or 22". Assume
for a complete theory T that there exists a polynomial p(n) and a constant
d >0 so that for every program AL and binary word x, there exists a sentence
Fy; « With the following properties:

@) Fyy . €T ifand only if some halting computation C of AL on x
satisfies NC) < f(Ix|).

®) |F | < d- (1ALl + Ix]).

() ~Fyy;  is Turing machine calculable from AL and « in time less
than p(lAL| + |x]).

(We recall that all our objects such as F, AL, etc. are binary words, and
that |w| denotes the length of w.)

Under these conditions, there exists a constant ¢ > 0 so that for every
decision algorithm AL for T there exists a number ny = ny(AL) so that for
every n > n, there exists a sentence o € T such that lol = n and every
computation by AL for deciding o takes more than f(cn) steps. Furthermore
no(AL) = O(|ALI).

PROOF. There exists a number ¢ >0 and an m, so that for m 2 m,
we have

1) p2m) + f(c+(2dm + 1)) < f(m).

Namely, let ¢ <1/(2d) and recall that p(n) is a polynomial, whereas f(n) is
2" or 22",

Let AL be a (nondeterministic) decision algorithm for T. We construct
a new algorithm AL, as follows. We do not care how AL, behaves on an in-
put word x which is not a program. I x isa program, then AL, starts by
constructing the sentence F = ~F, ,. The program AL, then switches to AL
which works on the input F. If AL stops on F and determines that F € T,
then AL, halts; in all other cases AL, does not halt. Thus, for a program x
as input, AL, halts if and only if the program x does not halt on the input x
in fewer than f(Ix]) steps. Note that by possibly padding AL, with irrelevant
instructions, we may assume that m, < |ALy| < |AL| + k, where k is inde-
pendent of AL.

Denote the binary word AL, by z and let o be the sentence ~ F, ,*
F, , cannot be true, for if it were true, then ~ F, , would be false and AL,

2,2
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would not halt on z, whereas the truth of F, , implies that z (= AL,) does
halt on the input z (even in at most f(|z]) steps), a contradiction.
Thus, o is true and hence AL, (= z) halts on z. The truth of o also
implies that every halting computation of AL, on z is longer than f(|z[).
Let m = |z|. By (b), we have

V)] n=lol <2dm +1.

Let ¢ be the least number of steps that AL takes, by some halting computation,
to decide o. By the definition of AL, and the fact that fewer than p(2m)
steps are required to find o0 = ~F, , from z (this follows from (c) and Iz| = m),
there is a halting computation of the program AL, on z requiring fewer than
p(2m) + t steps. By the truthof o, p2m) + t > f(m). Using (1) and (2),
t> flc(2dm +1)) = f(cn).

Take n, tobe n = lol. Then ny <2dm +1 <2d4(|AL| + k) +1, 50
ny = O(IALl). The fact that the result holds for AL and every n > n, (Wwith
possibly a smaller constant ¢) is obtained by first padding AL, by irrelevant
instructions, and then padding the resulting o by prefixing a quantifier Hx; of
an appropriate length, where IEIin =1 + |jl. The details are left to the reader. [J

For utilizing Theorem 6 we need a method for constructing sentences
Fyp w With the properties (a)—(c). One such method is provided by

THEOREM 7. Let A = (A, +) be an additive structure such that N C A,
and on N the operation + is ordinary addition. Let f(n) again be one of the
functions 2" or 22". Assume that T = Th(A) isa theory of addition (for-
malized in the language L) for which there exists ¢ >0 such that, for every n
and for every binary word w, |w| = n, there exist formulas I,(y), J,(»),

S,(x, ) and H (x) with the following properties:
@ 18,0, M < en, IL(W)) < cn, [T, (W) < cn, and |H,(x)| < cn.

@) I,(b) istruein A for b€ A ifandonlyif b €N and b < fin)*.
J, () is true exactly for b = f(n).

(iif) S,, codes all binary sequences of length f(n)?. Namely, for every
binary sequence B € {0, 1}*, |8l = f(n)?, there existsan o € A so that, for
i€EN,0<i<fn? S,(a i) istruein A if B@) =1,and S,(a, i) is false
if B@) = 0, where, for any sequence B, (i) denotes the (i + 1)st element of
B,0<i<]|Bl

(v) H,(x) istrue for o € A if and only if the first f(n) symbols of
the sequence coded by o in the sense of (iii) have the form wQP, p = f(n) — wl.

™ S,(x, ), 1), J.(») and H,(x) are Turing machine calculable
from n and w in a polynomial number of steps.
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From such formulas S, I1,, J, and H,, a formula F,; . with the
properties (a)—(c) can be constructed, so that T satisfies the conclusion of
Theorem 6.

PrOOF. We shall describe, by use of sequences of length f()2, all possible
halting computations of length at most f(n) of a program AL on an input w.
Let C= (I, ,--+, I, ) be such-a computation. Assume that AL has k
instructions; %y our no'zt'ational conventions every computation starts with the
first instruction 7, and the last instruction 7, of AL is: “k: Stop.” Thus, in
Ci=1and i, =k

Let us adopt the convention that after the stop instruction, the scanning
head, the (stop) instruction, and the tape contents stay stationary and unchanged
at all subsequent time instants. Since m < f(n), the scanning head never moves
beyond f(n) squares from the initial left-most square of the tape. We assume
also that the Turing machine never attempts to shift its head left off of the beginning
of the tape.

The progress of the computation C on the input w will be described by
stringing together f(n) instantaneous descriptions of the computation in the fol-
lowing manner. Let W; be the first (left-most) f(n) symbols of the tape at
time j, 1 <j < f(n). Then the string W, W, «++ W, = W € {0, 1}* codes
all the relevant information concerning the tape contents during the computation
C. Wehave Wl = f(n)®. Also, W,, = W, ., =*"".

To trace the motion of the scanning head and the sequence of instructions
during the computation C, we define U; € {0, 1+, k}* to be il i 0%/
where p+q; +1= f(n) and p; isthe distance at time j of the scanning )
head from the start square, 1 < j < f(n). Recall that ij is the instruction num-
ber of the jth instruction executed in C. Also i, =i,,, =***=Fk, the
stop instruction. Put U= U U, *** Uy, Wehave IUI = f(n)*.

The fact that the pair (W, U), where W€ {0, 1}*, UE {0, 1, -+, k}*,
W] = |U| = f(n)?, describes a halting computation of AL on w, is equivalent
to a number of statements which say, roughly, that the first f(n) symbols are
the initial configuration, that the transformation from a block of f(n) symbols
to the next block is by an instruction of AL, and that U contains k (the num-
ber of the halting instruction). More precisely, (W, U) codes a halting computa-
tion of length at most f(n) of AL on w, where w| = n, if and only if the
following hold:

(@ WO)---Wf(n) —1) =w0P, p = f(n) - Wwl.

®) U©)---U(f(r) - 1) = 1071,

() X U@) =0 and i + f(n) < f(n), then WG + f(n)) = WGQ).
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©) If Ui)=gq,i+ f(n) +1<f(n)?,0<gq <k, Wi)=0, and I
is, say, “q: 0,1, R, ky,**, ks 1,+«,” then WG + f(n)) =1, UG +f(n) +1)
=k, or UG + f(n) +1) =k, or etc. (similarly for other instruction and
tape-symbol combinations).

(e) I, for f(n) <i < f(n)2, U(i) # 0, then exactly one of Ui —f(n))#0,
or Ui—-f(n)—1)#0,0r UG- f(n) +1)#0 holds. Also, if U@) #0,
then U@ + 1) = UG +2) = 0 (if they are defined).

® UG) =k for some i,0 <i<f(m)*>. If U¢)=k and i + f(n)
< f(n)?,then UG + f(n)) = k and W@ + f(n)) = WQ).

From the assumption that (W, U) satisfies (a)—(), it can be proved by
inductionon 1 <j <f(n) that (W;,,, Uj;,) is an instantaneous description
which follows from (W;, U;) by an application of the instruction I’i whose
number appears in Uj;. Also, (Wy(,), Uy,)) is a halting instantaneous description.

Thus, the existence of a pair (W, U), WE {0, 1}*, UE {0, 1,*+ -, Kk} *,
W] = |U| = f(n)?, which satisfies (a)—(¢) is a necessary and sufficient condi-
tion for the existence of a halting computation C on w with I{(C) < f(n).

Conditions (i)—(v) provide means for making statements about arbitrary
(0, 1) sequences of length f(n)?, about integers 0 < i < f(n)?, and about the
integer f(n), all by use of formulas of L of size O(n). Also, the ordinary order-
ing < on N restricted to integers of size less than f(n)?> can be expressed by
the length O(n) formula

x<, y o> Az[[,INI, DAL A X +2z2=y].

Hence, the existence of (W, U) satisfying (a)—() can be expressed by a sen-
tence F,; ,, = F with the desired properties (a)—(c). Namely, express 0, 1,
*++, k in binary notation by words of equal length p = |k|. Then, via S,(x, ),
a single element @ € A exists which codes W, and elements a,,+- -, a, € A
code U. The sentence F will start with quantifiers and relativization:

F =HxHx, «+ - Sx,VyVz [, (») AT, ) —>E,NEgNE,NEs NE_ NE(].

x codes the sequence W and x,,-°+, X, together code the sequence U. The
clauses E, ¢+ -E, express the corresponding conditions (a)—(). Thus, for
example, E, is H,(x); E; is Hul(xl) AHy () A= e A H,,p(xp), where

u, =10"! and %;=0"2<j<p;and E, is

[~ 8,060, 7)) N A~ Syt 1) A I(y + 2)

- [S,(x,y +2) <« S5,(x, N]].
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The reader can supply the details of the construction of the remaining expressions
Es, E, and E ¢ and verify that, altogether, the F ALw thus formed satisfies
(a)—-(c) of Theorem 6. 0O

4. Proof of Theorem 3 (real addition). We start by showing that for the
theory Th(R) of real addition, there exist formulas S,(x, ¥), I,,(»), etc. as
postulated in Theorem 7 with f(n) = 2", thereby proving Theorem 3. Several
of the results in this section will play a role later on in the proof for PA.

Let F(x, y) be any formula and consider the conjunction

G= F(x,, y;) \ F(xy, y;) N\ F(x3, ¥3).

It is readily seen that G <> G; where
G, =VxVy[(x=x, Ay=y)VE=xAy=y,)
V@ =2x3 Ay=y3) > Fx y).

Note that |G| = 3+ |F(x, y)|, whereas |G,| = |F(x, y)| +'c, where c is inde-
pendent of F(x, y). A similar rewriting exists for formulas F with more than
two variables and for conjunctions of more than three instances of F. The above
device, discovered independently by several people including V. Strassen, is a special
case of a more general theorem due to M. Fischer and A. Meyer.

THEOREM 8. There exists a constant ¢ > 0 so that for every n there is
a formula M,(x, y, z)» of L such that, for real numbers A, B, C,

M(A, B, C) istrue <> AENNA<2"A AB=C

Abo, IM,(x, y, 2)l < c(n +1) and M, (x, y, z) is Turing machine computable
from n in time polynomial in n.

ProOOF. The construction of M, (x, y, z) will be inductive on n. For
n =0 wehave 22° =2 and we define My(x,y,2) as [x=0Az=0]V
x=1Az=y].

From M, weget M, , by observing that x € N and x <22**
and only if there exist x,, x,, X3, X, € N all less than 22k so that x = x,x,
+ x3 + x,. For this decomposition we have z =xy = X, () +x3y +x,.
Hence, M, ,,(x, y, z) is equivalent to

Huguy oo o ugxy == 2 x4 [My(xy, x5, )) A My(xy, 5, u3) A My(xy,uy, 3)

A Mk(x3’ J’, u4) AMk(x4’ y’ us)

Ax=u +x3+x, \Nz=uy+u, +ugl.
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(Strictly speaking, a triple sum such as u;, + x3 + x, should be written as a
chain of sums of two variables, but we shall not do it here.) Now, M, | >
5|M,|, which will not do. However, by using the device preceding the theorem,
the five occurrences of M, can be replaced by a single occurrence to yield

M, .. Thus, M, (x,y,2)| < IM(x, y, z)] + ¢ for an appropriate ¢ > 0.
Hence, IM,(x, y, 2)| < c(n +1). (We assume c¢ is chosen large enough so
c=> IMo(x’ Y, Z)l)

Actually, for the above bound to hold, it is necessary to show that the num-
ber of distinct variable names in M, does not grow with n, for to encode one
of v variables requires (on the average) a string of length O(log v). In fact, 15
different variable names are sufficient to express M,. This is because the new
variables introduced in constructing M, ., from M, need only be distinct
from each other and from the free variables of M, ; however no difficulty arises
if they coincide with variables bound inside M,. A closer look at the construc-
tion of M, ., shows that 12 new variables are introduced, which must be dis-
tinct from the three free variables of M,, giving a total of 15 distinct names
needed. 0O

COROLLARY 9. The formula M,(x, 0, 0) is true for a real number x if
andonly if x € N and x <22".

The natural numbers x < 22" code all binary sequences of length 27,
Namely, write x in binary notation

x =x(0) +x(1)*2 +++++ x(2" - 1)-22"1,
We use the function 2! to obtain the element x({) of x.

THEOREM 10. There exists a formula Pow, (x, y, z) such that, for integers
a, b, ¢ for which 0 <a, b%, ¢ <22", Pow,(a, b, c) is true if and only if
b® = c. Also, [Pow,(x, y, 2)| < d(n + 1) for an appropriate d >0 and all n.

PROOF. Construct, by induction on k, a sequence E,(x,y,z, u, v, w) of
formulas with the property that for integers a4, b, ¢ for which 0 <a < 22k,
0 < 5% ¢ <22" and real numbers 4, B, C, E,(a, b, c, 4, B, C) is true in
(R, +) ifand only if A €N, 4 <22", b® = ¢, and AB = C. Thus, E,
has M, built into it since
E,0,1,1, 4, B, C) <> M,(4, B, C).
The case &k =0 is given by

[x=0Az=1)V x=1Az=y)] AN M@u,v w).
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To obtam E, . (x, y, z, u, v, w) from E,, we again use the decomposi-
tion x = x,x, + x5 + x, of every integer 0 <x < 22%*1 in terms of inte-
gers 0 < x,, x5, X3, X4 < 22%. Then we have yx = (1) 2.y73.5%4
Now, ™1 is expressed by a z, such that E.(x,, », z,,0,0, 0); then 1) 2
isa z, suchthat E(x,, z,, z,,0,0,0), etc. Whenever we have to write a
product such as x,x, or (yxl)x2 . yx3, we use the formula E, (0, 1,1, 4, v, w).
In this way we can write the formula E, ,(x, ¥, z, u, v, w). Using the usual
device of contracting a conjunction of instances of E, into one occurrence, we
see that |E, .|| < |E;| + d for some d > 0, and hence |E,| <d(n +1) +
c(n +1), where c(n + 1) is the bound on the length of M,,. As before, only
a bounded number of variable names are needed.

Recalling the definition of E,(x, y, z, u, v, w), we see that

Pow, (x, y, z) <> E (x, y, 2,0, 0, 0)

has the desired properties. []

THEOREM 11. There exists a formula S,(x, y) of L which for x, y € R
istruein (R, +) ifand only if x and y are integers, x <22*" gnd y <22n
and the (y + 1)st digit x(¥) of x, counting from the low-order end of the
binary representation of x, is 1. The formula S,(x, y) satisfies the conditions
of Theorem 7 for f(n) =27,

ProoF. That x and y are integers in the appropriate ranges is easily
expressible by formulas of size O(n). Recall that for the integers which satisfy
M, ,(x,0,0),ie,0 <x < 222", the ordering < is expressible by a formula
of length O(n).

Now x(») =1 if and only if there exists an integer z, 2¥ <z <2Y+!
sothat x >z and 2”*! divides x — z. This fact is easily expressible by a
formula S,(x, y) of L using Pow,, and M,,.

That formulas 7,(y) and J,(y) with the properties listed in Theorem 7
exist is immediate. Thus to finish the proof of Theorem 3 we need the following.

THEOREM 12. For every binary word w, Ww| = n, there exists a formula
H_ (x) of L whichistruein (R, +) foraninteger 0 <x < 222" if and
only if x(0)+++x(2" —1) = w0P, p =2" — n. The formula H,(x) satisfies
the conditions of Theorem 7.

PrROOF. Define for binary words u, by induction on [ul, formulas K, (z)
as follows.
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Ky(2) <>z =0,

K@ ez=1,
K, @) <« YK, Nz=y + )],
K, @ dyK,NANz=y +y+1].

Clearly, if K, (z) is true, then, considered as a sequence, z satisfies w(i) =z(f)
for 0 <i<|wl, z(}) =0 for i > |wl. Using this K, (z) and the formulas
S,(x, ¥) and J,(»), we can write the formula H,(x) by formally expressing
the statement that for z such that K, (z), x() = z(})), 0 <i<2". O

Thus we have proved, for Th(R), the existence of formulas S,(x, ),
I,(»), J,(»), and H_(x) which satisfy the conditions of Theorem 7 for
f(n) = 2", This completes the proof of Theorem 3.

5. Proof of Theorem 4 (lengths of proofs for real addition). We now show
that for Th(R) proofs are also exponentially long. This is an easy consequence
of Theorem 3.

Let AX be a consistent system of axioms which is complete for Th(R),
i.e., every sentence F € Th(R) is provable from AX (AX F F). Furthermore,
there exists an algorithm B which decides in polynomial time p(IGl) for a
sentence G of L whether G € AX.

Let ¢ be the constant of Theorem 3. For every polynomial g(x), there
exists a constant 0 < d so that from a certain point on, g(29") < 2¢".

Construct a nondeterministic algorithm AL for Th(R) as follows. Given
a sentence F, AL writes down (nondeterministically) a binary sequence P.
Then AL checks whether P is a proof of F from AX or a proof of ~ F
from AX. The computation halts only if one of the two possibilities occurs.
Because of the assumptions on AX, this check can be made in a polynomial num-
ber of steps A(|Pf). Thus the whole computation, if it halts, requires |P| +
h(IP]) = q(IP]) steps. If every true sentence F would have a proof P with
IP| < 29" where n = |F|, then for every such F there would be some halting
computation of length less than g(29"), i.e., also less than 2°" for all suffi-
ciently large n, a contradiction.

6. Proof of Theorems 1 and 2 (Presburger arithmetic). The proof for
Theorem 1 follows closely along the lines.of the proof of Theorem 3 and utilizes
our previous results. In particular we note that Theorems 8—10 apply, as they
stand and with the same proofs, to PA. Note also that the order < on N is
definable in PA using +. Throughout this section, let f(n) be 22",

n+1
THEOREM 13. There exists a function g(n) > 2/()? = 222 so that

for every n there exists a formula Prod,(x, y, z) with the following properties.
For integers A, B, C,
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Prod, (A4, B, C) istruein N<«> A, B, C<g(n) and AB = C.

There exists a constant ¢ >0 so that |Prod,| < c(n + 1) forall n. The for-
mula Prod, is Turing machine constructible from n in time polynomial in n.

PROOF. We shall use the Prime Number Theorem which says that the num-
ber of primes smaller than m is asymptotically equal to mj/log, m; hence
bigger than m/log, m for all sufficiently large m. Thus, for m = 22"*2 the
number of primes p < m exceeds 22"+2j2n+2 > 02"+ = f)2, et gl) =
I, < p, where p runs over primes, m = 22"*2 . then g(n)=> 27? since
2 < p for all primes.

By use of the formula M, _,(x, y, z), we can write two formulas
Res, ,(x, », z) and P, ,(x) of length O(n) with the following meanings.
Let res(x, y) denote the residue (remainder) of x when divided by y. Then

Res, 4, (%, ¥, 2) <> [y <22""2 A res(x, y) = 2],

P _,(x)— [x <22"*? and x is prime].
n+2

The formula Res,,, iswrittenin L as
z<y ANdqdw[M, (¥, ¢, W) AN x=w +2].

We recall that, for any ¢ and w, M, _,(y, ¢, w) holds if and only if y <p2"?
and yq = w.
The formula P, ,(x) is, simply,

M, ,(x,0,00 AVYVz[M, . ,(y,2z,x) > [y =1V y=x]].

By formally saying that x =1 is the smallest integer divisible by all primes
r< 22"+2, we can write a formula G, ,(x) which is true precisely for
x = g(n). Now Prod,(x, y, z) is true if and only if

B x,,z2<gm) Avau <22 — res(x, u)-res(y, u) = res(z, u)].

Namely, this implies that xy = z(mod p) for all p < 22"+2, which together

with x, y, z <g(n) is equivalent to xy = z. Now, by use of G, ,(x),
M, ,(x, », z) and Res,,(x, y, ), the above relation (3) can be expressed
by a formula Prod, with the desired properties. [

Exponentiation can be defined just as in the proof of Theorem 10 except
that we now use Prod,(x, y, z) instead of M,(x, y, z) to obtain a sequence
of formulas Ej(x, y, z, u, v, w). For integers a, b, ¢, 4, B, C for which
0<a<22* and 0<% c<g@), Eia, b, ¢, A, B, C) istruein N if
and only if 4, B, C <g), b* = ¢,and AB = C. Also |E,| = O(n).
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Having now multiplication up to g(n) and exponentiation 2! up to
i <22t expressed by formulas of length O(n), we can code sequences of
length 2"t - f()? in exactly the same manner as in §4. This completes
the proof of Theorem 1 by again appealing to Theorem 7.

The proof of Theorem 2 now follows exactly the lines of the proof of
Theorem 4 given in §5.

7. Other results. The techiniques presented in this paper for proving lower
bounds on logical theories may be extended in a number of directions to yield
several other results. We outline some of them below without proof; they will be
presented in full in a subsequent paper.

THEOREM 14. Let 9 beany class of additive structures, 0 if A = (4, HE U,
then + is g binary associative operation on A. Let Th(Y) be the set of sen-
tences of L valid in every structure of %. Assume ¥ has the property that,
for every k € N, there is a structure A, = (A,, +) € U and an element
u € A, such that the elements u, u + u, u + u + u,*++, k+u are distinct.
Then the statement of Theorem 1 holds for Th() with the lower bound 29"
for some d > 0.

Theorem 3 is an immediate corollary of this result, taking % to be the
class of just the one structure R = (R, +). Some other classes to which the
result applies are the following:

(1) the complex numbers under addition,

(2) finite cyclic groups,

(3) rings of characteristic p,

(4) finite Abelian groups,

(5) the natural numbers under multiplication.

The proof of Theorem 14 extends the ideas of §4. The element n-u is
used as the representation of the integer n, and u itself is selected by existen-
tial quantification.

Special properties of certain theories permit us to obtain still larger lower
bounds on the decision problem. For example, we get a lower bound of time pXatd
for (4), the theory of finite Abelian groups. This is obtained by encoding integers
up to 22" by formulas of length O(n) just as in Theorem 14, but instead of
representing a sequence by an integer, we let the structure itself encode the
sequence. Let G be a finite Abelian group. Then the element sG) of the sequence
s encoded by G is 1 ifand only if G contains an element x of order p,,
where p; isthe (i + 1)st prime. The necessity of using primes as indices instead
of integers considerably complicates the analog of Theorem 7.

Another example where we get still larger bounds is (5), the theory of mul-
tiplication of the natural numbers (MULT). That MULT is at least as hard as PA



PRESBURGER ARITHMETIC 41

is immediate, for the powers of 2 under multiplication are isomorphic to N,
and the property of being a power of 2 can be expressed in MULT (assuming we
have the constant 2; otherwise we use an arbitrary prime). In fact, the bound

can be increased yet another exponential to time 2220'l by using the encoding which

associates a sequence s to a positive integer m, where s@{) = 1 if and only if

q; divides m, where q, is the (i + 1)st prime in some fixed (but arbitrary)

ordering of the primes. Again we are forced to use the primes as indices, and again

the analog to Theorem 7 is considerably complicated. Rackoff {7] shows a corres-
o 2dn

ponding upper bound of deterministic space 22° .
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Generalized First-Order Spectra and
Polynomial-Time Recognizable Sets!

Ronald Fagin

1. Introduction. A finite structure is a nonempty finite set, along with
certain given functions and relations on the set. For example, a finite group is
a set A, along with a binary function «: 4 X A — 4. If ¢ is a sentence of
first-order logic, then the spectrum of o is the set of cardinalities of finite
structures in which ¢ is true. For example, let o be the following first-order
sentence, where f is a “unary function symbol”:

) Vx(f(x) # x) A VxWp(f(x) =y + f) = x).

Then the spectrum of ¢ is the set of even positive integers. For, if ¢ is true
about a finite structure % = (4;g), where A is the universe and g: 4 — 4
(g is the “interpretation” of f), then ¥ must look like Figure 1, where

a — b means gla)=b.

a4 «—>a,
az «——a,

as « } >ag

FIiGURE 1
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So, the finite structure ¥ has even cardinality. And conversely, for each even
positive integer n, there is a way to impose a function on n points to make o
be true about the resulting finite structure.

As a more interesting example, let ¢ be the conjunction of the field
axioms—for example, one conjunct of o is

VaVpVz(x « (y +2)=xy + x* 2).

Then the spectrum of o is the set of powers of primes.

In 1952, H. Scholz [21] posed the problem of characterizing spectra, that
is, those sets (of positive integers) which are the spectrum of a sentence of first-
order logic. It is well known that every spectrum is recursive: For, assume that
we are given a first-order sentence ¢ and a positive integer n. To determine if
n is in the spectrum of ¢, we simply systematically write down all finite struc-
tures (up to isomorphism) of cardinality n of the relevant type, and test them
one by one to see if ¢ is true in any of them. It is also well known that not
every recursive set is a spectrum: We simply form the diagonal set D such that
n € Diff n is not in the nth spectrum (the details are easy to work out).

In 1955, G. Asser [1] posed the problem of whether or not the comple-
ment of every spectrum is a spectrum. For example, it is not immediately clear
how to write a first-order sentence with spectrum the numbers which are not
powers of primes.

Note that the spectrum of the sentence (1) is the set of positive integers n
for which the following so-called “‘existential second-order sentence” is true
about some (each) set of n points:

IF(VX(f(x) # ) AVVY(FG) =y & f(1) = x)).

This suggests a generalization, which is due to Tarski [23]. Let o be an exist-
ential second-order sentence (we will define this and other concepts precisely
later), which may have not only bound but free predicate (relation) and function
variables. Then the generalized spectrum of o is the class of structures (not
numbers) for which ¢ is true. Let us give some examples. The first few ex-
amples will deal with finite structures with a single binary realtion. We can think
of these as finite directed graphs.

1. The class of all k-colorable finite directed graphs, for fixed k> 2. A
(directed) graph ¥ = (A4; G) is k-colorable if the universe 4 of ¥ can be
partitioned into k subsets A4,,°*°* ,A4; such that ~Gab holdsif a and b
are in the same subset of the partition. This class is a generalized spectrum, via
the following existential second-order sentence, in which Q is a binary predicate
symbol which represents the graph relation, and C,, * ** , C; are unary predicate
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symbols (/\X,¢; abbreviates ¢, A+++ A ¢, ;similarly for \WE.10):

C, - 3Ck<Vx<})f(/l C,x)/\Vx(ﬁ\j~(C,x/\Crx))

AVxvy (Qxy — i/'):(} ~(Cx A\ c,y)>).

2. The class of finite directed graphs with a nontrivial automorphism. This
class is a generalized spectrum, via the following existential second-order sentence,
in which Q is as before, and f is a unary function symbol:

IFAxX(f(x) # x) AVxWy(fx) =f () = x =y)
AVxVy(Qxy < QF ) f (V).

3. The class of finite directed graphs with a Hamilton cycle. A cycle isa
finite structure (A4;R), where A isa set of n distinct elements a,,*** a,
for some n,and R = {@; a;,,) 1<i<n} U {a,, a})}. A Hamilton
cycle of | =(A4;G) isacycle {4; H), where H CG. This class is a general-
ized spectrum, via the existential second-order sentence 3 < o, where < is a binary
predicate symbol, and where o is the following first-order sentence (which we trans-
late into English for ease in readability):

“< is a linear order” A “if y is the immediate successor
of x in the linear order, then Qxy” A *if x is the min-
imum element of the linear order and ¥ the maximum,
then Qyx.”

Our final example is a class of finite structures with a binary function °.

4. The class of nonsimple finite groups. This class is a generalized spectrum,
via

3IN (“the structure is a group” A “N is a nontrivial normal subgroup”).

We can ask the generalized Scholz question, as to how to characterize gener-
alized spectra, and the generalized Asser question, as to whether the complement of
every generalized spectrum is a generalized spectrum. Of the examples given, it is easy
to see that the non-2-colorable finite directed graphs form a generalized spectrum. It
is an open question as to whether the complement of any of the others is a general-
ized spectrum.

It turns out to be possible to characterize spectra and generalized spectra
precisely, in terms of time-bounded nondeterministic Turing machines. The con-
cept of a Turing machine is due, of course, to Turing [24]. The concepts of
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nondetermimistic and multi-tape machines are due to Rabin and Scott [17]. The
classification by time complexity is due to Hartmanis and Stearns [12], and by
tape complexity, to Hartmanis, Lewis and Stearns [11].

In §8§2 and 3, we give definitions and background material. Nothing there
is new.

In §4, we show the essential equivalence of generalized spectra and non-
deterministic polynomial-time recognizable sets. This supplements the known
equivalence of spectra and nondeterministic exponential time recognizable sets of
positive integers, which is probably due to James Bennett (unpublished); it was
also shown by Jones and Selman [15].

In §5, we show, by analyzing our proof of the automata-theoretic charac-
terization of spectra, that many (all?) spectra are the spectrum of a sentence
which has at most one model of each finite cardinality.

In §6, we make use of the automata-theoretic characterization of spectra
to show that if spectra are not closed under complement, then a class of candidates
for counterexamples suggested by Robert Solovay is sufficient.

In §7, we consider Cook’s [7] and Karp’s [16] notions of polynomial-com-
pleteness and reducibility. We generalize to exponential-completeness, and we
directly produce (without making use of Cook’s or Karp’s results) a polynomial-
complete set and an exponential-complete set. This was also done by Book [4];
his sets are similar to ours. We show that completeness implies a certain com-
plement-completeness; using this fact, along with our automata-theoretic char-
acterization of generalized spectra, we show that results in Karp’s paper [16]
(developed by Karp, Tarjan, and Lawler) give us specific examples of generalized
spectra whose complements are generalized spectra iff the complement of every
generalized spectrum is a generalized spectrum. In particular, we show that the
class of finite directed graphs with a Hamilton cycle is such a “complete” gen-
eralized spectrum. Also, we find a complete generalized spectrum defined using
only one “extra” (existentialized) unary predicate symbol: This is a best pos-
sible result. By making use of automata theory and a result about spectra in the
author’s doctoral dissertation [9], it is shown that there is a complete spectrum
defined using only one binary predicate symbol: This is a best possible result.

In §8, we make use of the polynomial-complete set which we constructed
in the previous section to show that if the classes of sets which are polynomial-
time recognizable by deterministic and nondeterministic Turing machines are the
same, then the following apparently much stronger condition holds: There is a
constant k such that essentially any set that can be recognized nondeterministically
in time T can be recognized deterministically in time T*. We then generalize this
result in various ways. We conclude §8 by an analogy with Post’s problem.
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In §9, we make use of a tape-complexity argument similar to one used by
Bennett [2] to show that there is a spectrum S such that {n: 2" €S} is not
a spectrum. By making use of a result in {9], we then show that there is such a
spectrum S defined using only one binary predicate symbol. We also show that
our techniques give a new proof of a theorem of Book [3], that the two
classes of sets recognizable nondeterministically in polynomial time or in exponen-
tial time respectively are different.

In §10, we exhibit an example of a polynomial-complete set which is rec-
ognized by a nondeterministic two-tape Turing machine in real time. The exist-
ence of such a set follows immediately from theorems of Hunt [14], and of Book
and Greibach [5].

2. Notions from logic. Denote the set of positive integers {1, 2, 3, **+}
by Z*, and the set {0,+<+,n—1} by n By the natural numbers we mean
the set Z+ U {0). If A is a set, then card A is the cardinality of the set. De-
note the set of k-tuples {a,, * <+ ,a;) of members of 4 by A,

A finite similarity type is a finite set of predicate symbols and function
symbols. Each predicate symbol (function symbol) has a positive integer (natural
number), the degree, associated with it. If a symbol has degree k, then call the
symbol k-ary. We will often call 1-ary symbols unary, and 2-ary symbols binary.
A constant symbol is a O-ary function symbol. We will denote finite similarity
types by the letters S and T

Assume that S contains the n distinct symbols Q, y***, Q,, written
in some fixed order. Then a finite S-structure Y is an (n + 1)-tuple
(4; Ry, **+, R,) (where we write a semicolon after the first member), such that
we have the following:

1. 4 is a nonempty finite set, called the universe (of %), and denoted | ¥|.

2.1f Q; is a k-ary predicate symbol, then R, is a subset of AF.

3.If @, is a k-ary function symbol, and k > 0, then R; is a function from
A¥ into A

4. If Q; is a constant symbol, then R; € 4.

In each case, write R;= ng We will sometimes make use of a graph pred-
icate symbol Q;if Q € S, then, for U to be a finite S-structure, Q¥ must
be a graph (i.e., irreflexive and symmetric), or, equivalently, a set of unordered
pairs (of members of [¥[). Denote the cardinality of %] by card ().
Denote the class of finite S-structures by Fin(S); abbreviate Fin ({Q,, *** , @,,})
by Fin(Q] »* % Qn)

Assume that S and T are disjoint finite similarity types, that ¥ is a
finite S U Tstructure, and that B is a finite S-structure. Then ¥ is an
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expansion of B (to SUT) if 19| = Bl and Q¥ = Q® foreach Q in S.
We write 8 =% T S.

The metamathematical language we will be working in is a set of symbols
~, /\, V, =, an infinite number of individual variables u, v, w, x, y, z along
with affixes; the left and right parentheses ( , ); and predicate and function vari-
ables. We do not distinguish between predicate or function symbols and predi-
cate or function varizbles. Except in this section, whenever we refer to a vari-
able, we will always mean an individual variable.

A term is a member of the smallest set 7' which contains the O-ary func-
tion variables and the individual variables, and which contains f(¢,,*** , #;)
for each k-ary function variable f and each #;,¢<°,#; in T.

An agtomic formula is an expression t; =t, or Qf, *** t,, where the
t; are terms and Q is a k-ary predicate variable. A first-order formula is a
member of the smallest set which contains each atomic formula, and which con-
tains ~ ¢,, (¢, A ¢,), and Vx¢, (for each individual variable x), whenever it
contains ¢, and @,. A second-order formulz is a member of the smallest set
which contains each atomic formula, and which contains ~ ¢,, (¢; A ¢,), Vx¢,
(for each individual variable x)and VQ¢, (for each predicate or function vari-
able Q) whenever it contains ¢, and ¢,.

The formulas ¢, \/ ¢,, 3x¢, (Ax # y)¢, A!x¢ (read “there exists exactly
one x such that ¢), and so on, are defined in the usual way, e.g., ¢, V ¢, is
~(~¢;, N~¢,). If T={0Q;,***,Q,} isa finite similarity type, then 3T¢
is 3Q; *+* 3Q,¢. If ¢ is a first-order formula, then 3T¢ is called an exist-
ential second-order formula.

If x;,°°*,x,, areindividual variables, then we will sometimes write x
as an abbreviation for the m-tuple (x,, <, x,,), when this will lead to no
confusion. We may write Vx¢ for Vx, <+« Vx,¢.

The notion of a variable being a free variable is understood in the usual
way. Let S be a fixed finite similarity type. An S-formula is a (first- or
second-order) formula all of whose free predicate and function variables are in S.
A sentence is a formula with no free individual variables. A formula is
quantifier-free if it contains no quantifiers (V or 3).

Assume that ¥ is a finite S-structure, and that ¢ is a first- or second-
order S-sentence. Then 9 |= ¢ means that o is true in ¥ ; we say that ¥
is @ model of o. For a precise definition of truth, see [22]. We note that the
equality symbol = is always given the standard interpretation. We define Mod ¢
to be the class of all finite S-structures which are models of o.

Assume that S and T are disjoint finite similarity types, and that
A CFin (S). Then A is an S-spectrum, or an (S, T)-spectrum, if there is
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a first-order S U Tsentence o such that A = Mod,, 3To. This is simply Tarski’s
[23] notion of PC, in the special case where we restrict to the class of finite
structures. A generalized spectrum is an S-spectrum for some S. A monadic
generalized spectrum is an (S, T)spectrum where T is a set of unary predicate
symbols. A spectrum is an S-spectrum for S empty; if A is a spectrum, then
we identify {n: (n) € A}C Z*+ with A.In this case, if 4 = {n: (n) E 3To}, then
we call A4 the spectrum of o.

3. Notions from automata theory. When A is a finite set of symbols, then
A* is the set of strings or words, that is, the finite concatenations a, ™ a,™
+++"a, of members of A. The length of a=a,” *++ " a, is n (written
len@)=n). If k€ Z*, then len(k) is the length of the binary representation
of k; this corresponds to a convention that we will always represent positive
integers in binary notation. If a set § CA* for some finite set A, then S is
a language.

An m-tape nondeterministic Turing machine M is an 8-tuple (K, ", B, Z, 8, q,,,
4 4, 4R ), where K is a finite set (the states of M); T" is a finite set (the tape symbols
of M); B is a member of S (the blank); T is a subset of (I" — {B}) (the input symbols
of M);q,, 4 4, and g are members of K (the initial state, accepting final state, and
rejecting final state of M, respectively); and & is a mapping from (K—{g 4 dpd X"
to the set of nonempty subsets of K X (I'—~ {B})™" X {L, R} (the table of tran-
sitions, moves, or steps of M),

If the range of & consists of singletons sets, that is, sets with exactly one
member, then M is an m-tape deterministic Turing machine.

We may sometimes call M simply a machine.

An instantaneous description of M isa (2m + l)tuple I =
(gsa, e+, a™;iy, +*+ ,i,), where q €K, where o/ € (T~ {B})*, and
where 1< < len(a/) + 1, for 1 <j<m. Wesay that M is in state g, that
o/ is the nonblank portion of the jth tape, and that the jth tape head is scan-
ning (of)ij, the i;th symbol of the word o/ (or that M is scanning (o’ ) ; on
the jth tape); we also say that the jth tape head is scanning the i;th tape square.

Let I'=(q';al,~o, a™ij,**", i"n) be another instantaneous de-
scription of M. We say that I—, I' if q #q4, q # qg, and if there is
$=Ap;ay,*** 8,3 Ty, 000, T,y) in 8@ (@), o+ ¢, (@™),,) such that
P =4, and, for each j, with 1 <j<m:

1. (@), =a;.

2. (@) =@, for 1<k <len(@),if k#i,.

3. len(¢") = len(e) unless i; = len(a’) + 1; in that case, len @y=
len(a/) + 1.
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4. If T, =L, then i; # 1.

5. If Ty=R, then i; =i+ L;if T;=L, then i;=1i;~ 1.

We say that M prints a; on the jth tape. Note that M cannot print a
blank (that is, a; # B); so, we say that o is that portion of the jth tape which
has been visited, or scanned. If T; = R(L), then we say that the jth tape head
moves to the right (left). Assumption 4 corresponds to the intuitive notion of
each tape being one-way infinite to the right; thus, if M *“orders a tape head to
go off the left end of its tape,” then M halts. It is important to observe that
it is possible to have I—>, I, and I~ I, with I, #I,; hence the name
“nondeterministic.”

We say 1 -—*;, J if there is a finite sequence I, *<*, I, such that
IL=L5L1,=J,and [, I, , for 1 <i<n Denote the empty word in
Z* by A If wEZ* thenlet w={(qq;w, A, ***,A;1,**, 1) (W is the
input). Call an instantaneous description {(q;a!,***, o™; iy,°*°,1i,) accept-
ing (rejecting) if q = q, (@ =qg). We say that M accepts w in Z* if
W —>yy I for some accepting I Denote by A, the set of all words accepted
by M. We say that M recognizes Ay,.

If w —-*;, I for some accepting (rejecting) 7, then we say that M, with
w as input, eventually enters the accepting (rejecting) final state, and halts.

Intuitively speaking, there are three ways that a word w in Z* may be
not accepted by M: M, with w as input, can eventually enter the rejecting final
state qgp; or M can order a tape head to go off the left end of its tape; or M
can never halt.

Assume that M is a multi-tape nondeterministic Turing machine, w € 4,,,
and ¢ is a positive integer. We say that M accepts w within t steps if, for
some N <,

there are instantaneous descriptions I, *** , I, 4,
@ such that I, =W, I, is accepting, and I} > I},
for 1<k<n

Let s be a positive integer. Then M accepts w within space s if for
some positive integer 7, (2) holds and, for each [, 1<k <n +1,if I, =
(gsa!, e, a™ iy, 220, i,) then i, <s for 1<p<m.

Let ' N~— N and S: N-— N be functions. We say that M operates
in time T (tape S), ot M recognizes A,, in time T (tape S) if, for each natural
number ! and each word w in A,, of length [, the machine M accepts w
within T(!) steps (space S(!)). We say that A4 is recognizable (non)determin-
istically in time T, or tape S, if there is a multi-tape (non)deterministic Turing
machine M that operates in time T, or tape S, such that 4 = A4,.



GENERALIZED FIRST-ORDER SPECTRA 51

We will now define some well-known, important classes. Let P (NP) be
the class of sets A for which there is a positive integer k& such that A4 is recog-
nizable (non)deterministically in time I+—I*¥, These are the (non)deterministic
polynomial-time recognizable sets.

Let P, (NP,) be the class of sets A for which there is a positive integer
k such that A is recognizable (non)deterministically in time I ~—>2%!, These
are the (non)deterministic exponential-time recognizable sets. If the positive
integer 7 has length I in binary notation, then 2/~! <n <?2'. Therefore, a
set A of positive integers is in P, (VP,) iff there is a multi-tape (non)determin-
istic Turing machine M, and a positive integer k such that 4 =A4,, and M
accepts each n in A within n* steps. So in some sense, P, and NP, are
also classes of polynomial time recognizable sets.

We say that a set A is recognizable in real time if A is recognizable in
time I*=>1+ 1. Weuse I+ 1 instead of I, so that the machine can tell when
it reaches the end of the input word.

We have defined Turing machines which recognize sets rather than compute
functions. It is clear how to modify our definitions to get the usual notion of a
function f computable by a deterministic one-tape Turing machine M; it is also
clear what we mean by M computes the value of f at w within t steps. If
f: A—> B, where A and B are languages, and if T: N ~—> N, then we say that
M computes f in time T if, for each natural number !/ and each word w in
A of length I, the machine M computes the value of f at w within T()
steps. We define Il to be the class of functions which are computable by a one-
tape deterministic Turing machine in polynomial time. Functions are generally
considered easy to compute if they are in II; Cobham [6] was the first to single
out this class. We define II; to be the class of functions f which are comput-
able by a one-tape deterministic Turing machine in exponential time, and for
which there is a constant ¢ such that len(f(w)) <c * len(w) for each w in
the domain of f.

We now state without proof two theorems, which were essentially proved in
[12]. The proofs can also be found in [13, pp. 139—140 and 143].

THEOREM 1. If A is recognized by a one-tape (non)deterministic Turing
machine in time T, if lim inf,,T()/I> = oo, and if ¢> O is arbitrary, then
A is recognized by a one-tape (non)deterministic Turing machine in time 1 —
max ( + 1, ¢T).

THEOREM 2. If A is recognized by an m-tape (non)deterministic Turing
machine in time T, and if lim inf, ,  T(I)/l = oo, then A is recognized by a one-
tape (non)deterministic Turing machine in time T2,
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It follows from Theorem 2 that the concepts of polynomial and exponential
time are invariant, whether we consider one-tape or multi-tape machines.

A function T is countable if there is a positive integer ¢ and a two-tape
deterministic Turing machine that operates in time ¢TI which, for each natural
number ! and each word of length ! as input (on the first tape), halts (by
entering a final state) with a string of at least T'(/) tallies on its second tape
(a tally is a one). This is slightly broader than the usual definition, but more
convenient for us to use. We will make use of the fact that I — I* is count-
able for each positive integer k; for, I*¥ can be calculated in a polynomial of
len(?) time, which is less than ! for sufficiently large I

A linear-bounded automaton is a one-tape deterministic Turing machine
that operates in tape ! > + 1, We denote by E2 those subsets of Z*
whose characteristic functions are in the Grzegorczyk class E2 [10]. The class
E? is the smallest class which contains the successor and multiplication functions,
and is closed under explicit transformation, composition, and limited recursion.
We are interested in the class EE precisely because of the following theorem.

THEOREM 3 (RITCHIE [18]). A set of positive integers is recognizable by
a linear-bounded automaton iff it is in E2.

We will make use of the following well-known simple theorem, which we
state without proof.

THEOREM 4. The classes E: , P,and P, are closed under complement.

A function §: N— N is said to be constructible if there is a one-tape
deterministic Turing machine which operates in tape 8, but not in tape § "
if 8§'() <S({) for some I We conclude this section by stating a theorem which
is essentially proved in [11]. The proof can also be found in [13, pp. 150-151].

THEOREM 5. Assume that S is a constructible tape function with
S(l) > log,! for each natural number I. Then there is a set which is recognizable
by a one-tape deterministic Turing machine in tape S, but which is not recogniz-
able in tape S' for any function S' with lim inf,, .S'()/S() = 0.

4. Generalized spectra and automata. In this section, we will prove the
theorem (Theorem 6) which interrelates spectra and generalized spectra with
automata.

Let S be a fixed finite similarity type which (for convenience) contains
only predicate symbols, and let P,, **+ , P, be the predicate symbols in S
in some fixed order. Let £ = {0, 1, #}.

Assume that { = ({1,***,n} S, **+,S,) is a finite S-structure, and
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that P, (and hence S;) is mpary (1 <i<r). For each i, define b, to be the
wordin {0, 1}* of length n™! such that if (c;,***,c,,) is the kth member
of {1,+<+,n}™ in lexicographical order, then the kth digit of b, is 1 if
Sicy *** ¢, and O otherwise (1 <k<n™). Let e(¥), the encoding of
¥, be the word a #b, #b, #+++ #b, in T* where a is the binary repre-
sentation of n. If A is a class of finite S-structures, then let E(A) =

{e@): AneZ*) (U= {1,°+,n} and AEA)}L

THEOREM 6. Assume that A C Fin(8), and that A is closed under iso-
morphism.

1. If S+, then A isan S-spectrum iff E(A) € NP.

2. If S=g, then A isa spectrum iff E(A) € NP,.

Note. We can combine these last two statements by saying that A is an
S-spectrum (S =& or S # &) iff there is a positive integer k£ and there is a
nondeterministic multi-tape Turing machine which recognizes E(A), and which
accepts each e(¥) in E(A) within n* steps, where |¥|= {1,++* ,n}.

PROOF. Assume that A is an S-spectrum (possibly S = @&.) Then, for
some positive integers ¢ and k, some set T of ¢ new k-ary predicate symbols,
and some first-order S U T-sentence o = Q,x, *** @,,X,,, ¢, where ¢ is
quantifier-free and each Q, is V or 3, we have A =Mod,,3To. This is be-
cause of well-known techniques of simulating (k¥ — 1)-ary functions and (k — 1)-
ary relations by k-ary relations, and because each first-order sentence is equivalent
to a sentence with all quantifiers out front (so-called “prenex normal form™).

We will informally describe a (¢ + m + 2)-tape nondeterministic Turing
machine M which recognizes E(A). The first tape is the input tape. The ma-
chine M first tests to see if the input is of form a #b, #b, #+ -+ #b,, with
a in {0, 1}* and starting with a 1, with r the number of (predicate) symbols
in S, and with each b, in {0, 1}* and of the proper length; to test for proper
length, M uses its last tape as a “counter.” If the input is not of the proper
form, then M rejects. If the input is of the proper form, then say the input is
e(¥), and |¥| = {1, <<+ ,n}. On each of the 2nd through (¢ + 1)st tapes, M
then nondeterministically prints a string of n* 0’s and 1’s, by using the last tape
as a counter; these correspond to “‘guesses” for the interpretations of the pred-
jcate symbolsin T. Let 9%’ be the obvious expansion of ¥ to SU T.

Next, on the (¢ +i + 1)st tape, M systematically prints each possibility
a; for x; (1 <i<m), where a; runs between 1 and n. There are n™
possibilities for the m-tuple (a,, **+,a,,). For each given such possibility, M
can easily test to see if #(@,,***,a,,) holdsin %', where it again makes use
of the last tape as a work tape. It is easy to see how to arrange the logic to test
whether %’ k= o.



54 RONALD FAGIN

So M recognizes E(A), and there is a nonnegative polynomial p
such that M accepts each e(%) in E(A) nondeterministically within p(n)
steps, where |¥|= {1, **+,n}. Let I be the length of the input e(¥). If
S =g, then n is approximately 2. If S+ @, then ! is approximately tn*
(in each case, “approximately”” means up to a fixed constant factor). So if
S = B then E(A) can be recognized nondeterministically in time I ~— p(2’),
and hence E(A) ENP,. If S +# @, then E(A) can certainly be recognized non-
deterministically in time !+~—»>p(l), and hence E(A) € NP.

Conversely, assume that E(A) isin NP or NP,, depending on whether
S#& or S=#. Assume that S = {P,,***, P}, where P; is mary, for
1 <i<r. It will be convenient to define a slightly modified (r + 1)-tape non-
deterministic Turing machine M, by changing the definition of an input. If x
isan (r+ 1)-tuple (@, **°,a,, ), thenlet X ={(qq;a;,°**,a,,1,°**,1)
we say that M accepts the (r + 1)-tuple x if ¥ —-*;, I for some accepting
instantaneous description I

It is clear that there is a positive integer k and a modified (r + 1)-tape
nondeterministic Turing machine M which accepts precisely those (r + 1)
tuples¢a’, b, *+,b,) such that a #by, # by #-++ #b, isin E(A), where
d' is the string a written backwards, and such that M accepts such an input
within n* steps, where n is the number represented by @ in binary notation.
We can assume that k> max {m;: 1 <i<r}. It is clear that if M accepts
(@', by, >+ ,b,) within n* steps, then it accepts {a’,b,,***,b,) within
space n*; we will make use of this fact.

Introduce the set T of the following new symbols. The symbol < is a
binary predicate symbol, which represents a linear order; ¢; and c, are con-
stant symbols, which represent respectively the minimal and maximal members
of the linear order; 0, 1, and B are constant symbols, which represent respec-
tively the zero, one and blank tape symbols; q,, ¢, and gz are constant sym-
bols, which represent respectively the initial state, accepting final state, and reject-
ing final state; S is a unary function symbol, which represents successor in the
linear order <; §, isa 2k-ary predicate symbol, where

Sl(xla cee ’xk;yls cee syk)

means that y is the successor of x in the Jexicographical ordering; g 1is a
k-ary function symbol, where q(t,, *** , ;) is the state that the machine is in
at time t; v, is a 2k-ary function symbol, for 1 <i<r + 1, where

Vty, *** , tg3Xq, **, x;) is the tape symbol printed on square x of the
ith tape at time t; H; is a 2k-ary predicate symbol, for 1 <i <r + 1, where
H{t; x) means that, at time t, the ith tape head is scanning square x on the
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ith tape; and G is a binary function symbol, where G(x, i) is the ith digit from the
right in the binary representation of x, if we think of the binary representation of
the positive integers less than or equal to 7 (the cardinality of the universe) as
being given by a word of length 7, which starts out with a series of blanks, fol-
lowed by the usual binary representation.

We think of the k-tuple (c,, ***,c,) as representing the first time unit
(and the first tape square on each tape);if S;(x; y), then y is the next time
unit (next tape square) after x. Thus, the k-tuple (,, ***,c,) represents the
n¥th time unit (n*th tape square).

Assume that T' contains g tape symbols. We represent these by ¢, S(c,),
S(S(cy)), 000, s& _1)("1)» where ¢, represents the zero, S(c,) represents the
one, and S(z)(cl) represents the blank. For ease in readability, we have intro-
duced the symbols 0, 1, and B, which will denote the same elements (in a model)
as ¢y, S(cy), and 5@ )(01) respectively. Assume that K contains p states. We
represent these by ¢y, *°*, S(P")(cl) where, for ease in readability, we have
4o 44> and gp denoting the same elements as ¢,, S(c,), and S(z)(c,) respec-
tively.

Let o0, be the conjunction of the following sentences:

0=c¢, Qo =Cy»
1= S(cl)’ qA = S(cl)’
B=5O¢,), qp =5y,

Let o0, be the sentence “<is a linear order, ¢, is minimal, ¢, is max-
imal, and S is successor, except S(c;) =¢;.”

Let 05 be the sentence which says that S,(x;y) holds iff y is the suc-
cessor of x in lexicographical order, except that S,(c,, ***, ¢3;¢4, %%, ¢4)
holds. Thus, 05 is the conjunction of the following k + 2 sentences:

Vxl LN ) kaa!yl eos B!yksl(xl, eee ,xk;ylj bl ’yk)’
Vxl cee ka(xk ¢02 ——’Sl(xl’ ceoe ’xk;xl’ LR ,xk—l’ Sxk)),
Vx, ooe Vxp((xg = ¢, /\xk_l #¢,)

_—’Sl(xl, oo ’xk;xli s ’xk—z’sxk—l’ cl))’
Sl((:z, cecy, cz;cls ce, cl)'

The conjunction o, of the following sentences defines G to be what we
said we wanted:
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Gley, ¢y) =1,
(Vx #¢,)G(c,, x) = B),
(Vx # c,)Vr((3z <yXG(x, )= 0V G(x, z) = B))
— (G(Sx, y) = G(x, »))),
(Vx # c,)Vy(((3z <yXNG(x, 2) = 1 A G(x, y) = 0))
— (G, y)=1)),
(Wx # e V(Y2 <y)(G(x, 2) =1 AG(x, y) = 1))
— (G(Sx, ) =0)),
(Vx # V(Y2 <y)G(x, 2) = 1 \G(x, y) = B))
— (G(Sx, y) = 1)).

The conjunction o, of the following sentences gives self-explanatory in-
formation about ¢ and the H;:

q(cy,***,¢) =4,
q(Cz, *tt, Cz) =qu
r+1

M\ VEy oo Ve 3y oo I H(E X),
i=1

r+1
A(\ Hi(cl’ $ee L0030, 00 ’Cl)'
i=1

The conjunction o of the next two sentences initializes the first tape so
that it starts with the binary representation of n (the cardinality of the universe)
running backwards, followed by blanks:

Vx(uy(ey, == eq560, 000, €0, X) = Gley, X)),
Wry oo W~y =g Nev e Axy_y =¢)
_—’(vl(cl" °° ’cl;xl’ e ’xk) =B)).

The conjunction ¢, of the following sentences initializes the 2nd through
(r + D)st tapes such that the (i + 1)st tape starts out with a string of 0’s and
I’s which represents P,, followed by blanks (1 <i<r):
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r
i@lv.xl sce mei(Pfxl cse xMi

——)(vi+l(cl’ cee ’cl;cl’ eeoe ’cl’ xl’ s e ’xm1)= 1))’

r
{X\ Vxg oee mei(~ Pyxy eet Xy,
=1

——-)(vi.,_l(cl’ ses ’cl;cl’... ’cl’ xl’... ’xm‘)=0))’

r
&Vxl s 0 ka(~(xl =c1 A...Axk—mi=cl)
_—’(vi+l(cl’ St 05Xyttt ’xk) =B)).

The sentence og says that after the machine enters a final state, nothing
ever changes. Here u represents the next time unit after t:

ViVu(~(ty =c, Aee A =c ) ASi(w)A@®) =a, V at) =ag)

r+1
— <(q(u) =q(t)AVx < {)_(\1 (v (u; x) = v(t; x))>

Avx ;;\1 (H(u; x) » H(t; x)>>.
i=1

The sentence o4 is a conjunction of sentences which describe the table of
transitions of M, entry by entry. Assume that 8(b;e;,***,¢€,,.,)=
{sy, ***, 5, }, that we are representing the state b by S(")(c,), and that we
are representing the tape symbol ¢; by sv ‘)(cl), for 1 <i<r. Then one con-
junct of o4y is the following sentence:

VEVuVx] oo Wxl oo WxfF1 ooe Wxit!

<~(t1 =c, AeesA ty =c2)/\Sl(t; u)

r+1

A {g} Hft;x}, +»+ x5 A (@(t) = 59(c,))

A 7*\1 (Ui(tixi’ cee X)) = S(fi)(cl)) - yw({%)’
i=1 =

where ¢, tells the transition which is possible, according to s;, for 1 <i<w,
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Specifically, assume that s; is (@a;by,***,b,.4; Ty, **°, T, ), where we
are representing the state ¢ by sm )(01): where we are representing the symbol
b; by S(di)(cl), for 1 <j<r+1,and where each T} iseither R or L. Let
I={j: T, = R}, and J = {j: T; =L}. Then ¢, is the conjunction of the fol-
lowing formulas, where in the last conjunction we include the restriction that no
tape head go off the left end of its tape:

q@) = $¢(ey),

r+1

m Va(~ (g = x{ A+ 2+ Az, = x]) — (v (05 2) = y(t; D)),

Mo xh=5DPe), MV e yh — By,
=1 " el

i/é\’(~ (x{ =¢q ARRE Ax,i =¢) A Vyi(sl(yi;xi))—’H/(myi))-

If n>max(card I, card K), then an S-structure A with card (%) =n
isin A iff % = 3IT(/M\,0,). It is well known that each “finite modification”
of an S-spectrum is an S-spectrum. Therefore, A is an S-spectrum. O

Apparently, James Bennett was the first to prove part 2 of Theorem 6, al-
though he did not publish it. The first published proof (a different proof from
ours) is by Jones and Selman [15]. Part 1 is new.

It is fairly easy to prove from Theorem 6 that

the class of (generalized) spectra is closed under complement

® iff NP, (VP) is closed under complement.

This is because there are not only simple ways to encode finite structures
into strings of symbols, but also ways to “encode” strings of symbols into finite
structures. We will not demonstrate this, because (3) follows easily from our
work on complete sets in §7.

We know from Theorem 4 that P, (P) is closed under complement. So
if NP, =P, (WP = P), then NP; (NP) is closed under complement, and
hence the class of (generalized) spectra is closed under complement. It is a
famous open problem in automata theory as to whether NP = P; the evidence
seems to be strongly against it. We remark that it is well known that NP = P
implies that NP, = P,, and that if NP is closed under complement, then so is
NP, ; these results follow, for example, by an obvious modification of an argument
by Savitch (20, p. 186].
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From Theorem 6, we see that spectra and generalized spectra are very broad
classes. Most sets of positive integers that occur in number theory, such as the
primes, the Fibonacci numbers, and the perfect numbers, are easily seen to be
members of P,, and a fortiori of NP,. It is immediate from Theorem 6(2) that
a set of positive integers is in NP, iff it is a spectrum.

THEOREM 7 (BENNETT [2]). Assume that the set A of positive integers
isin Ei Then A and A are spectra.

PROOF. By Theorem 3, A is recognizable by a linear-bounded automaton.
So, by an easy, standard argument of counting the number of possible instantane-
ous descriptions, it follows that 4 € P,. So 4 €ENP,, and hence 4 is a spec-
trum. Since E2 is closed under complement (Theorem 4), also deBic P C
NP, ; hence 4 isa spectrum, O

It is an open problem as to whether there is any spectrum not in Ei .

Let BIN be the set of all spectra definable using only one graph predicate
symbol. Obviously, if S € BIN, then S is definable using only one binary
predicate symbol. The following result is proved in the author’s doctoral dis-
sertation [9].

THEOREM 8. For each spectrum S, there is a positive integer k such that
{n*: n €8} isin BIN.

We could not hope for it to be true that for each spectrum S, there is a
positive integer k such that {n*: n €S} is definable usifig only unary predicate
symbols. This is because it is well known that by an elimination-of-quantifiers
argument, it can be shown that each spectrum definable using only unary predicate
symbolé is either a finite or a cofinite set of positive integers.

We close this section by using Theorem 8 to show that if certain conjectures
about spectra are false, then a counterexample occurs in BIN.

THEOREM 9. The following two statements are equivalent.
1. NP, =P,.
2. BINC P,

PROOF. 1=2: BIN CNP,, by Theorem 6(2).

2=1: Take S in NP;; we want to show that S € P,. By the usual
encoding arguments, we can assume that S CZ*, By Theorem 8, we can find
a positive integer k such that 7= n*: n €S} isin BIN. Then n €S iff
n* € T, for each positive integer n. So clearly, if 7€ P,,then SEP,. O

THEOREM 10. The following two statements are equivalent.
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1. If SCZ* then SENP, iff SEE}.
2. BINC E.

The proof is very similar to the previous proof. [

§. Categoricity. Call a first-order sentence categorical if it has at most
one mode! (up to isomorphism) of each firite cardinality.

THEOREM 11. Assume that the set S of positive integers is in P,. Then
there is a categorical sentence with spectrum S.

PROOF. If the machine M in the proof of Theorem 6 is deterministic,
then the sentence M\ 1,0, defined in that proof is categorical. The “finite
modification” which was called for to take care of small values of 7 is easily
dealt with. O

So those naturally-occurring sets of positive integers that we discussed in
the previous section are each the spectrum of a categorical sentence.

COROLLARY 12. If NP, = P,, then each spectrum is the spectrum of a
categorical sentence.

The proof is immediate. O

In the case of S-spectra, let us call a first-order S U T-sentence o (Where
S N T= @) S-categorical if, whenever 9 and B are finite S U T-structures
which are models of o,and % 'S and B I' S are isomorphic, then so are
A and 9B.

If A isan S-spectrum, then it does not quite follow, as in Theorem 11,
that if E(A) € P then there is T and there is an S-categorical S U T-sentence
o such that A =Mod ,3To. For, there are many different ways to impose the
linear ordering <. However, if structures had a “built<in” linear ordering, then
we could surmount this difficulty. One approach is to consider only finite S-
structures ¥ such that | CZ*. We could let < be a symbol which, like =,
has an invariant interpretation; namely, if a, b € |1U|, where %I CZ*, then
a<¥ b iff a isa smaller integer than b. Then the desired result mentioned
above follows.

6. Possible Asser counterexamples. In §1, we gave several simple examples
of generalized spectra whose complements do not seem to be generalized spectra.
These also serve as examples of NP sets which are probably not in P.

It is harder to find candidates for sets which are spectra but whose comple-
ments are not spectra, or which are in NP, but notin P,. This is because, as
we observed, most naturally-occurring sets of positive integers are in P, and
hence, of course, so are their complements.
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As we shall see in §9, there exists a spectrum S such that {n: 2" €S}
is not a spectrum. This gives us one class of possible counterexamples. In fact,
Bennett [2] shows that {n: 2” + 1 is composite} is a spectrum, and asks
whether {n: 2% 4+ 1 is prime} is a spectrum. We will show that Bennett’s re-
sult follows fairly simply from Theorem 6 (Bennett’s proof is different). We will
answer Bennett’s question (affirmatively) by making use of a very surprising re-
sult by Vaughn Pratt (unpublished). We need the following simple theorem.

THEOREM 13. Assume A CZ*. If AENP then {n: 2" +1 € A}ENP,.

PROOF. Assume that M is a nondeterministic Turing machine which rec-
ognizes A in polynomial time. We will define a nondeterministic Turing machine
M which recognizes B = {n: 2" + 1 € A} in exponential time. Given input
n, the machine M’ prints the string that starts and ends with a 1 and has
(n—1) 0’s in between. This is the number 2" + 1 in binary notation. Then
M’ simulates the action of M on input 2" + 1. It is easy to see that M’
recognizes B nondeterministically in exponential time. [

It is simple to show that C = {n: n is composite} isin NP. For,let M
be a nondeterministic Turing machine which, given input n, “guesses” a divisor
m of n and then tests it; if m divides n, then M accepts n. Cleatly M
recognizes C nondeterministically in polynomial time. So, from Theorem 13,
{n: 2" +1 is composite} isin NP,, and hence is a spectrum.

Pratt proved that {n: n is prime} isin NP. From this very interesting
result, it follows immediately from Theorem 13 that {n: 2" + 1 is prime} is
a spectrum.

For each set S of words, define S’ to be {len(n): n €S}. As candidates
for sets in NP, which are not in P;, Robert Solovay (personal communication)
essentially suggested considering sets S’, where S € P. We will now show that
in a certain sense, this class is sufficient for a counterexample. The proof gives
an application to automata theory of the equivalence in Theorem 6.

THEOREM 14. The following three statements are equivalent:
1. NP, =P,.

2. If SEP then S'EP,.

3. If SENP then S'E€P,.

PROOF. 3 = 2: This is immediate, since P CNP.

1 =3: Assume that SENP. Then S’ €NP,. For, assume that M
recognizes S nondeterministically in time ! +—> 1* for some k. We will con-
struct a machine M’ that recognizes S’ nondeterministically in exponential
time. Given input m, the machine M’ first guesses a number n of length m.
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Then M’ simulates M on the input n. Clearly, M' recognizes S’; M' accepts
m in S’ in roughly m* steps. So S'ENP, = P,.

2=1: Assume that 4 € NP,. By the usual encoding arguments, we can
assume that 4 CZ* (if, instead, 4 C Z* for the finite set =, then we find an
encoding z: Z* — Z* for which there is a constant ¢ such that len(t(w)) =
¢+ len(w) for each w in Z*¥; the details are straightforward). By Theorem 6,
we know that A4 is a spectrum. Assume for simplicity that 4 = {n: () = 3Q0},
where Q is a binary predicate symbol. The general case is similar. Let S be
the following set:

{m: In(len(m) = n*> + 1, and if the binary representa-

tion of m is 17 b, and if R is the binary rela-

tion on n which is represented by b in the obvious
way, then (n; R) F=0) }.

We use n?2 + 1 instead of n? to allow for the possibility of b being a
string of all 0’s.

Then S € P. For, as we saw in the proof of Theorem 6, there is a positive
integer k and a deterministic machine M which can determine whether
(n;R) = 0 within n* steps for each n (and R); note that n* is bounded by
a fixed polynomial of the length of m.

Since S € P, it follows by hypothesis that S' € P,. Now n €4 iff
(n* + 1) €', for each positive integer n. So A €P,. O

In the next section, we will find several specific (generalized) spectra 4 (A)
such that the class of (generalized) spectra is closed under complement iff 4 (K)
is a (generalized) spectrum.

7. Complete sets. We will now deal with the notions of reducibility and
completeness, which are due to Cook [7] and Karp [16] . We will show that com-
pleteness implies a complement-completeness (Theorem 15(2)), and we will use this
fact, along with Theorem 6(1) and results in Karp’s paper [16], to find particular
generalized spectra whose complements are generalized spectra iff the complement of
every generalized spectrum is generalized spectrum. In particular, we will show that
the class of directed graphs with a Hamilton cycle is such a “complete™ generalized
spectrum; we will also exhibit a monadic complete generalized spectrum. We will then
find a complete spectrum, and will show that the existence of a complete spectrum
implies the existence of a complete spectrum in BIN (which we can actually find).

Assume that £, and Z, are finite sets,and A CZ},BCZ%. B is
reducible (reducible;) to A, written B < A (B «; A), if there is a function f:
=3 — =} in 11 (1I,) such that, foreach x in Z3,xE€B iff f(x)EA.
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It is clear that « and o, are transitive.

Aset A is NP (NP, )complete if

1. AENP (VP).

2. BxA(Bx, A) foreach B in NP(NP)).

THEOREM 15. Let A be NP (NP,)complete. Then
1. NP=PWP =P) if AEP(R);  _
2. NP(NP,) is closed under complement iff A € NP(VP,).

PROOF. Assume that B C Z*, that B € NP (NP,)and that Bx A4 (B, 4).
Find f in I (I,) such that x € B iff f(x) €A, for each x in Z*. Itis
straightforward to check that if 4 € P(P,), then B € P(P,). Note that x € B
iff f(x) €A; hence, if 4 € NP@P,), then B € NP(NP,). The other implica-
tions are obvious. O

Part 1 of Theorem 15 (in the NP= P case) is due to Karp. Cook was
the first to show that there exists an NPcomplete set. This set is SAT, the set
of encodings of satisfiable propositional formulas in “conjunctive normal form”
M\,\X/fA,,, where each A4,; is a propositional letter or its negation.

THEOREM 16 (Cook [7]). SAT is NPRcomplete.

In .[16], SAT is shown to be reducible to certain other sets in NP, which
are thus NPcomplete. We now describe two such sets.

1. HAM is the set of encodings of {Q}structures that have a Hamilton
cycle, where Q is a binary predicate symbol.

2. HIT is the set of encodings of families of subsets of a set, for which
there is a “hitting set.” If the input is (the encoding of) a finite family
{4,,°+°,A,}, where each 4, C {s,, ***, s}, then a hitting set is a set
WC {sy,*°*,s} such that WN A4, contains exactly one element for each i

THEOREM 17 (KARP, TARJAN, AND LAWLER [16]). HAM and HIT are
NP-complete.

We can now demonstrate two particular generalized spectra whose com-
plements are generalized spectra iff the complement of every generalized spectrum
is a generalized spectrum. Let @ be a binary predicate symbol, and U a unary
predicate symbol.

THEOREM 18. Let A = {¥ € Fin(Q): U has a Hamilton cycle}. Then
the class of generalized spectra is closed under complement iff the complement
of the {Q}spectrum A isa {Q}spectrum.

PrROOF. =: This is immediate.
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<=: This would follow immediately from Theorems 6(1), 15(2) and 17 ex-
cept for one technicality. Namely, if B is an S-spectrum, and if C is the
complement of B in {0, 1, #}*, then C is not quite E(B), but instead is the
union of E(ﬁ) and the set D of wordsin {0, 1, #}* which are not the en-
coding of an S-structure. However, since D is easily (deterministic polynomial-
time) recognizable, it is clear that C € NP iff E(B) € NP, and so there is no
problem. O

It is very interesting that Theorem 18 is a statement of pure logic that
seems on the surface to have nothing to do with automata theory. However, its
proof is heavily dependent on automata theory.

THEOREM 19. Let A = Mod,, 3UVx3!y(Qxy A Uy). Then the class of
generalized spectra is closed under complement iff the complement of the
{Q}-spectrum A isa {Q}-spectrum.

PrOOF. We will show that HIT « E(A). Since E(A) € NP by Theorem
6(1), it follows that E(A) is NP-complete. The proof can then be completed
as in Theorem 18.

Assume that e is an encoding of the family {4,,°***,4,} of certain
subsets of {sy,***,s} We can assume that n =>r by repeating the set A4,
as often as necessary. Define a finite {Q}structure ¥, with (¥ I= {1, n}
such that (i, j) € Q" iff 5; €4, for each i and j. Let f be a function
which (in general) maps e onto the encoding of ¥, (and which maps nonen-
codings onto a fixed nonencoding). It is straightforward to check that e € HIT
iff f(e) € E(A), and that f € II; therefore, HIT « E(A). O

Note that A of Theorem 19 is a monadic {Q}-spectrum, that is, a {Q}spectrum
in which all of the “extra” predicate symbols are unary (in this case, there is only
one extra predicate symbol, and it is unary). It is well known that if S is a set of un-
ary predicate symbols, and B is a monadic S-spectrum (that is, all predicate symbols,
“given” and ‘‘extra,” are unary), then there is a first-order S-sentence ¢ such
that B =Mod 0. Hence E(B) € P, as in the proof of Theorem 6. So Theorem
19 is a best possible result (short of resolving the generalized Asser problem). We
remark that the author proved the following result about monadic generalized
spectra in his doctoral dissertation [9].

THEOREM 20. Let A be the class of nonconnected finite {Q)structures,
where Q is a binary predicate symbol (a finite {Q}-structure (A; R) is con-
nected if, for each a, b in A, there is a finite sequence a,, *** ,a, Of points
in A suchthat a =a,, b =a,, and either Raa;,, or Ra; ,a;, for 1 <i<n).
Then A is a monadic {Q}spectrum, but X is not a monadic {Q}spectrum, In
particular, the class of monadic generalized spectra is not closed under complement.
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We will now produce a “universal” NP set and a “universal” NP, set.
Each will be complete. The technique is similar to that of Book [4], who also
shows the existence of an NP,-complete set.

Some preliminary remarks are required. If M is a one-tape nondeterminis-
tic Turing machine that operates in time T, then it is easy to see that there is a
constant ¢ and a one-tape nondeterministic Turing machine M’ that recognizes
Ay in time T, such that the range of the function & for M' (which gives the
table of transitions for M') contains only sets with at most two members (in-
tuitively, M’ has at most two options per move). Whenever there are two options
then by some convention we label one the first option and the other the second
option.

We momentarily restrict our attention to a subclass M of the class of those
one-tape nondeterministic Turing machines that have at most two options per
move, by making natural restrictions so that M will be countable: We require
that the sets K (of states) and T (of tape symbols) be subsets of w; it is also
convenient to require that the set £ of input symbols be {0, 1}, and that each
machine in M recognize a set of (binary representations of) positive integers. We
assign Godel numbers to machines in the class M in such a way that a tape head
can sweep through the encoding of the Godel number to find out how to simulate
the machine with that Godel number on a given step. One such way involves
essentially letting the GGdel number be the concatenation of the entries of the
table of transitions, with the # sign used as a separator. Each tape symbol and
state is encoded by a string in {0, 1}*. For details, see {13, pp. 102—103]. De-
note by T; the machine with G6del number i

We now define a ternary relation ¥, which holds for certain triples ¢, s, n)
with i and n positive integers, and s in {0, 1}*. For V(,s, n) to hold,
it is first necessary for i to be the Godel number of a machine T;. Simulate
the action of T; on the input n, in the following way: If on the kth step in
the simulation, there is an option, then take the first (second) option if the kth
digit in s isa 0(1); if s is not of length at least k, then halt and reject.
Then V (i, s, n) holds iff the number n is accepted in this simulation.

Let t be any standard one-one map from (Z *)3 onto Z* such that
t€ENMNNM, and t~!' €1 N 1, and such that each of 4, b, and ¢ is
bounded by #(a, b, ¢). We can now define two sets of positive integers which
are “universal” in the usual sense with respect to NP(NP,) sets.

UNIV = {t(, a, n): i, a, n €Z* and 3s(len(s) = len(a) and V(, s, n))},

UNIV, = {t(i,a,n): i,a,n €Z *+ and 3s(len(s) =a and V(, s, n))}.
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THEOREM 21. (1) UNIV is NP-complete. (2) UNIV, is NP,-complete.

PrOOF. UNIV € NP. For, we can define a multi-tape nondeterministic
machine M which, given t(, a, n) as input, finds 7, @, and n, guesses s in
{0, 1}* such that len(s) = len(@), and then does the obvious simulation. The
point is that a is so large that the time of simulation is (except for bookkeeping)
equal to the length of &, which is bounded by the length of t(i, 4, n); hence,
UNIV ENP. Similarly, UNIV,; € NP,, since the time of simulation is roughly
given by a, which is roughly 2’, where [ is the length of a.

Assume that BENP; we want to show that B« UNIV. By the usual
encoding arguments, we can assume that BCZ*. Find 7/ and k such that T;
recognizes B in time I —> I*. Then n €B iff t(i, a, n) € UNIV, where a isa
string of (len(n))* tallies. Clearly the function n > t(i, @, n) isin II. So UNIV
is NP-complete.

Now assume that the set B of positive integersisin NP;. Find i and k
such that T, recognizes B, and T; accepts each n in B within n* steps. Then
n €B iff t(i, n*,n) EUNIV,. So UNIV, is NP,-complete. O

We are especially interested in part 2 of Theorem 21, which gives us a par-
ticular spectrum whose complement is a spectrum iff the complement of every spec-
trum is a spectrum. We record this in Theorem 22.

THEOREM 22. The class of spectra is closed under complement iff the
complement of the spectrum UNIV ; is a spectrum.

The proof is immediate. O

COROLLARY 23. Thereisan NP;-complete set in BIN. Thus, this is an
example of a spectrum A in BIN such that A is a spectrum iff the complement of
every spectrum is a spectrum,

PrROOF. Find k from Theorem 8 such that A = {n*: n €UNIV, }isin
BIN. We remark that a simple analysis shows that in this case, k can be taken to be
5. Then n EUNIV, iff n* €4, foreach n. Hence UNIV, , 4,andso 4 is
NP,-complete. O

8. A Savitch-like result. Savitch [20] showed that any set that can be
recognized nondeterministically in tape S can be recognized deterministically in tape
S2. If such a theorem were true for time bounds—for example, if there were a con-
stant k such that any set that can be recognized nondeterministically in time T
can be recognized deterministically in time T¥—then, of course, it would follow
that NP = P and NP, = P,. Itis quite surprising that this strong condition we
are discussing is essentially equivalent to the apparently weaker condition that NP = P.
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We will prove this in Theorem 24. Then we will generalize the result in various ways,
and conclude by an analogy with Post’s problem.

THEOREM 24. The following two statements are equivalent:

1. NP =P.

2. There exists a constant k such that, for every countable function T
with TQ) =21+ 1 for each 1 and for every language A which is recognized
by a nondeterministic one-tape Turing machine in time T, the language A is
recognized by a deterministic one-tape Turing machine in time T*,

PROOF, 2 = 1: This is immediate, since 7 == I* is countable for each k.

1=2: Itissufficient to show that 1= 2', where 2' is obtained from 2
by replacing both occurrences of “language A” by “set 4 CZ*.” This is be-
cause of simple interrelationships between machines M which recognize a lang-
uage A and machines M’ which recognize an encoding 4’ CZ* of A. The
details are straightforward and nonunique, and are left to the reader.

Let R={i #a #n: if 7,3, and 7 are the binary representations of
the positive integers 7, a, and n, then t(i, a, n) € UNIV}. Then R € NP, and
so by hypothesis (and by Theorem 2), there is a constant k' and a one-tape
deterministic machine M, which recognizes R in time 7 ~>I¥. We can as-
sume that k' > 2. Let k =2k’

Assume that A is recognized by a nondeterministic one-tape machine in
time T, where T is countable and 7{/) =7+ 1 for each L Then as we ob-
served earlier, there is a constant ¢, and a machine T, (with at most two op-
tions per move) which recognizes A in time ¢;T. Since T is countable, it is
easy to see that ¢, T is countable. Hence there is a constant ¢, and a deter-
ministic two-tape machine M, which, for each / and each input w of length / on the
first tape, prints at least ¢, 7(7) tallies on its second tape in at most ¢, T'(7) steps.

We will now describe a 3-tape nondeterministic machine M which recog-
nizes 4. Given input n of length ! on its first tape, M simulates M, to
print a string w of at least ¢, T(!) tallies on its second tape in at most ¢, T(l)
steps. Then M prints i, #w #7 on its third tape in len(y) + len(w) +7+ 2
steps. Now M simulates M, with i, #w #7 as input. This takes at most
(len(iy) +len(w) +17+ 2)"’ steps. Since T(I) =1 + 1, since clearly len(w) <
¢,T(), and since len(iy) + 2 is a constant, the total number of steps required
is bounded by ((c, + 2)T())* " for sufficiently large L Clearly, M recognizes
A. By Theorem 2, the set A is recognized by a one-tape deterministic machine
in time ((c, + 2)T)*. Hence, by Theorem 1, 4 is recognized by a one-tape
deterministic machine in time T*. O

By very similar proofs, we can demonstrate the following two results.
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THEOREM 25. The following two statements are equivalent:

1. NP, =P,.

2. There exists a constant k such that, for every countable function T
with T(l) = 2! for each 1 and for every language A which is recognized by a
nondeterministic one-tape Turing machine in time T, the language A is recog-
nized by a deterministic one-tape Turing machine in time T*.

THEOREM 26. The following two statements are equivalent.

1. NP (NP,) is closed under complement.

2. There exists a constant k such that, for every countable function T
with TQ)>1+ 1 (T()>2" for each 1 and for every language A which is
recognized by a nondeterministic one-tape Turing machine in time T, the lang-
uage 4 is recognized by a nondeterministic one-tape Turing machine in time T*,

We conclude this section by an analogy with Post’s problem. Definitions
and notation are from Rogers [19]. Post’s problem asks whether there is an
re. set C which is not Turing-equivalent to either @& or to the halting problem
set K

Let {WB:x €Z%} be an effective listing of all sets of natural numbers
which are r.e, in B. As Rogers notes, if 4 and B are r.e., then the assertion
that A is not Turing-reducible to B is equivalent to Vx(Z #* Wf), or equiva-
lently, Vxiy(y €4 iff y € WB). If (3 recursive f) (Vx)}(f(x)E4 iff
fex)e Wf ), then we say that A is constructively nonrecursive in B.

Many attempts to solve Post’s problem failed, because investigators tried to
find some r.e. set C such that C is constructively nonrecursive in & and such
that K is constructively nonrecursive in C. Rogers shows that if 4 and B
are r.e., and if A is constructively nonrecursive in B, then B is recursive. Hence,
any such attempt must fail.

In an analogous way, one might wonder whether it is possible that NP = P,
but that all attempts to prove this have failed because investigators have been
searching for some recursive function f which maps the index i of each non-
deterministic Turing machine into an index f(7) of a deterministic machine which
recognizes the same set, such that if the machine with index 7 operates in poly-
nomial time, then so does the machine with index f(/). We will now show that
if NP = P, then there is such a recursive function f, as long as we restrict our-
selves to machines that operate in a given polynomial time bound, such as mach-
ines that operate in time ! —> 1" for fixed r.

For each r,let T be a two-tape nondeterministic machine which, given
input n on its first tape, simulates the action of T, on n for at most
(len(n))” steps, by using its second tape as a clock. If in the simulation T, has
not accepted within (len (n))” steps, then T} halts and rejects.
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THEOREM 27. The following two statements are equivalent:

1. NP=P

2. There exists a constant k and a function f in 11 such that, for each
Godel number i and each positive integer r, the machine Ty, ., IS a one-tape
deterministic Turing machine which operates in time 1 —> I*", and which rec-
ognizes the same set as T;. Hence, if T, operates (nondeterministically) in
time 1 1", then T, ,, recognizes the same set as T,

PrOOF. This is clear from the proof of Theorem 24. O

9. A counterexample. We will show that there is a spectrum § in BIN
such that {n: 2" €8} is not a spectrum. By way of contrast, it is easy to see,
because of Theorem 6(2), that for each spectrum S and each polynomial p with
rational coefficients the set {n: p(n) €S} is a spectrum. The fact that there is
a spectrum S such that {n: 2" €S} is not a spectrum is extremely closely
related, both in content and method, to Bennett’s results on higher-order spectra
[2], although he did not specifically state or prove this result. If we analyze
Bennett’s proof, then we see that he essentially proved that there is a spectrum S
and a positive integer k such that {n: 2% €5} isnota spectrum.

We will also show that our techniques give a new proof of a result of Book
[3] that NP #NP,.

LEMMA 28, Let A be a spectrum. Then, for some constant k, the set
A s recognized by a one-tape deterministic Turing machine in tape 1 +> 2%,

PROOF. Assume first that 4 = {n: (n) k= 3Qo}, where Q is a binary
predicate symbol. Define a one-tape deterministic machine M which, given in-
put n, systematically prints all possible strings in {0, 1}* of length n2, and
tests them one by one to see if the binary relation R on n which the string
represents in the natural way has the property that {(n; R) 0. M accepts n
iff it finds some such string. If len(n) =1, then n? < 22!, Hence M can be
arranged to operate in tape ! —> 23% Similarly, for each spectrum S there is
a constant k such that A is recognizable in tape I —> 2¥%. O

LEMMA 29. Thereisaset A CZ* which is recognized by a one-tape
deterministic Turing machine in tape 1 —> 22, which is not a spectrum.

ProOOF. This follows from Theorem 5 and Lemma 28, since it is easy to
see that 7 > 212 is constructible and that lim inf,_,,,‘,2"’/2'2 =0 for each k.

LEMMA 30. Assume that A C Z* is recognized by a one-tape determin-
istic Turing machine in tape 1 —> 21, Then there is a set B in Ei such that
A= {n: 22" €B}.
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PROOF. Let M be a one-tape deterministic Turing machine that recognizes
A in tape I +—> 212, Let M, be a one-tape deterministic Turing machine which
operates as follows: Given input m, the machine M, tests to see if there is a
positive integer n such that m = 22", If not, then M, rejects. If so, then
M, simulates M on input n. Now M, can be designed to be a linear-bounded
automaton. This is because len(22") = 2" + 1, which is bigger than 22'~!
(where I = len(n)), which is bigger than 2/> for sufficiently large L So, by
Theorem 3, the set B which M, recognizes is in EZ. Clearly
A={n:22"€B}. DO

THEOREM 31. There is a spectrum S such that {n: 2" €S} is not a
spectrum.

PrROOF. Find 4 from Lemma 29 and B from Lemma 30 such that A4
is not a spectrum, B € E2, and A4 = {n: 22" € B}. By Theorem 7, we know
that B is a spectrum. Let C= {n: 2" €B}. Then 4 = {n: 2" € C}. Assume
that it is always true that whenever S is a spectrum, then {n: 2" €S} isa
spectrum. Then C is a spettrum (since B is), and so A4 is a spectrum (since
C is). But this is a contradiction. O

COROLLARY 32. There is a spectrum T in BIN such that {n: 2" € T}
is not a spectrum.

PROOF. Find S from Theorem 31 such that D = {n: 2" €S} is not a spectrum.
Find a positive integer k from Theorem 8 such that T= {n*: n €S} is in BIN. Let
E = {n: 2" € T} Then n €D iff kn € E, for each positive integer n; for, n €D iff
2" €S iff 2" € Tiff kn € E. If E were a spectrum, then E would be inNP,, and so
clearly D would be in NP, . Hence D would be a spectrum, a contradiction. O

We close this section with some further observations. Theorem 13 of §6
could just as well have been stated as follows:

(4) Assume ACZ*. If AENP then {n:2" €A} isin NP,.

We remark that we can use the technique of the proof of Lemma 30 to show
that (4) has a converse:

THEOREM 33. Assume B CZ*. Then BE NP, iff thereis A in NP
such that B = {n: 2" € A}.

Because of Theorem 6(2), we know that Theorem 31 can be restated as

follows:
There isa set A in NP, of positive integers

©) Such that {n:2" € A} isnotin NP,.
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Similarly, we can prove the following:

THEOREM 34. Thereisaset A in NP of positive integers such that
{n: 2" € A} is notin NP.

Finally, we observe that (4) and Theorem 34 combine to give us a theorem
of Book:

THEOREM 35 (Book [3]). NP & NP,.

PROOF. From Theorem 34, find a set 4 in NP of positive integers such
that B = {n: 2" € A} is not in NP. By (4), we know that B € NP,. So
NP # NP,. Of course, NP C NP,. O

Book’s proof depends on a fairly difficult result of Cook [8]. No simple
diagonalization argument seems capable of proving Theorem 35 directly, because
we are dealing with nondeterministic, rather than deterministic, time-complexity
classes. However, a simple diagonalization argument does show that P & P,.

10. A real-time recognizable NP-complete set. We conclude by exhibiting
an NP-complete set REAL which is recognized by a nondeterministic two-tape
machine in real time. The existence of such a set is not new: Hunt [14] shows
the existence of an NP-complete set which is recognizable nondeterministically in
linear time, and Book and Greibach [5] prove that every set recognizable non-
deterministically in linear time is recognizable by a nondeterministic two-tape
Turing machine in real time. However, our set is produced directly, and is fairly
simple. The existence of such a set is a best-possible result, since Rabin and Scott
[17] show that every set which is recognized by a one-tape nondeterministic
Turing machine in real time is recognized by a one-tape deterministic Turing
machine in real time.

Let REAL = {g, #a, #*** #a,,:r€Z%;4,€ {0, 1, 2}* for each i;
len{a;) =len(e)) for each i, j; and there exists b in {0, 1}* such that
len(d) = len(a;) for each i, and such that for each odd i there exists k such
that the kth member of the string b and the kth member of the string 4,
are the same}.

THEOREM 36. REAL is an NP-complete set which is recognized by a two-
tape nondeterministic Turing machine in real time,

PROOF. Let M be a two-tape nondeterministic Turing machine which
works as follows: As a, is being read on the first, or input tape, M nondeter-
ministically prints some b in {0, 1}* on the second tape, such that len(p) =
len(a,); meanwhile, M checks to make sure that, for some Kk, the kth digit of b
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is the same as the kth digit of a, . When M reads # on the input tape and starts read-
ing a,, the second tape head runs back over b on the second tape and uses the length
of b to measure the length of a,. If len(a,) # len(b), then M halts and rejects. If
len(a,) = len(d), then the tape heads are in a position to compare b and a5 digit by
digit. M continues in the obvious way. Clearly, M recognizes REAL in real time.

SAT « REAL: Let 8 be a conjunctive normal form expression, with
clauses Cy, * *+ , C,, and propositional letters 4,, *** , 4,,. (If 6 = /X\, W, By,
then each W/; By is a clause) We can assume that no clause C; contains’
both 4, and ~ A4, forany K, or else that clause can be eliminated. Let B,
be the expression a, #a, #+** #a,,, where each a; is of length n, where
if i is even, then a; is a string of tallies, and where if i = 2s—1 is odd, then
for each k (1 <k < n), the kth digit of a; is as follows:

0, if ~ A4, appears in the sth clause,
1, if A, appearsin the sth clause,
2, otherwise.

For any reasonable encoding e, there exists a constant ¢ such that if the
encoding e(9) of 0 is of length [, then I >c * max(r, n). Now B, has
length 2rn + 2r — 1, which is dominated by 2I%/c + 2ljc—1. Soif f is the
function which (in general) maps e(8) onto B, (and which maps strings not of
the form e(9) onto a fixed string not in REAL), then it is easy to see that
f € (we are assuming that {e(f): & is a formula in conjunctive normal form}
is in P, which is also true for any reasonable encoding e). Most importantly,
it is clear that @ is satisfiable iff §, € REAL. Hence, SAT « REAL. 0O
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On k-Tape Versus (k — 1)-Tape Real Time Computation

S. O. Aanderaa

Abstract. We shall construct for each natural number &k a language
L, which can be recognized in real time by a k-tape Turing machine, but
which cannot be recognized in real time by any (k — 1)-tape Turing machine.
In fact, it turns out that the language L, above can be recognized in real time
by a k-pushdown-store machine. The proof is based on the notion of overlap.

Introduction. Although a Turing machine with one tape can compute all
functions which can be computed by a Turing machine with several tapes, it
seems reasonable to expect that adding tapes to a multi-tape Turing machine will
speed up the computation in some cases. Adding new tapes beyond two tapes,
however, does not speed up the computation very much, as shown by Hennie and
Stearns. They proved in a paper [9] published in 1966 that if a given function
requires computation time T for a k-tape realization, then it requires at most
computation time T log T for a two-tape realization. The first negative result
was obtained as early as 1963 by Rabin [11]. He proved that there exists a set
T, which is real time definable by a two-tape Turing machine, but not by any
one-tape Turing machine.

We shall improve Rabin’s result and show that, for any k = 2, there exists
a language L, which can be recognized in real time by a k-tape Turing machine
but not by a (k — 1)-tape Turing machine. Although we cannot prove the con-
verse of Hennie and Stearns’ result, our method of proof tends to support the
hypothesis that Hennie and Stearns’ result cannot be improved. Our proof is
longer and more complicated than Rabin’s, and uses the notion of overlap. The
notion of overlap appeared originally in Cook [2] and in Cook and Aanderaa [3].
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The method of calculating overlap has been improved by Fischer, Meyer and
Paterson [10], by introducing the notion of average overlap, which we shall use
in this paper.

We shall now give an informal discussion of K-tape real time Turing machines.
A k-tape real time Turing machine has k working tapes. It may also have an
input tape, which is a one-way read-only tape (or it may have instead an input
terminal), and it may also have an output tape which is a one-way write-only tape
(or it may have instead an output terminal). A k-tape Turing machine with out-
put tape and no input tape can be used to generate a sequence (see [1] and [4]).
Off-line Turing machines in the sense of Hennie are supposed to have the input
written on one of the working tapes, and such machines do not have an input
tape (see Hennie [8]).

We shall here in this paper consider only Turing machines which do have
input tapes. With respect to output tapes we have a choice. We have decided to
treat our K-tape real time Turing machines as acceptors, so that a Turing machine
accepts or rejects an input depending on its final state when all the input is read.
We could as well have worked with functions which map initial segments of the
input tape into the output alphabet {0, 1}, so that a Turing machine writes 1
on the output tape if the initial segment of the input is accepted, and 0 other-
wise. See for instance [3, pp. 296—297].

1. Real time Turing machines. We shall here give a formal definition of a
k-tape real time Turing machine. Our definition is a modification of Rosenberg’s
definition [12, pp. 646—647]. .

For finite sets A let #(4) denote the cardinality of 4. Let 4 x B
denote the cross-product of A and B, ie., A xB= {(a, b)a€EA and b E
B). The sets [4]%,i=1,2, 3, are defined recursively by

[M]'=4, [A1"*' =4 x [4]"

Let T be a finite alphabet. Then TI'* is the set of words over I'. T™ is the
set of words over T' of length 7 Let w be a word. Then |w| = length of w.

DEFINITION. A real time k-tape on line Turing machine (abbreviated k-
RTTM) isan 8-tuple (K, T, Z, 0, A, g, b, F) where:

1. K is a nonempty finite set of states.
I" is an alphabet (of input symbols).
T is an alphabet (of working symbols).
o is the state-transition function which maps K x ' x [Z]¥ into K.
A s the action function which maps K x I' x [Z]¥ into [{-1,0, 1}]*

bk we

.

x [Z]1%.
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6. qq (the initial state) is a member of K.
7. b (the blank symbol) is a member of .
An instantaneous description (i.d.) may be denoted by the (k + 2)-tuple

® @ B xymyy, - -+, % myy)

where €K, BET*, x,EZ*Z, y,€EZ*T and m&Z. (S*T is the set of
nonempty words over Z.) It turns out to be more convenient to represent an
i.d. by the expression

@) @ At xy, X000, X

where ¢ €K; and a=(a;,a,, - ,a,) and each @; is a mapping of Z =
{--,-1,0,1,2,---} into T such that {x|x €Z & ay(x) # b} is a finite
set, A €T*, and 0<t<|4|. Moreover x; €Z, and x; in (2) means that
square number x; on the tape T; is scanned. To each i.d. represented in the
form (2), there corresponds a display (q, a, s, S, * -, §;) where q €K, 5; €
2Z,a€T and s;=ayx;) and a is the symbol in position ¢+ 1 of the string
A (the display is not defined if ¢ exceeds the length of A). Let the display of
(g A, t,0,x,,"+,x,) be d={q,a,5, ", s, let

Md)=(€1:€z:'":ek’s'ps'z""'s'k):
and let
a={,,a, " ",0) and o =@\, a,, -, a);
then
@A tax, xR A, X, xp
if the following conditions are satisfied:
1. =0(d) and A =4, =t+1,t<|Al
2. xj=x;+¢ forall j=1,2,--,k
3. Foreach j=1,2, -+, k, we have that

a(x) = ax), forall x €Z - {x;} and ax) = .

We define F* to be the transitive closure of F, ie. D F* D', if there
exists i.d.’s Dy, Dy, ", D,, suchthat Dy =D and D, =D' and D;+
Dj+l forall j=0,1,2,---,m—1.

Anid. D=(q, A, t, &, x;, x5, * -, X3} where a=(a,,a,, " ,a
is an initial i.d. with input W if the following conditions are satisfied:

l.g=q5. A=W, t=0.

2. af)=b forall i=1,2,-+-,k andall jEZ

3. %y =x,="""=x,=0.
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A computation of the word W ET* is a sequence of i.d’s Dy, Dy, ***, Dy
where D, is an initial i.d. with input W, and N = |W|, and D, =D, , for
al i=0,1,2,-+-,N—1. D; (1<i<N) is the i.d. just after the machine
has acted on the jth input symbol.

A wortk WET™* isaccepted by M= (K, T, Z, 0, )\ q,, b, F) if there
exists a computation Dy, D,, - -+, D)y of W such that Dy =g, W, N ¢ x,,
-+ ,x;) and q € F. The set of words accepted by M is denoted by T(M).
M is said to recognize the language L, if L = T(M).

We shall say that a k-tape real time Turing machine is a k-pushdown tape
machine if each of the heads on the working tapes writes b (the blank symbol)
when the head moves to the left, i.e., for each 7 and each display d € K x
I x [Z]" we have that if Nd)=(e;, €, ", €, ", €, 81, 85, ", 8,
*++,8) andif ¢ =-1, then 5,=5."

The result. The result of the paper may be stated as follows:

THEOREM 1. Let k be a positive integer. Then there exists a language
L, which can be recognized in real time by a k-pushdown-tape machine but
which cannot be recognized by a (k — 1)-tape real time Turing machine.

Let C, and Cj denote the class of languages which can be recognized
by a k-tape real time Turing machine and X-pushdown-tape real time machine,
respectively. Then we may restate the theorem as follows.

THEOREM I'. Cp—Cp_, # & forall k=1,2,+-.
As corollaries we obtain

CoroLLARY 1. C,_, #C,.

COROLLARY 2. C_, # Cp.

We would also like to add the following conjecture.
COoNIECTURE. Cp — Cyp_, # 2.

2. The notion of overlap. Let D={(q, W, N, &, x,, x,,* **, x;), and let
(g, a, 8,8, 8 be the display of D. The extended display of D is the
(2k + 3)-tuple (g, a, 8., 85, * "+, S N, Xy, Xg =+ 0, X

Let WET*, let N=|W|, andlet Dy, D,,- -+, Dy be a computation
of W. Then an input interval is a sequence of consecutive irtegers chosen from

1 This is not the usual definition of a pushdown machine. For example, we can
print only one symbol on the store on a given move. But it is not hard to see that there is
no loss in generality in using our definition.
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the set {0,1,2,---,N} If I={g g+ 1,---, h} isan input interval then
the time interval I"(W) (which we also write as /") is the sequence
{Dg, Dgy 1y -+, Dy} The display sequence I%(W) of I is the sequence
{d,.dyyy, ", dy} where d, is the display for D, forall i=g g+1,--,
h. The extended display sequence I°®(W) of I is the sequence {eg €gr1s
-+, e,} where e; isthe extended display of D; forall i=g g+1,--, h
Let W, €T* andlet W, €T™* andlet |W,|=|W,| =N, andlet /
be an input interval. Then we shall say that the computation of W, and W,
are I-equivalent if I*9(W,) = I?°(W,).
Let Dy, D,, D,,- - -, Dy be a computation of W and let

Dy =g, W, 0,@, xq1, X932, " * *» Xops

Dy =@M, W, 1,6, x|, x5, . X140
D;=qD, W,j, D, x;, xj3, . xp,

Dy =q™, W, N, ™, xy ), xpyg, - - <y Xy

Then the ith head movement function n,w during the computation of a word
W is defined as: 0}’ + 1) = x;; = position of head just before reading the

(7 + 1)st symbol. We shall use the expression {7, /] to denote the interval
{i,i+1,---,j} Let I=[i j]. Then, for each choice of the word 4 € I'V,
we assign a subword A() of A to the interval J; namely the subword of A4
consisting of symbols in position 4, i+ 1,- -, ]

Let the k& working tapes be denoted by T, T, - -, T). Then we use
the pair (i, s) to denote square number s on tape T,. We shall use the expres-
sion S4(/) to denote the locations scanned by some head during the time interval
I'(4). Two input intervals 7 =g, k] and J =g, k'] are adjacent if g =
h+1. Let I and J be adjacent input intervals. Then the overlap caused by
the input 4 during input intervals 7 and J is

WAW 1) = #5A D 0 SAQ)).
Let also

QA J) =S4 N s4Q).
(Here #(S) denotes the cardinality of the set S.)

Let I ={[g, h]. Then the length |/l of I is h + 1 —g The internal
overlap caused by the input A4 during interval I is

OJA(I)= max ("JA([& i], [i + 1, h])

g<i<h
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and the internal overlap coefficient is
#O =00 +1-8)=AONM.

Let SC IV, and let = 1/#(S). Then the average internal overlap caused by
S during interval I is

SO =7 X AD
AES

and the average internal overlap coefficient caused by S during interval 7 is
Bh=7 T #0=5ON

A€ES
REMARK. The notion of overlap wA(l, J) was first defined and used by
Cook and Aanderaa [2] and [3]. The idea of considering average overlap is due
to Fischer, et al. [10]. The notion of internal overlap is a new concept.
We shall in §4 prove the following lemma.

LEMMA 1 (THE OVERLAP LEMMA). Let M be a (k — 1)-tape real time
Turing machine with input alphabet T. Let N, and N be positive integers and
let N>100N, Let SC TWV. Then there exists an input interval I = g, h]
such that |I\/N, isan integer and 0 <g < h < N and such that

£5() < (4(k — 1) log log (V/Ny))/log (V/N,).

3. Outline of the proof. In this section, we shall try to motivate and out-
line the proof of the main result. We need to define a “retrieval language” L,
(see §6) over the alphabet '=T, U- -+ UT, where T;= {a, b, b}}. With
k tapes, one work tape is devoted to each TI';. Intuitively, with fewer than k
tapes, one tape has to store and retrieve symbols from both T'; and I, @i #)).

It suffices to define a set S CT™* for which the assumption that a real
time (k — 1)-tape machine works properly on S leads to a contradiction. S is
defined (see §7) so that the density of symbols from T is greater than that
from T; (i<j). So intuitively, if the overworked tape “concentrates” on T},
it will not have enough time to run back for the I'; symbols; if it concentrates
on I it will not have enough space to remember all the I'; symbols. The
difficulty lies in trying to formalize this intuition since the kK~ 1 tapes may be
encoding information in a very clever manner.

In addition to the concept of overlap, we will need the following notions
(see §5).

(i) Two i.d.’s are z-equivalent (i.e., equivalent up to a displacement of z
squares of any tape head).
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(ii) Two adjacent intervals [g, #] and [k + 1,1] are “critical” for an
input A4 if the overlap remains small in the interval [g, I] and if a tape head at
time h has moved far from where it was at time g, then it will also move
relatively far (and in the same direction) when progressing from time h to time L

s V\/\/\‘M
S
k=

]
2 , . .
s ; ;

It will follow that if two critical computations are z-equivalent at A, they will
be more than z-equivalent at 1

The major steps of the proof are as follows (see §8):

(1) Find an interval 7 on which the average overlap with respect to S is
small. Let S, = {4 €S| overlap for 4 on I sufficiently exceeds average
overlap} and let S’ =S —S,.

(2) Subdivide I into k subintervals [g, + 1,g,_,]1, [gx_, + 1,8_2],
-+, I8, +1,8,]. Define (parameters for) criticalness so that every 4 €S’ is
critical on some [g; + 1,g;_,]1lg;; + 1,8,]. S; is the set of all such A.

This establishes a (not disjoint) partition of 8" = U, ¢;<xSi-

(3) Let EA = {A4; €514, is the same as 4 except for possible difference
between symbols @; and b; on the subinterval [g; + 1,g;,_,]}. Argue that
there cannot be too many distinct Ai which are also critical on [g, + 1,5;_,],
[g;—, + 1,8,]. Intuitively, the i.d. equivalence at g, _, must be sufficiently
limited else the equivalence at g, will be so large as to cause a mistake in dis-
tinguishing between A, WE L, and A4,W &L, for some appropriate W.

(4) Finally, argue that #E! N'S;) small implies that #S, is small enough
to lead to the contradiction that Z} #, + #5, < #S.

4. Proof of Lemma 1. This section is devoted to the proof of Lemma 1.
But we first have to introduce some new definitions, and solve and prove inter-
mediate Lemmas 2—8. Let r be an integer such that r>~1N, <N <
(r + 1)>'N,, and let m =2(r— 1) and let N, =P"N,. Note that since N >
100N,, we have that r> 3. Given an input interval I = [g, h] let i4(l) (the
dividing point) be the least integer i, (g < i, <h) such that w?() = ?([g, 7,],
lig + 1, h]), and also let Q4(1) = S4([g, i4(D]) N SA([A() + 1, h]). More-
over let A= {(, DIt €A and (IsKG, 9 € QA() and ¢ is the first time?

2 Because we are only considering real time machines, it would be sufficient to say
t €1 rather than t € I"A.
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the square s on tape T is scanned in the time interval ([i4(Z) + 1, h])"4)).
Foreach i=0,1,2,- -, m we divide the interval [1,N,] into rm-t

successive intervals 1, ;,, - ,Ii _; of length Ny’ each. Thus I =

INo(7 — W + 1, Nojr]; let if = f'(l,,)

=04y, o= =0,
E={ll<j<rm-Y,

Ef = (I, €5; and (VAXVS) (s €5, and m>h>i— (I, €1},

El-=x-2, == U 5, == U =
1<i<m 1<i<m

The following lemma is easy to prove.
LEMMA 2. wjfj = #(f).

PROOF. We shall prove that #Q4 (D)) = #r4(l)) which obviously implies
Lemma 2. Let f be the following mapping of Q4(J) into 74(): A, &) =
(i, ) where t €I™4 and ¢ is the first time the square s on tape T, is scanned
in the time interval ([i4() + 1, N])™4.

Then f is one-one since a head cannot scan more than one square at each
time. Moreover f is also a mapping of Q4(/) onto 74(f) by the definition of

A(I) This implies #HQA(D) = #HrA (). Hence, wfj = w(ly)=HQAU) =
AU i) = 'rii, which proves Lemma 2.

The subset =4 of = was defined with the intent to satisfy the following

lemma:

LEMMA 3. Suppose I; €=4 and I,, €E4, and suppose I #1,,
Then 14N 1h, = 2.

PROOF. Let I;€=4 and I,, €E* and suppose I,; #1,,. Suppose
ﬁrst that IyN1I,,=4. Then obviously 'r;; N 74, = 2. Suppose next that
Iy v * 2. Then I;C1,, or I, CI,, Consider the case I;; C1,,. Then
1 < i < u < m. Moreover by ‘definition of A , we have that i4(l,,) €1,;. Let

=[g h] andlet i4(l,,) =1 Then either I, C [z /] or 1,,g [1+1,n],
since i4(l,,) € I;. Suppose first I;; C [g,7]. Then G, 1) er,, implies te
[g 174, and G, O €77, implies tG [7 +1,h]™4. Hence T!’i Nra, =g
in this case.

Finally suppose Ij; C [l + 1, h], and suppose (i, D € 7. Then there
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exists a square s on tape T; such that ¢, € SA(I:;') and t is the first time
s is scanned in the interval [ig + 1, N]. But then ¢ is not the first time s is
scanned during the interval [l + 1, A] since (i, € SA(I”). Hence (i, 0 ér7,,.
This proves that 7, N 7,,=@ if [;C1,,. Similadly, 7,0 71,,=@ if
I,, € I;. This shows that 7, N7, =& inall cases, and Lemma 3 is proved.
The following lemma corresponds to Lemma 11.4, p. 307 in [3]:
LEMMA 4. N, > (k- 1)~ l(zl‘EE 4 (D).

PROOF. Let 74 = (). Then

Iez4

ME-13>#rt)= T #r*() (by Lemma3)

(=3

= Y ()  (byLemma2).

IezA
Hence Lemma 4 follows.
LEMMA 5. #E4) K HE)/ - 1) =" (- 1).

PROOF. Recall that =f~ =5, -5 = {[,l[; €=, and there exist u
and v such that I, €=, and m>u>i and i“(l,,) €I;}. Note that
#E)=r""" and #E,)=r""". The relation i4(l,,) €I holds for at most
one /€=, when m 2 u >i, and therefore

#(Ei_)< Z #(Eu)= z 'Jn—u

i<u<m i<u<m
<7"r - 1) = #E)Ie - 1).
This proves Lemma 5.
LEMMA 6. mN,[2(r— 1) > (k- 1)-121 . 4 D).
PROOF. We have that if /€ Ef~ then |I| = Nyr'. Hence

AW < Ik - 1)/2 = NgP(k — 1)/2

>

o)

]
™M=

S AD <Y HE Wt - D2

IEEL— =1

m m—i Nori(k—1) _ (k= LynNgr™ (k= DmN,
r—1 2 ST 20— 20-1)

A
™

~

=1
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We have proved (k= 1ymN, /2~ 1) 22, __,_ AW and Lemma 6 is proved.
LEMMA 7. N, 2 ¥%(k - 1)“Z,ezw“(1).

PROOF.

2(k Z:“’A(’)'z(k D 2 “’A(’)+2(k+1),z ()

€z4—
SUN, +mN,/4(r—1) (by Lemmas 4 and 6)

=N, + %N, =N, (since m = 2(r — 1)).

This proves Lemma 7.
Let S CTIYW; then we have

LEMMA 8. N, > %(k — 1)71Z,c25().
PrROOF. By Lemma 7, we have

AGS Ie=

‘_ T 5 A

- 2(k 1) IEE A€S

- 5T 5, KO0,

Hence we have N; > %(k — 1)~ 'Z,czwS(l), which proves Lemma 8.

We shall now return to the proof of Lemma 1. Recall that N, =
rP=DNy KN < (r + 1)>'N, and that N > 100N, and hence r > 3. Sup-
pose that Lemma 1 were false. Then

4(k — 1) log log (V/Ng) -
ES(I) > log (N/No) fol’ all IEeE.

Hence, we have that

Ig;w(l) = 1),23(’)

1 4(k — 1) log log (N/No) - Il
>We-D & o ()

_ Nym 4k - 1) log log (V/Ng)
T2k-1) log (N/N,)
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= 2(N,m log log (N/N,)/log (N/Ny))

> N,4(r — 1) log log 2~ D/log (r + 1)*"

=N, 4r—1)1og (2(r— 1) log r)/2r log (r + 1)

=N,Q2(r — 1)/r)log (2( — 1) log r)))/ log (r + 1) >N,
(recall 7> 3).

Hence, we have proved that N, < %(k — 1)"Z,eEws(1), which contradicts
Lemma 8. This proves Lemma 1.

5. The notion of z-equivalence. Let z be a positive integer. We shall say
that two id.’s

D=(q’A’ t’ayxpxzy"' ’xk) and D'=(q"A" t’.a'.x;,x'z."'.x;‘)

are z-equivalent if the following conditions are satisfied.

1. The extended display of D and D’ is equal.

2. Suppose @ =(a,,@,, - ,e) and a ={a},a,, -, ap). Then we
have that for all integers x if x;—z <x <x;+2z then ayx) = afx),/ =
1,2, ,k

Let A€TV and let z,u, v 8 h, 1 be positive integers such that 0 <
gSh<I<N. We shall say that the computation of 4 is {z, u, v, g, A, D-
critial if the following conditions are satisfied.3

1. (g ) <.

2. If WG+ D)-ng'@I>z then ¢+ D) -7+ DI>u G=
1,2, ¢+, k).

LEMMA 9. Let z,u, v, & h, I, N be positive integers and let A, A', A,,
X, B,C, Y bewords over T" satisfying the following conditions:

1. v<z and v<u

2. 0<g<h<I<N.

3. A=A,XBC and A' = A,YBC.

4. g=|A4,1+1,h=|4,X] = |4,Y],

1=14,XB| = |A,YB|, N = |4'| = |Al

5. The computation of A and A' are both (z, u, v, g, h, I>critical.

6. Let Dy, Dy, - -+, Dy be the computation of A, and let D), D,

DN be the computation of A'. Then D, and D,, are (z + v)yequivalent.

Then D, and Dj are (z + u + vyequivalent.

3 Note that in case I=h, condition 2 will be equivalent to Inf(h +1) - nf(x)l <z
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PrOOF. Note that D,_, =D, _,. Hence 7f'(g) = nA (g) foral j=
1,2, -, k. Moreover n“(h+1) n“(h+1) forall j=1,2,""",k,
since Dh and Dh are (z + v)-equivalent, which by definition nnphes
that the extended displays of D, and D), are equal. We shall first consider
the case that 7/'(h + 1) > 7' (g).

Then the squares scanned on tape 7T; during time interval [g, h is
contained in the interval [n;4 ®-v n;‘(h + 1) + v] since if not then the over-
lap w?[g, 1] will be larger than v violating the fact that the computation of
A is (z,u, v, g h, D-critical. Let

D, = (q(h), A, b o®), Jcgh)’ Jcgh)’ cen, x;{h))’

] T,A

D, = ©®, A", b, p®, ygh), ygh), e, yg’)).

Hence

of"(x) = BMGx) if x € e - v, G + 1) + ]

Suppose first that InA(h +1)- n“(g)l <z Then since D, and Dh are

(z + v)-equivalent, a(")(x) B,(")(x) if x € [nf'(g) —v, nf'(r + 1) + v]. Hence,
in this case we have that a(")(x) B(")(x) for all x € Z. Moreover ¢ =

p™ and x(® =y (@=1,2,--+, k). Then of? =g forall t>h because
the same display sequences are generated. To state this claim more precisely,

we shall introduce a definition. Consider the sequence D}, ;, D42, Dy-
Let €41, €442s" "> €y and €., €42, ", €y be the corresponding
extended display sequences. Let (e, e),) be the first pair such that (e, # €),)
(e €441 =€hp1r€hsa =Cnpas" " "> €u_q =e€,_,). Since the input is the
same after 4,X and A4,Y have been processed, we must have that e, is of
the form (q, a, 5, 55, ", S U, X}, X5, ", X;) and e, is of the form
q,d, s, 85, ", Spu, ¥, Y2, ¥, where g=q,a=d, x;=y,
i=12"--,k).

Hence, we must have s;#s; for some i If s;#s; we shall say that
tape T; isa d-equivalent stopper in this computation; otherwise T; is a non-
stopper. Going back to the case above we verify immediately that tape T; can-
not be a d-equivalent stopper if In;4 (h + 1) - ne)l <z. Suppose next that
ni + 1) > 7'Gg) and Inf'(a + 1) = nf @) >z Then Wi(+ 1)~
n“(h + 1)| > u, since the computation of 4 is (z, 4, v, g, h D-critical. More-
over, we have that n'(I + 1) > nf'(h + 1) since otherwise w([g, IT) > .

We also have that the squares scanned during the time interval [g, #]™4 and
[g ©]™4  are contained in the tape interval [nf'(g) — v, nf'(h + 1) +v].
Hence af")(x) = g{")(x) forall x > n“(h+ 1)—z —v since D, and
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D,, are (z + v)-equivalent. Hence, the tape T; cannot be a d-equivalent stop-
per in the intervals [+ 1,1)™4 and [A + 1, I]"'A The case n“(h +1)<
n“(g) may be dealt with similarly. We have therefore shown that the computa-
tionof A and A’ are [k + 1, []-equivalent. Hence, o) = B if

'k + 1) - 7jg)l <z and oP(x) = B(x) for x € [n,(l +1)-z-u-v,
n,(l+ D+z+u+v] if InA(h + 1) = n,g)| >2. Hence D, and D; are

(z + u + v)-equivalent. This proves Lemma 9.

6. The language L,. We shall now define the language L., which can be
recognized in real time by a k-pushdown-tape machine but which cannot be rec-
ognized in real time by a (k — 1)-tape Turing machine. We shall define L, =
T(M,) where M, is defined as follows:

Mk = <{qo’ ql}’ Pk’ {a’ b}’ ak’ )\k’ b’ {qo})
where
I} = {a)1 <i<Kk}U {1 <i<Kk},

Ty = {bjl1 <i <k},
r,=Turf.

M, will interpret any of the inputs a, b, and b; as some action on tape
T, M, will accept the tape depending on the square scanned by the head on
tape T;, and it will write on tape T; and move the head on tape T; according
to the following rules.

Input a; means: Read the ith working tape. If a is scanned on tape
T; go into state q,; if b is scanned on tape T; go into state g,. Write a
on tape T; and move head number i one square to the right.

b; means: Read the ith working tape. If a is scanned on tape T; go
into state q,; if b is scanned on tape T; go into state g,. Write b on tape
T; and move head number i one square to the right.

b; means: Read the ith working tape. If a is scanned on tape T; go
into state q,; if b is scanned on tape T; go into state g,. Write b on tape
T; and move head number i one square to the left.

A more formal definition of M, may be described as follows.

Foreach i€ {1,2,---,k} let c€ {a, ‘b,, b;}, let 5 € {a, b} (G =
1,2,---,k) andlet q € {qq, q,}. Let €, =€, =---=¢€, =0. Then

0(g, ¢, 8 "y Si_1s@ Spppp 7 5K =4

0(<q, C 81y " s Si_ s b, Si41s° " " sk))=q1’
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=€, €0 €1y~ L €y 1s " € 81, S B Sy gttt S

We may interpret the action of M, as follows: As long as symbols I‘;
are entering, store them on the tape as prescribed. When the symbols in Iy
appear, move back and retrieve the stored symbols, while entering accepting or
nonaccepting states depending on the stored information.

As can easily be seen by inspection M, is a k-pushdown tape machine in
our sense, since M, always writes b (= blank) when moving left.

REMARKS ON THE CONJECTURE. To prove the conjecture C, — Cyj_y #
0, we would propose to use a lahguage obtained by adding {ajli=1,2,-- -, k}
to the input alphabet. a; would then mean the same action as a; except that
we shall move the head on tape T; to the left instead of to the right.

7. The class S of input words. Recall
I = {g1 <i<Kk}U {bl1 i<k},

Ty = {bjll <i <k},
I, =T, Ur;.

We shall think of k as fixed throughout the rest of the paper. Hence, we
shall write ', '~ and It instead of 'y, Ty and T}, respectively. Let 4 €
(T*)*. Then (4), is the word obtained from A by deleting every a; and b
in A if j#i (Example. (aja,b a3b,), =a,b,) B isasubword of A if
there exist words 4, and A4, (possibly empty) such that 4,B4A, = A. We
shall now define a class of input words S C (T*)V (for some positive integer N),
such that the frequencies of the letters 4, and b, is pi'1 times the frequencies
of the letters a; and b, (i= 2,3, -, k), where p is a positive integer > 2.
We shall do so by first defining a master word Wy € {g;| 1 i < k}N , and then
defining S to be the class of all words obtained from W, by replacing some
occurrences of a; by b, (i=1,2,-+*, k). Given p>2, let { =p~! and
let O=1+p+p>+---+pF =0 -1)p-1x0=1+¢++---
+eF 1 =1 -¢%)(1-¢)=0p'*. Thenlet W, be a word such that
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W, € {g] 1<i<k}® and I(W,)l=p%" (i=1,2,3,---, k). (By the def-
inition of © we can easily verify that such a word exists.) Let W, be the seg-
ment of WY of length N. Hence, {IWy| =N and Wy =W, W, - W,W,,
where W is an initial segment of W,. We now define S as follows: S =
{WIW is obtained from W, by replacing some occurrences of a; by b, (i =
1,2, -, k)}. The following lemmas follow immediately from the definition.

LemMA 10. #3S)=2V.

PROOF. Let WE S. Then |WI=N andlet Wy =c,c, ‘- cy and
W=cic; - cy, where ¢;,¢;€T* (=1,2,---, N). Then, for each ¢
G=1,2,--+,N), we have that ¢; =a; for some i Hence, we have for c} a

choice of two letters 4; and b;. Hence, the total number of such WE S is
2V. This proves Lemma 10.

LEMMA 11. Let AE S and let B be a subword of A such that |Bl/©
is an integer. Then we have, for every i=1,2,3," ', k,

IB),l = 8~ 'p!~¥BI.

PROOF. By the construction of S, it is sufficient to prove that Lemma
11 holds if 4 = W,. Hence, assume 4 = W,. Then there exist words B,
and B, such that W, =B B, and B=B,W,W, --- W,B,, since |B/IW,|
is an integer. But, by construction, (W), = ¥t and W, l=0= 6p%-1.
Hence (W) =0~ 'p'~!IW,|. Hence I(B)] =06""p'~|BIl. This proves Lemma
11.

8. The completion of the proof. From now on we shall assume that we
have a (k — 1)-tape real time Turing machine M = (K, T, Z, 0, A, ¢, b, F) where
I' =T, which recognizes L. We shall prove that this leads to a contradiction.
Let*

®) p = 8k(k — 1)(log,(#2) + 1), ¢ = 1/p,

@ O=1+p+p*+-+p"7 = ("~ - D).
&) O=1+¢+32+- -+ =a-tMa-H=6p' %
(Then © =0p*~1)

©) Ny = 32k(k — 1)*62p**([log, #(K)] + 1)

n n
4 Assume without loss of generality that #X =2 1 and #K =12 2 for some
n, and n,.
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(Then N,/Ok is an integer.) Choose N such that
@ (4(k - 1) log log (V/N,))log (N/Np) < 4~ 1p=*=2k"

(choosing N = qN,,, where q =32(k - 1)kp**? will suffice). Choose the
input interval /= [g + 1,1] such that |[I/N, is anintegerand 0 <g<h <N
and such that £5() < (4(k — 1)loglog (N/N,))/log (N/N,). Then, by (7),

8) S <4 'p R

Since || is divisible by N, which is again divisible by x© = kgp*~!,
we can write / as [g+ 1,g + hk], where h again is divisible by ©. Then
|7l = hk. Let

(9) gi=g+h(k_i) (i=0’1’2""’k):

(10) L=lg+1,8.,] @(=12-"",k).

Note that g, =g, and that g, =g+ hk =1, and I is the same as
[gx + 1,8,]. Moreover, since h = |;| we have that |;l/© is an integer. Let

a1 v=p"%72h (note that since kh/N, is an integer, v is an integer),
(12) z=ho"'p"% (=1,2,3,--,K),

13) 4=z_,- (=23,--",k),

(14) 4, =ho"' -2,

By (8) we have that
(15) WS <v/4
since

WS <4 1p K2~ = 4~ 1 p~ k-2~ 1gp = v/4.

Let
So={AIAE€ S and A()>v},
$=8S-S,={AIA€S and A<},
S;= {A|A€ S’ and the computation of 4 is (z;, u, v, g + 1,8;_,, 8 critical};
that is, since A€ S’ implies w?(I) <v which means w([g; + 1, 8,]) <v,

we have S;= {AIA€ S and if Infg, + 1)~ nf'(g;_, + 1)I >z, then
i@ + 1) —nf gy + DI>u}.
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LEMMA 12. #(S,) < #S)/4 =2V~2,

The proof follows immediately from (15) and the definition of S,, and
Lemma 10.

LEMMA 13. S=8S,US, U ---US,.

PROOF. Suppose A€ S but A€(SyUS, U---US,). Then A€
S, and wA(@)<v. Foreach i=1,2,3,:**, k let j(i) be the least j such
that Infg,_, + 1) = nfg; + DI >z, and Inf'(g + 1) —nf'(g,_, + DI <u,
(Such a j exists since 4 €S;.) We shall prove that j(i,) #j@@,) if i, #1i,.
Suppose {<r and j=j{@) =j(r). Then g, <g,_, <g <g_, <go. Then
we have that

iy + D -G, + DI<u,=z,_, - .
We also have thatif g,_, + 1<Kx<y<g, +1 then
I 0) - nf @) <u, + w=z,_, <z,

for if not then w*(?) >v. Hence, Inf'(g;_, + 1) — n(g; + 1)] <z, which
contradicts the fact that j = j(7). Hence, we have proved that if { <r then

j(@ #j(r), which implies that j(i,) #j(i,) if i, #i,. Consider the set P=
(1), j(2),- - -, j(k)}. Since j(i,)#j(i,) if i, #i, we must have that #P) =
k; but PC {1,2,- -+, k—1}. Hence #P) <k — 1, which is a contradiction.
(This is the only place in the proof where we use the fact that M has fewer than
k tapes in an essential way.) This completes the proof of Lemma 13.

Let AES, let 0Kg<h<N=I|A4]| andlet I=[g+ 1,h]. Then we
shall use the expressions A([g + 1, h]) = A() to denote the substring C, of
A where C}, C, and C; are chosen such that 4 =C,C,C; and IC,|=g
and |C,C,|=h.

Let 4, €S and A4, € S. Then we define an equivalence relation =;
foreach i=1,2,---, k as follows.

A, 5 A, holds if the following two conditions are satisfied:

L A,([Lg]) = 4,((1.&1), 4,8, + 1, N = Ay([g,_, + 1, N]).

2. Let B, and B, be the result of replacing every b; by a; in 4,(f)
and A,(l;), respectively. Then B, = B,.

Given 4 € 8, let

E! = {BIBES and B =, A4} @=12,---,h),

F,={BIBES and BU))E {a}*} (=1,3,---,k).
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(Here {a;}* = {e, a, ag, aga;,- - -} where e is the empty word.)
The following four lemmas follow immediately from the definitions.

LEMMA 14. #HEANF)=1 forall i=1,2,- -,k andall A€ S.
LEMMA 15. =; is an equivalence relation (i=1,2, -, k).

Lemma 16. S = Uer B (=1,2,3, -, k).

LEMMA 17. ;= UAeF,(E‘f NS) (=1,2,3,---, k).

Let d(?) = 0~ 'p'~'h; then we have

LEMMA 18. Let A€ S. Then

AT, = 010 ~'h = d()
and
lA(lg; + 1, 801)l = 0~ 10 ~'h = id().

PROOF. Since |;|=h and © divides # we have by Lemma 11 that
AT = 6= o'~ ALY =0""p'""h = d(i).

In the same way we get |(A[g; + 1,8,]1);| = 0~ p' ~h = id(i). This proves
Lemma 18.

LEMMA 19. #EA)=290 (i=1,2, -+, k) and #F)=2V"90
G=1,2,k).

PROOF. If A, € E! and A, € E! then, according to the definition of
E! and Lemma 18, 4, and A, can differ at most at d(i) places each con-
taining either @; or b,. Hence #E!)= 290,

In the same way, if A, €F, and 4, € F;, then 4, and A4, can differ
at most at N —d(i) places. Hence #(F)=2V-9(, This proves Lemma 19.

LEMMA 20. Let e(i) =2(k— 1)z; + v) andlet A€ S. Then
#HEL 0 S,) < FHD) OH#K)) - (2n)*—1.

PROOF. Let 4 € S. Then we shall use D(4, f) here to be the ¢ + 1
instantaneous description of the computation of 4. Hence, D(4, 0) is the first
i.d. and D(4, N) is the last i.d. in the computation of 4 when |4]|=N. We
shall first use Lemma 9 to prove that 4, € EA N S; and 4,€E E' N S;, and
if A, #A4, then D(4,,8;,_,) and D(4,, g;_,) are not (z; + v)-equivalent.
Suppose the contrary. Suppose 4, € Ef N S, and 4, € E! N S;; suppose
A, #A4,; and suppose D(A,, g;_,) and D(A,, g;_,) are (z; + v)-equivalent.
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Then, by Lemma 9, D(4,, &) and D(4,, go) are (z; + u; + v)-equivalent.
We have that
14, ([ + 1, 8] = 14,([5; + 1, 85))| = 18~ 10" ~*h = id(3),

by Lemma 18. Hence, since 4, ¥4, and 4, =; 4,, we must have that
A, ([1, go])By)* € L, iff A5([1, 8] W)™ €Ly, for some nonnegative integer
x <id(@). But z,=h0"'p %k, v=p"%"2h and u,=h0"'p! "%k - 2v. Hence,
x<i 'p " h<he"'p' "k =z, =u;+ w<u;+z,+v since z,>v.
Hence, x <u; + 2, +v. Butsince D(4,, go) and D(A4,, g;) are (z; +u; +v)
equivalent, we must have that A4,([1, g,]1)b)* € T(M) iff A,([1,g,]))* €
T(M). This contradicts the fact that T(M) = L,. Hence, we have proved that if
A €EEANS,A4,€EE4 NS, and A, #A4,, then DA4,,g;,_,) and
D(A,, g;_,) are not (z; + v)-equivalent. Let D, = {D(4,,8,_,)I4, € EA N
S;}. Then #D)=#E! NSy, and D, is a set of non<(z; + v)-equivalent
id’s. Since D(4,,g) =D, g) if A,€E{ NS, and 4,EEL NS, we
have that the number of different head positions is at most (24)*~! since each
head cannot move more than h squares during interval /; from the position the
head had in the i.d. D(4,, g;). Moreover, the number of different states is #X).
Finally for each head position the number of different tape expressions which
are nonequal in the tape interval [n'(g,, + 1)=2,— v, nf'(g,_, + 1) +z, + 1]
is #E)W where e(i) = 2(k - 1Xz; + v). Multiplying all these numbers we
get that #(D)) < (HE) #(K) - (0)*~". Since #(D) = #(EA 0 S, Lemma
20 is proved.

Let pf! = #(E! N S)/#E!). Then we have

LEMMA 21. uf! <1/Q2k) for i=1,2,"*,k andall AE S.

PROOF. We shall prove that log,(ufl) <—log,(2k), which will prove
Lemma 21.

By Lemmas 19 and 20 we have that

log, (') < e(f) log,(H(Z)) + log, (#(K)) + (k — 1) log,(2k) — d(D).
Here d(i)=0"'p'"'h and e(?) = 2(k — 1)(z; + v). Hence we have that
16) 2 log, (uf') < 4k — 1)z, log,((Z)) — d() + R
where
(17) R = (4u(k — 1)) log,(#(Z)) + 2 log,(#(K)) + 2(k — 1) log,(2h) — d().
We shall show that R < 0. We shall first prove that
18) du(k — 1) log,(#(Z)) < d()/4.
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We have that
4o(k — 1) logy (H(Z)) < 405 2h(k — 1)([log, (HEN] + 1)
=p*~1h/2k <6~ 'p'~'n/4 = d@B)4 (by (3)).
Hence (18) is proved. Next we are going to prove that

19 2 log,(#(K)) < d(i)/4.
We have that N, divides k- h; hence

d@ = 6~ 'p"~'h > 32k - 1)*6?p**([log, #(K)] + 16~ 1"~

= 32(k — 1)%0p*** 1 ~¥([tog, #(K)] + 1)* > 8 log, (#K)).
Hence (19) follows. Finally we shall prove

(20) 2k - 1) logy(2h) <d@)/2 = (0 'p' ~'H)/2.
Hence we have to prove that
(1) 2h/log, (2k) > 8(k - 1)8p"~ 1.

But 2h = 82(k — 1)>9%p**y? for some real number y > 1. Let x = (2h)%.
Then

2hflog, (2h) = x?[log,(x?) = x(x/2 log,x) > x since x >4
and therefore x/2 log, x > 1. Hence
2h[log,(2h) > x = 8(k — 1)0p%y > 8(k — 1)gp’~!

and (20) follows.

From (18), (19) and (20) it follows that R < 0. Hence by (16) we have
e2) 2 logy (') < 4(k — 1)z, log,(H(Z)) — d().

We shall next prove that
(23) 8(k — 1)z, logy(H(Z)) <d().

We have that

8(k — 1)z, logy(#(Z)) < 8(k — 1)h6~ ' p~'k([log, ()] + 1) = ho~1p'~! = d().
Hence (23) follows. By (22) and (23) we have
log, () < —d(i)/4 =07 1p' ~'hj4 < -6~ 1p' ~'N,/(4k)
<=2k — 1)20p***+ 11 < —log, (2k).

Hence Lemma 21 is proved.
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LEmMA 220 #(S)) < 2V/(2K).

PROOF.

#S) <AZF #ENS)  (by Lemma 17)
€k

= Y uHEY (by definition)

A€F,

<2 %#(E‘f) (by Lemma 21)

AEF,
d()
= AEZF 2'2'7 (by Lemma 19)
1
= N-d(® 2—;%{)— (by Lemma 19)
= 2N/(2k).

This proves Lemma 22.
LEMMA 23. #S,US,U---U S, ) <2V~

PROOF. Lemma 23 follows immediately from Lemma 22.

But we now have a contradiction. By Lemma 13 we have that S =
SeUS,U---US,, and by Lemmas 12 and 23 we have that #S) <3-2¥~2
But #(S)=2" by Lemma 10. This proves that 7(M) # L,. Hence no (k—1)-
tape real time Turing machine can recognize L,, which by definition can be
recognized by a Kk-pushdown-tape real time machine. This proves Theorem 1.
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An Improved Overlap Argument For
On-Line Multiplication®

Michael S. Paterson, Michael J. Fischer and Albert R. Meyer

Abstract. A lower bound of ¢N log N is proved for the mean time com-
plexity of an on-line multi-tape Turing machine performing the multiplication
of N-digit binary integers. For a more general class of machines which in-
cludes some models of random-access machines, the corresponding bound is
¢cN log Nflog log N. These bounds compare favorably with known upper
bounds of the form c¢cN(og N )k, and for some classes the upper and lower
bounds coincide. The proofs are based on the “overlap” argument due to
Cook and Aanderaa.

1. Introduction. A challenging problem in the field of computational com-
plexity is to prove lower bounds on the computing time for naturally defined
algorithms executed by realistically powerful machinery. For a serial machine
whose task is to map an input string to an output string, a trivial lower bound for
many mappings is the number of steps required to read the input string. There
are a number of combinatorial techniques, involving for example crossing se-
quences (cf. [6, §10.4] ), which are adequate to derive nontrivial lower bounds
but only for rudimentary machines such as single-tape Turing machines. The
powerful diagonalization techniques are of use only for an input/output map-
ping sufficiently structured to encode machine computations.

In this paper. we expound and develop further the “overlap” argument
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introduced by Cook and Aanderaa [3], which establishes a nonlinear lower bound
on the time required by a very general class of machines to perform multiplica-
tion of binary integers. (A similar argument has been used again recently by
Aanderaa [1].) Our contribution relative to [3] is firstly that the main line of
proof is somewhat shortened and simplified, secondly that the lower bound in

[3] is increased by a factor loglogn and is shown to hold for the average
rather than just the worst case, and thirdly a new observation is made which
yields an even stronger result for the case of multi-tape Turing machines. In
some cases we show our new results to be optimal to within a constant factor by
exhibiting suitable multiplication algorithms.

Our main results are lower bounds for “on-line” multiplication. A mapping
from an input string to an output string is said to be carried out on-line if for all
n the nth output symbol is printed after the nth and before the (n + 1)st
input symbol is read. ! For on-line multiplication the multipliers and multiplicands
are given in binary, least significant digit first, and each input symbol encodes the
two corresponding input digits. We may as well assume that, for N-digit arguments,
only the least significant N digits of the product are to be produced. (The re-
maining digits may be obtained, if desired, by concatenating N zeros to
the arguments.) On-line multiplication is of course possible, though a naive
implementation may take time at least proportional to n between the
(n — 1)st and nth digits, with therefore a time of order N? for an N-
digit product. We show here that the minimum average computation time
for on-line multiplication is bounded below and above by functions of the form
N(log N)*, where, for the lower bounds, k is approximately 1 and, for the
upper bounds, k¥ is approximately 1 or 2 depending on the class considered. The
exact results are given in §§6, 7 and 8. For further background and motivation
the reader is referred to [3].

2. Machine models. In the class of machines to which our proofs apply, we
wish to include not only the familiar multi-tape Turing machine but also Turing
machines with tapes of higher dimension and some suitably tame “random access
machines.” We shall have to exclude iterative arrays and other machines with

1For technical convenience, we use this strong form of the definition which prohibits
an output from being produced too soon. It is not a serious restriction for two reasons.
For binary multiplication, the /th digit of the product cannot be determined until the ith
digits of the two inputs have been read except when both numbers are even; hence a machine
can take advantage of the weaker definition for at most a quarter of all possible inputs,
changing our mean time bounds by only a constant factor. Secondly any BAM may be modi-
fied without time loss to obey the strong definition by adding a two-headed linear tape to
serve as an output buffer. This does not affect any of our lower bounds. (Cf. [5].)
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unlimited parallelism since these are able to do multiplication in “real-time” [2].
Our definitions follow [3] fairly closely, with minor differences in order to
simplify the notation and proof or to take fuller advantage of the power of the
proof technique. The reader is assumed to have experience with the basic defini-
tions and techniques of automata theory [6].

A bounded activity machine (BAM) has a deterministic finite-state control
which operates with a one-way read-only input tape, a one-way write-only out-
put tape and a storage structure. The storage structure is a countable set of
locations each of which can hold a binary value. The store is accessed and modi-
fied by a finite, fixed number of work heads whose moves are specified by a
finite set of shifts ¢, ***, Op- For each 7, ¢; is a map from the set of loca-
tions into itself, and a head at some location x may be moved in one step to
the location ¢,(x). A complete step of the BAM is described as follows.
Depending on the state of the finite control, the input tape may be advanced
one symbol and precisely one work head must be “moved” by one of the
shifts. Then, depending on the control state, the new input symbol (if any),
and the value stored in the stosage location to which the head is moved, a
new value may be stored, an output symbol may be given, and a new con-
trol state is entered. Thus, for each given symbol from the input tape,there
is a unique step at which it is read, and the definition prevents it from being
reread later. Moreover, only one storage symbol is read per step, so we may
speak of “the storage symbol at step s.”

Various restricitions in this definition, such as binary storage, one head move
per step, and the lack of dependence of the new step on the old storage values,
are introduced to simplify the exposition and cause a time penalty of at most a
constant factor compared with more versatile machines.

We shall say that a computation is real-time if it is on-line and each input
symbol is read a fixed number of steps after the previous input. Note that we
shall not require the store to be initially “empty” except for the special class of
“uniform” machines defined below.

It is easy to design a BAM which can multiply in real-time. A suitable
storage structure is based on an infinite binary tree, traversed by a single head
which takes left or right branches depending on the input digits. The correct
output is either already stored in the location of the tree at the start or else is
encoded in the structure itself in an obvious way. For example the structure
may have a shift ¢ such that, for all x, either Y(x) = x or else
Y(W(x)) =x and Y(x)#x.Which alternative holds can be determined for any
location by a sequence of a few steps.

Two classes introduced by Cook and Aanderaa [3] to evade such an oracular
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construction are the polynomial-limited and uniform machines defined below. We
also add two further classes.

(i) Polynomial-limited. A storage structure is polynomial-limited if there
are constants ¢, d such that, for all locations x and for all ¢, the number of
locations accessible from x in ¢ steps is no greater than ct9. A BAM with
such a structure is a polynomial-limited machine.

(ii) Uniform. A storage structure is uniform if, for each pair of locations
X, y, there is a permutation f such that f(x) =y and, for each shift ¢, of the
structure, fo g, = ¢, o . A BAM with a uniform structure which is initially “empty”
(i.e., each location has the same initial value) is a uniform machine. The reader is
referred to [3] for further discussion of these and other classes.

With g suitable form of definition, Turing machines, even with multiple
heads and multi-dimensional tapes, satisfy both restrictions. Our main result
holds for machines satisfying either restriction. The BAM described above which
multiplies in real-time satisfies neither.

(iii) One-dimensional multi-head multi-tape Turing machines. We can
obtain a stronger result than for classes (i) and (ii) if we restrict the tapes to be
linear, i.e., one-dimensional.

(iv) Oblivious machines. For this class we turn our attention from the
storage structure, which may be arbitrary, to the form of the finite state control
or “program.” The (single) storage location accessed at each step defines the
storage sequence for any computation, and this depends in general on the input.
A machine is oblivious if for input sequences of a given length the storage se-
quence is fixed, i.e., independent of the input symbols. Naturally, the control
state and the values inscribed in the store can, and in general do, depend on the
input symbols; it is just the movement of heads which is invariant. Qur interest
in oblivious machines is two-fold. Firstly the restriction permits a very simple
proof of an improved lower bound, and secondly it happens that almost all the
algorithms proposed or used for multiplication are oblivious or can be made
oblivious at the cost of only a constant factor in time.

In §7 we shall retrospectively consider other classes of machines to which
the proof technique applies.

3. Retrorse functions. Informally, a function from an input string to the
output is retrorse 2 if the output values in any segment depend very heavily on
the input values of the immediately preceding segment, and so the function evalu-
ator needs to “turn back’ to the previous input segment. On-line multiplication
will be shown to be very retrorse.

2We choose not to follow Cook and Aanderaa in their choice of “complex” to de-
scribe these functions.
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]
We define Ky = 22,<N22 , 80 the binary expansion of K, hasa “1” in

position i iff i is a power of two, where the positions are numbered starting
with O at the right (lower-order) end. The usefulness of K, is that multiplica-
tion of N-digit numbers by K, is extremely retrorse, and the main proof is
simpler than for two-input multiplication. Our first theorem provides a lower
bound on the average time for on-line multiplication of an N-digit integer by K,
and hence also on the worst-case time for on-line multiplication. In the second
theorem we show that the same bound holds for the average time for general on-
line multiplication.

< N- >

l ... 00100010110| = K,

| [w | =X
+R— R+M—
|y |=kyxXx=2
FIGURE 1

Figure 1 represents the multiplication of K, by an N-digit number X
with result Z. It is drawn in the conventional way with least significance to the
right. R and M are nonnegative integers, and we shall always take R to be a
power of two, 2". W represents the subfield of X consisting of bits Xpr4p_4
*** Xpy+1Xy>and Y represents the subfield of Z consisting of bits
Zyiar-1 " Zysr+1Zm+r- We will at times think of W and Y asR-
bit integers in the range O to 2R — 1. To say that W assumes a value { means that
we imagine placing the binary representation of i into the W subfield of X.
This in turn causes Z to change, for Z always means the product K - X,
and that in turn affects the value of Y, We investigate the dependence in this
way of Y upon W.

The way in which Y varies with W of course depends on the remaining
bits of X, other than those in W, which we denote by X\W. As a number,
X\W is the value of the binary string obtained by setting the W-field of X to
zero.

For some particular fixed value of X\W,let W range through all possible
values 0,1,+++,2R — 1,50 X, =X\W+i-2M,0<i<2R - 1. Let 2,,2,,
«++ and Y,,Y,, - be the corresponding values of Z and Y, thatis, Z, =
Ky * X;,and Y; is the Y-field of Z,.
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If i<jthen Z;,—Z,=(X; - X)) Ky=(G -9+ 2" - Ky. Since
Ky =K,p +2*R « K for some integer K, we have

Z, - Z;=(j~1) 2™« K,p (mod 2M*+2R),

Now suppose Y; =Y;. Then Z; -2, =a - 2M (mod 2Y*+2R) for some integer
a, lal<2R and hence (j-1i)- K,p =a (mod 22Ry Since R=12",

2r—l

AR —D>Kp =22 +27 7 e 4 22° 508,

By the right-hand inequality, (j — i) * K,5 2 2R > 4, and hence for the con-
gruence to hold, we must have (j — 1) * K, 2a + 22R > 2R _ 5R  From
the left-hand inequality for K,p, j—i>% - 2R Hence, for any i, there is
at most one j>i such that ¥, = Yj, and we have proved -

LEMMA 1. For fixed values of M, R, N and X\W, each value of Y can
arise from at most two values of W.

4, Overlap. This concept is the basis for a very elegant counting argument
introduced in [3]. It has recently been put to use again by Aanderaa [1]. The
motivation for its definition comes from the computation of very retrorse func-
tions. The obvious way in which information about a previous input segment can
be obtained is by revisiting locations which were visited when that segment was being
read. Overlap is defined in terms only of the storage sequence defined previously
in §2(iv). If two successive accesses to the same location / occur at steps s,
and s, (s, <s,), then the pair (s, s,) is called an overlap pair, I is called the
overlap location of s,, and the value stored in / at step s; and referenced at
step s, is called the overlap value of s,. The total overlap is

= | {(s;,5,)| (5,,5;) is an overlap pair}|.

Clearly the total time T = £, since each step s is the second component of one
or zero overlap pairs depending on whether the location accessed at step s has
been accessed before or not.

Let C,, C, be disjoint contiguous time intervals during a computation.
We define overlap (C,, C,) to be the number of overlap pairs (s,, s,) for
which s, €C, and s, €C,.

Without loss of results we assume N = 2", Forany i=0, ++ , n, which
we call the level, define R, =2, and if S =Sy_,Sy_, ***$,S, is any

string of length N, we partition § into contiguous blocks Si gn=i_g2 "0
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If X is the input string, the time interval C;; starts as the right-most digit of
X; ; is read and continues until the right-most digit of X; ;, , isabout to be read
(or until the computation ends if there is no such j + 1).

Let #;; be the length of time C;;. Clearly the total time of the compu-
tation T = Z;t,; for each level i. We define w,; = overap (C;;, C;;;,) for
all suitable 7, j, and also w; = Z;w; ,; forany i

LEMMA 2. Total overlap Q = Z;w;

PROOF. Let (s,,s,) be an overlap pair and let 7 be the least level such
that s,, s, €C;; for some j. C;; is the concatenation of the two intervals
Ci_1,2; and G, 54, at the next lower level. By our choice of 4, s, €
Ci_1,25 and $; €C_y 5;41,50 (51, 5,) contributes to w;_, ,; and hence
to w;_,. Suppose it contribues to wj;,;+. Then i'<i-1,for s, and s,
belong to the same interval for each level above i — 1. i’ =i — 1 since if
5y, s) contributes to w;- ,;', then both s; and s, are in the same block
Cpryy,p @t level i'+ 1. Hence i =i — 1, and it is clear that ;' =j. We con-
clude that each overlap pair contributes exactly once to exactly one w; and
hence exactly once to Z;w;. O

5. Computations with small overlap. We consider an on-line computation
of some machine I from input X to output Z. As before, M and R are
fixed numbers, W is the length R subword of X,namely Xp; . p_, *** Xps,and Y
is the length R subword of Z, namely Zy,, ,p_; *** Zpsy - Throughout this
section, X\W, M and R remain fixed, and we explore how the value of Y changes
as the value of W is varied. Unlike the previous sections,Z now represents the
output of M on input X.

Giving a particular value to W completely determines the computation of
M. Let s, be the step which advances the input head onto the first symbol of
W,let s, be the step which moves the input head off of the last symbol of W,
and let s, be the step which reads the next input symbol after producing Y.
Define interval C}, to be the steps from s, to s, — 1, Cy the steps from
§; to s, —1l,andlet t,, =5, -5y and ty =5, =5, be the lengths of time
associated with Cy, and Cy, respectively. T is the total time of the compu-
tation, and we let w = overlap(Cy,, Cy). This notation is illustrated in Figure 2.

As W varies,sodo w,ty,ty, T and Y. Let Q((:J, ? f’) be the total
number of different Y values yielded by those W such that A &, ty <1,
and T<T If N is computing a retrorse function, Q(w 7 T) must be large,
and we will use this fact to deduce the constraints on &, 7, and T that eventu-
ally lead to our lower bound on T.
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Our upper bounds on @ depend on the kind of machine, but all are ob-
tained using the same general method. For a given value of W, we observe the
computation during the interval Cy and we record in a suitable way information
about W that affects the computation in Cy .

«R— M
r 4 ] Input X
; i
Y | Output Z
| | !
| |
_input head position; b
| } ;
t | 1 o
|
Lo 5
by
! ]
IRV 5
I, ! Cw
Y .
1 CY
1
_____________ S
{ 2
FIGURE 2

For each class of machines, enough information will be recorded to ensure
the validity of the following:

CoNDITION 1. Let w and w' be two values for W and y and y' be
the corresponding values of Y. If the information recorded for w and w' is
the same, then y =y'.

It follows immediately from Condition 1 that the number of different
possible information records obtained from values of W for which w, ¢y, and
T are bounded respectively by &, ¥, and T isan upper bound on A, 7, f’)

LEMMA 3. There exists a constant C depending only on IR such that, for
T>1ad 6<<T,

@@ O, ?f‘) <7e. 2‘3 . (g) if M is a polynomial-limited or uniform;

® 0@ £ H< TC « 29 if M is a one-dimensional multi-head multi-
tape Turing machine;

© 0,2 h<c- 28 if M is oblivious.

ProoF. (a) Case 1. M is a polynomial-limited. The information record
consists of the state of the control, the position of each head at time s,, a sub-
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set @={t;,*", ta} of the integers from 0 through £ —1,and a binary
sequence v of length &. @ is chosen to include the times, relative to sy, of
all the W-overlap steps. The ith bit of v equals the symbol referenced at time
§, + t,, which will be the overlap value if s, + ¢, is a W-overlap step. This in-
sures that Condition 1 is satisfied. " A

The total number of such records is clearly at most ¢ * 2% « ( 5,) + HC,

where H is the number of possible positions for each head at step s,. Since
M is polynomial-limited, H < t,‘f, < T?< 119, yielding the bound of part (a).

(a) Case 2. M is uniform. This case is exactly like Case 1 except that we
do not record the actual head position at time s,, for the number of possible
positions is too large. Rather, we record for each head h the step of Cy (if
any) at which & first visits a square [ visited prior to step s, together with
the time of the first visit to / (which uniquely specifies 7). Call such a location
1 filled. (In the case of more than one head, a small amount of additional infor-
mation must be recorded to account for the possible interactions among the
heads before revisiting a filled location. This argument is presented in more de-
tail in [3].)

If the head h never visits a filled location during Cy, then because of uni-
formity the symbols read and written by the head can be uniquely determined
from the overlap steps and values, without knowing the position of A at time
§;. On the other hand, if & does visit a filled location I, then the step of Cy
at which 7 is visited together with [ itself provide all the information required
to determine the symbols read by the head during Cy. I can be specified by
the time of its first visit, so there are at most #y * T< 2 different starting
positions of a single head A which must be distinguished.

() M is a one-dimensional multi-head multi-tape Turing machine. Mt is a
special case of a polynomial-limited machine, so we may record the state and
starting head positions as in (a), Case 1. However, the positions at which overlap
will occur may be specified much more succinctly, for the squares visited during
Cy by each head form an interval. Thus, only the endpoints need be named.
Since at most 2T locations on a linear tape can be reached in T steps by a
given head, there are at most 2T2 possible intervals per head. As before, a
binary sequence of length w is sufficient in which to record the overlap values.
Thus, the total number of such records is at most ¢ « H® - (2 2y . 2“’ where
H is as in (a), Case 1.

(¢) M is oblivious. The positions of the heads at each step are independent
of W, so only the state of the control at step s; and the values of the overlap
locations need to be recorded, giving the bound C - 2“’ O

We finish our preparations for the main proof with a combinatorial lemma.
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By way of motivation, let I be a machine that multiplies onine and let &,

£ , and 7 be bounds on w, ty,and T respectively such that Q(c:», ? f') <
23R/4 By Lemma 1, all but 2 - 23R/4 vyalues of W, a vanishing fraction of
the 2R values, cause one of the three bounds to be exceeded. This gives an
implicit lower bound on w in terms of ¢y and T which says in effect that if
T is small, then the total overlap 2 is large, which implies that T is large.
Hence, T must be large on the average.

LEMMA 4. Let C, R, a be positive constants such that loga > 2(C + 3).
If 0<w<t and w +tfa+log T <R/(2log a), then TC 2% - (})<
23R/4 (ANl logarithms in this paper are taken to base 2.)

ProoF. Forany p=2¢q >0,

a
P\ <2 L’f)"
(q) < q! < q
by Stirling’s formula. Assume the hypothesis, so w < R/(2 loga), t <
aR/(2 log a), and log T < R/(2 log a).

C . w., t c. 2t
reom () <1 (2)

which is monotonic increasingin w,? and T since w <t So

c. (% R/(2 1og @) , [ aR[loga
T (w <% R/(2 log a)

< 2CR/(2 log a) (2ae)R/(2 log a) < 23R/4. O
6. Main results and proofs.

THEOREM 1. There is a constant ¢ such that for any BAM I which,
Jor all N multiplies N-digit numbers by K,, on-line, the mean time T(N) over
all numbers of length N satisfies the following bounds for all sufficiently large
N.
() If M is polynomial-limited or uniform, T(N) > ¢N log N/log log N.
@ii) If M is a one-dimensional multi-head and multi-tape Turing machine
or is oblivious, T(N) > cN log N.

PROOF. Suppose first that Mt is polynomial limited or uniform. We may
assume that log log N > 2(C + 3) where C is as in Lemma 3, and define a =
log N. We consider again the situation depicted in Figures 1 and 2, where X\W
is fixed and W is allowed to vary. Applying Lemmas 1, 3(a) and 4, we deduce
that the number of distinct W’s for which w + #/a + log T<R/(2 log a) is
less than 2+ 23R/%, Hence certainly,
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meany, (w +t/a +1og T)>R/(3 loga) for R > 16.
Since this inequality holds for all values of X\W,

meany (w + t/a +log T) > R/(3 log a)

where the mean is taken over all N-digit numbers. If we assume that meany T <
N? then meany log T <log meany, T<2log N since the geometric mean is
less than or equal to the arithmetic mean. Now use the identity: mean(A4 + B) =
mean(4) + mean(B). Therefore

meany (w + t/a) > R/(3 log a) — 2 log N > R/(4 log a)

provided that R > 24 + (log N) * (log log N).

Now we suppose W =X, ,; and Y =2, ,.;,, for some i, j, so that
W=, t =154y and R=R;=2" Taking the intervals in pairs by sum-
ming over J, the previous inequality gives

meany w, + meany Z tiaj1la= zj: meany (& ,; + 4 574.1/0)
j
> 3" R,/(4 log a) = N/(8 log a).
j

If we assume that meany T < N log N/(16 log log N), then since
Z; 1 341 <T, we have

meany w; > N/(8 loga) — N /(16 log log N)
= N/(16 log log N).

Since this inequality holds for all i such that i <logN and 2' =R,> 24
(log N) « (log log N), we conclude that

meany 7> meany £ = ) meany w;
i

2 [log N — log(24(log N)(log log N))] * N/(16 log log N')
2N « log N/(17 log log N)

provided N is sufficiently large. Thus, we have proved case (i).

The proof for case (ii) is somewhat simpler. We can easily show that if
w+2C+log TSR/2 then TC + 2% < 23R/4  From this we deduce in a
similar way to case (i) that meany (w + 2C * log T) > R/3. If meany T<
N? and R;>48+C-log N then meany w,,;>R,/4 and meany w,>
N/8, so

mean, T> meany Q =Y mean, w, >N * (log N)/9.
i
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This proves case (ii). Of course a proof solely for oblivious machines would be
very easy since Wy L, T, etc. are independent of X. O

We can immediately extend this proof, removing the dependence on Kj.
We show that nearly all numbers as multipliers yield a function nearly as retrorse
as multiplication by K. In the situation of Figure 1 and Lemma 1, let us re-
place K by an arbitrary N-digit number Ky .

LEMMA S. Forany h, 0<h<2R, if, for some i, Y,=Y,,,, then K3p
must have one of at most 2R*1 possible values.

PROOF. As in the proof of Lemma 1,if Y;=Y,,,,then h * K3, =
a(mod 22R) for some a, lal < 2R,

Let d = gcd(h, 22R). Then d|a,so a = kd, where lkdl< 2R, Also,
d|2R=! by definition of d and the fact that h < 2R, Hence,

R
ke __2_R+1’_2R+2’ooo’_l’0’l’ooo’2 -1
d d d

so there are (2 * 2R/d) — 1 such k’s.

By elementary number theory, there are exactly d values of K;' g in the
range 0 <K3, <22R which satisfy hK3, =kd(mod 22%). Hence, there are
atmost d + (2 28/d — 1) <2R*! valuesof K3, for which ¥, =Y, ,. O

From this lemma, it follows at once that at least half of all possible values
of K;'R have the property that, for all A, 0<h < 2R-2 and for all i, Y, #
Y,4n- Hence, for these values of K3z, at most 4 different W’s yield the same
Y. Therefore the proof of Theorem 1 can be followed very closely except that

“meany” is replaced throughout by “meanKl.v meany”. Thus we have shown

THEOREM 2. There is a constant ¢ such that, for any BAM M which
performs on-line multiplication, the mean time T(N) for pairs of N-digit num-
bers satisfies the following bounds for all sufficiently large N.

() If M is polynomial-limited or uniform,

T(N)>c Nlog Nflog log N,
(@ii) If M is a multi-tape Turing machine or is oblivious,
TWN)>cNlogN.
We know of no direct implication between Theorems 1 and 2.

7. Extensions. In this section we shall outline some of the ways in which
the classes already considered can be extended while remaining susceptible to the
same proof methods.

A simple “random-access” machine could be modelled by a BAM with a
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storage structure based upon some sort of binary tree so that locations are
“addressed” by binary sequences and accessed in time proportional to the address
length. Such a structure is of course exponentially, rather than polynomially,
limited. However we recall that the latter property is used in the proof only to
allow head positions to be specified just before a new input symbol is to be read.
The proof goes through just as before therefore, provided that the tree structure
is used in such a way that the heads are returned to the root before each input

is read, for example, if all the “random-accessing” is accomplished by a sub-
routine.

An alternative approach to a random-access store is the structure based on
the free group on two generators @, b with the four shifts being left multiplica-
tionby a,a~', b, b~!. This can be operated as a quite serviceable random-
access store and is of course uniform.

A point of merely technical interest is that the same bounds may be easily
proved when the polynomial limited class is extended by replacing “cz9” in the
definition by “c2t°" for any € < 1. Unfortunately we know of no natural class
of machines which takes advantage of this extension.

Finally we show that without impairing the proof of any of the four classes
of machines we may add “oracles, and indeed more, in the following way. The
BAM’s are extended by allowing an infinite number of states in the control sub-
ject only to the restriction that just a finite number of them may read the input
tape. An “oracle,” which may even be nonrecursive, could be invoked with such
a machine to read a sequence of storage locations and put the result of applying
its oracular function in some other sequence of locations. This would take just
the number of steps required to access the locations. The proofs are unaffected
by this relaxation. A simple example which emphasizes the importance to our
proof of the on-line restriction is a multi-tape Turing machine with an oracle to
perform (off-line) multiplication in linear time. The ¢V log N lower bound
applies even to this machine.

8. Upper bounds. An important technique for establishing upper bounds
for on-line multiplication is given by M. Fischer and Stockmeyer [4]. Their con-
struction shows that, for a wide range of machine classes including multi-tape Tur-
ing machines, oracle Turing machines, and oblivious machines, given any off-line
(i.e., unrestricted ) multiplication machine with time complexity T(V), where T
satisfies T(2N) = 2T(N), an on-line machine can be produced with time com-
plexity no greater than ¢ + T(V) * log N.

A slight extension of their methods shows that on-line multiplication of
N-digit integers, where one of the numbers has at most log N “1”-digits, can be
performed in time O(V - log N). In particular, there is a Turing machine for
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on-line multiplication by K, with complexity O(V ¢+ log N'), matching the
bound of Theorem 1 (ii).

General on-line multiplication algorithms may be obtained by applying the
Fischer-Stockmeyer result to the off-line algorithm of Schénhage-Strassen [7],
which on a Turing machine has complexity O(V « log N « log log N'). With the
facility of constructing and rapidly accessing a multiplication table for (log N)-
digit numbers such as is provided by a random-access machine, the Schonhage-
Strassen off-line multiplication algorithm can be performed in time O(N * log N).

Multi-Tape TM Oracle TM “RAM”

On-line multiplication Nlog’:NloglogN NlogN Nlog’N

On-line multiplication by K N Nlog N NlogN NlogN

Off-line multiplication Nlog Nloglog N N NlogN
FIGURE 3

In Figure 3 we set out some of the upper bounds derived from the above re-
sults for three classes of machines. Constant factors are omitted and underlining
denotes that a lower bound of the same order has been demonstrated in previous
sections. The first class is multi-tape Turing machines with one-dimensional tapes;
the second is BAM’s with an infinite number of states under the restriction on in-
put states given in §7; the third class is either version of “‘random-access” machine
described in §7. With the uniform structure based on the free group on two
generators, it is easy to simulate Turing machines and stores with “random-access.”
BAM’s with the binary tree structure and the restriction on head positions given
in §7 are also sufficiently powerful to allow a fast implementation of the re-
quired algorithms, though the programming techniques needed are less straight-
forward.

9. Conclusion. In this paper we have described a powerful counting argu-
ment based on the notion of “overlap” and have investigated the extent and
limitations of its applicability. Overlap arguments are applicable only under the
on-line restriction, but in many cases they can lead to complexity bounds which
are optimal within a constant factor.

An important objective for future research is to obtain nontrivial lower
bounds without the severe restriction to on-line computation. Such results, even
for oblivious machines or combinatorial circuits, would constitute a significant
advance.
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String-Matching and Other Products*
Michael J. Fischer and Michael S. Paterson

Abstract. The string-matching problem considered here is to find all occur-
rences of a given pattern as a substring of another longer string. When the
pattern is simply a given string of symbols, there is an algorithm due to Morris,
Knuth and Pratt which has a running time proportional to the total length of
the pattern and long string together. This time may be achieved even on a
Turing machine. The more difficult case where either string may have “don’t
care” symbols which are deemed to match with all symbols is also considered.
By exploiting the formal similarity of string-matching with integer multiplica-
tion, a new algorithm has been obtained with a running time which is only slightly
worse than linear.

1. Introduction. We consider several problems concerned with the
matching of strings of symbols. A typical practical problem is that we are given
a (long) symbol string X = X, X, X, *+* X,,, the “text,” and another (short)
string Y=Y,Y, ¢+ Y,, the “pattern,” over the same finite alphabet Z. The
task is to find all occurrences of the pattern as a consecutive substring in the
text, that is, to find all 7, n <i <m, such that

Y=[X_, " X].

The obvious naive algorithm tries each i in turn and compares Y; with
X._, + for j=0,1,++ as far as necessary, and is represented by the fol-
lowing informal program:
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FOR i=n STEP 1 UNTIL m
FOR j=0 STEP 1 UNTIL n
IF Yja&X,_n_,_j GOTO L

REPEAT
PRINT (i)
L: REPEAT
For example with the following strings the desired outputs would be 4, 7, 12,
0 1 2 3 4 5 6 7 8 9 10 1 12

X=|a b a b b a b b a b a b b

Y= [b a b b |

An upper bound on the computation time for this algorithm is O(m * n) and
the matching of a™b with a"b shows that this bound is realistic.

2. Morris-Knuth-Pratt algorithm. A considerable improvement on the naive
procedure described above is afforded by an algorithm due to J. H. Morris, D. E.
Knuth and V. R. Pratt (4], which has a running time which is O(m + n). The
essential idea is that if we have successfully matched a segment of the string X
with an initial segment of Y before reaching an inequality, then it is unneces-
sary and wasteful to read those symbols of X again since they are the same as
the Y-segment., A better procedure is to carry out the first comparisons for the
next relative position of the pattern Y, by comparing Y with a segment of
itself, and of course the comparisons can be precomputed once and for all at the
beginning. The precomputation required is very quick and has the same general
form as the main computation itself.

We shall describe a “theoreticians’ version” of the Morris-Knuth-Pratt al-
gorithm to simplify the presentation and analysis. For a symbol string Z =
Zy*** Z,, define the function P for i=0,°+*,n by

P(f) = max {t|o</r\<t Z ,=2,, and -1 <t<i}.

Provided we consider A o<r<—1 to be identically true, P(i) is always
well defined. It is not difficult to verify that P()() = kth largest ¢ such that
Nocr<t Ziop =2, and —1 <t <i if this is defined. (P*)@) denotes the
composition of P_.with itself k times, so P(O@) =i and P¥*+1) =
PP®)(@).) The usefulness of P results from the following recursive definition.
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P0) = ~1,
P& +1 for 0<i<n where k is the least positive integer
-1 if there is no such k.

An example is illustrated below.
o 1 2 3 a4 s5-6 7 8

a b a a b a’ ' b a a

ASY=2, PP5)=0,
POYS)==1, PO =PPSH+1=1.

i'012345678

MMl-1 -1 o o 1 2 1 2 3
Provided that the string Z and the values of P(j) for j < i are readily aces-
sible, the value of P(# + 1) may be computed in time less than
co (PO-PE+1)+2)

for some constant ¢, independent of ; and n. This is because

j+1D)-1<P<j foral j
and hence the k of the recursive definition satisfies
PO-Pi+1)+22k21.
Therefore the total running time is bounded by
¢ * (P(0) - P()) + 2¢(n + 1) = O(m).
To solve our original problem we concatenate Y, a new symbol @, and
X in that order and compute the values of P for the string Y @ X in time
O(m + n). Because of the @, P can never take a value greater than n =
1Yl = 1. The values of i for which P(Y) =n mark the positions where Y
matches a substring of X, or more precisely
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Pn+2+n=ne AN X_ =Y,

o<r<n
Y Y
Lyl x | [ v o x: |
— x| x 1 — [ *]
Preprocessing phase Output phase

3. A Turing maching implementation. The linear time bound obtained in
§2 for the Morris-Knuth-Pratt algorithm seems to depend not only on the use of
a random access machine, but also on the assignment of unit cost to a memory
access, for just the P array alone contains O(nlog n) bits when represented as
a sequence of binary integers. This makes a linear time Turing maching imple-
mentation somewhat surprising.

The central economy results from representing the P array by a table A
of differences. Define P(—1) =—1 and let

AG) =1+P@-PG+1), -1<i<n.

Then
P'(i)=17—;_211 A() and ;Z_:A(j)=n—1’(n)<n+l,

so the A array can be represented in linear space, even using unary notation.
We may expand the recursive definition of P in §2 as follows:

ALGORITHM X
Stage (0). Set P(0) «—1. Go to stage (1, 1).
Stage (i + 1, k).
L If le(k)(1)+1]
stage (i +2,1).
2. If P®)@)=-1, set PG+ 1) <—1 and go to stage (i +2,1).
3. Otherwise, go to stage (¢ + 1.k + 1).

=24, set PG +1)«<P®E +1 and go to

Algorithm X may be rewritten without explicit reference to P by using
the A array and three new variables p, s and d. Inductively, at the beginning
of stage (i + 1, k), the variables will satisfy

(3.1) p = PR,
3.2 s = PF)(g) — P+ 1)),
(3.3) d = P(i) — P)G).
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Algorithm Y maintains these conditions and computes the A array. (The
column vector notation denotes simultaneous assignment.)

ALGORITHM Y,

Stage (0).
AFD « 1,
14 -1
sl<] of;
d 0

go to stage (1,1).
Stage (i + 1, k).
L If Z,,, =2, then begin A()) «d;

)/ p+1
s« Is+AP|;
d 0

go to stage (i +2, 1);end.
2. If p=—1, thenbegin AQ)«d +1;

p p
sfels |
d 0

go to stage (i + 2, 1); end.
3. Otherwise, begin

p p—s
S Rl el =921 ¢
d d+s

go tostage (f + 1,k +1); end.

It may be readily verified that conditions (3.1)—(3.3) hold after stage (0),
are preserved by the remaining stages, and the A’s are computed correctly.

The Turing machine to implement Algorithm Y has four tapes, each one-
way infinite to the right. The input tape Z has two heads 4 and B. Tape
Y has twoheads C and D and holds the A’s and d. p is represented by the
positions of heads 4 and C. Tape S is used as a counter and holds s. Tape
T is a scratch tape. The tapes with two heads may be replaced without time
loss by several tapes with only one head per tape [3].

At the start of stage (@ + 1, k), head A is scanning Z, and head B is
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scanning Z;. Tape Y contains the binary word
014(-1)014(0)014()g .. . g14¢-1)0)4,

head C is on the “0” immediately preceding the block 14(®) (the (p + 2)nd
“0” from the left), and head D is on the right-most nonblank square. Finally,
the counter S contains the number s.
Below are the Turing machine tapes of the example of §2 at the beginning
of stage (6, 2).
-1 0 1 2 3 4 S 6 1 8

TapeZ:[Sabaababaa

Tape S: I $ 1

We now examine the operations that might be required in stage (i + 1, k).
The first test, “Z,,, = Z;, ,”, is accomplished in three Turing machine steps,
for heads A and B are only one square away from the symbols Zpyy and
Z;, ,, respectively. Similarly, the test “p =—1" becomes a test to see if head
A is scanning the left endmarker, “$”.

The updating in case (1) is accomplished by shifting D right and printing
a “0”, shifting heads A and B right one square, and moving C right to the
next “0”. As C is advanced, S is incremented once for each “1” that C
passes over.

The updating in case (2) is even easier. A and C are left alone, B moves
right one square, and D moves right two squares, printing a “1” followed by
a “0”,

To accomplish case (3), head C is moved left over s zeros. For each
“0” passed over by C, head 4 moves one square to the left and head D
moves one square to the right and prints a “1”. For each “1” passed over by
C, S is decremented. Since the counter S is modified by this process, its con-
tents are first copied into the temporary counter T which is then used to con-
trol the iteration.

We total up separately the time spent in each of the three cases. For each
i, case (2) is executed during at most one of the stages (i + 1, k). Each such



STRING-MATCHING AND OTHER PRODUCTS 119

execution takes a constant amount of time, so the total over all stages is clearly
o).

When case (3) is executed at stage (i + 1, k), it takes time c¢s for some
constant ¢, where s = P®)(@) — P**1)(j) is the value of § at the start of
the stage, for 2}’;’,‘_s A <s. Let k; be the largest value of k for which a
stage (i +1,Kk) is executed. Thenstages (( +1,1),*°,(+ 1,k —1) all
execute case (3) and stage (i + 1, k;) executes case (1) or (2). Hence, the
total time spent in case (3) from the start of stage (i + 1, 1) to the start of
stage ((+2,1)is

ki-1
;‘;1 @B - PE D) = oot - PEI@) < c(P@) — PE + 1) + 1).
Summing over all i, the total time in case (3) is O(n).

Finally, the time spent in case (1) is bounded by the number of times C

is shifted right. But this is at most the eventual length ly of tape Y plus the

number of times C is shifted left. The latter occurs only in case (3) and hence
is bounded by Of(n). Since

IY=n+2+_ilA(i)<2n+3=0(n),

=
the total time spent in case (1) is also O(n).
It follows that the total time of the Turing machine is O(n).

4. “Don’t care” symbols. An interesting extension of this simple string-
matching problem which has practical applications results from the introduction
of a “don’t care” symbol, ¢, into the alphabet. ¢ has the property of
“matching” with any symbol. We shall write “= for this matching, so

¢p=x forall x€EZ U {p}

The Morris-Knuth-Pratt algorithm breaks down in this situation, basically because
“=" is not a transitive relation, that is

xEyAy=sz -+ x=z,
The above implication is valid only if y # ¢. Transitivity was assumed implicitly
in deriving the recursive relation used to compute P. The naive algorithm given
initially works just as before, with “= in place of “=.” The ostensible aim
of this paper is to produce a more efficient algorithm for string-matching with
“don’t care” symbols. This is achieved only for the case when Z is a finite
alphabet.

5. Generalised linear products. Both of the string-matching problems de-
scribed so far can be regarded as special cases of a very general “linear product.”
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Given two vectors of elements, X =Xg, ***,X,, and Y=Y,,*°**,7Y,, the
linear product with respect to ® and ®, written X 8 Y, is avector Z =
Zg,***y 2, 4n Where
Z, = &b X,@Yj for k=0,**¢,m+n.
i+j=k
For this to be meaningful, X,, Y; €D, Z, €E, for some sets D, E, and ®,
@ are functions

®: D x D> E,

© ExE->E, @ associative.
If ®is A, and ® is = or =, themiddle m—n + 1 truth values of the
linear product give the information required in matching the text X against the
reversal of Y, thatis Y, «+< Y, since

(X Y>k=true<->[Xk_”... Xk] =[Y, " YO]

for n <k < m. The reason for introducing general linear products here lies in
the following two cases.

(i) Boolean product where ® is V and ® is A, and

(ii) polynomial product where © is + and ® is x.
The polynomial product is of course the ordinary multiplication of polynomials.
The four products with which we are principally concerned are illustrated in
Figure 1.

LINEAR PRODUCT Z=X[®Y; z,= @ x, 97,
LA

ExXAMPLES. With the convention that 1,0 represent frue, false respec-
tively.
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6. Algorithms for linear products. For the simple string products the
Morris-Knuth-Pratt algorithm can be extended to yield the complete linear prod-
uct Zg *** Z, ., If we compute P for the string YR @ X, then the middle
m-=n+1 digits of Z are given by:

for nsr<m, Z,=1oPAr+n+2)=n,
and the last n digits by:
for m<r<m+n, Z,=1 oP®)n +n+2)=n+m-r for some k> 1.
For the first n digits, we know of no better method than to reverse both strings
and use the same procedure.

For strings over a finite alphabet with “don’t cares,” we follow an indirect
course, showing first that the computation time for string product is of the same
order as that for Boolean product. If ¢, 7 are two distinct symbols of Z, and
X contains only ¢’s and ¢’s while Y contains only 7’s and ¢, then the
string produgt of xband Y is precisely the negation of the Boolean product of
the strings X and Y, where

)?,=true=l<->X,=o, f’,=true=l<->Y,=r

A X,EYI"’ A -o}, V—u;'i""" Vv i{Ai‘,i
1+j=k 1+]=k 1+j=k

Thus Boolean product is no harder than ¢-string product. On the other hand, let
H, be the predicate on X U {¢} defined by
Hp(x)=l if x=p,
=0 if x#p(or x=2¢),
and extend H, to strings in the obvious way. Then

z=x Y== V H,Q()H,(Y).

0%#7;0,7EXL

Informally, this equation states that X and YR match in a given relative posi-
tion if and only if there is no pair of distinct symbols ¢, 7 € £ which clash.
Hence the ¢-string product takes the same time as the Boolean product to with-
in a constant factor, independent of m and n.

There is a considerable similarity between the Boolean product and the
polynomial product over the integers, as is shown in the example above. When
1 and O are identified with frue and false respectively, the Boolean product
can be obtained by performing the polynomial product and then by replacing
any nonzero element by 1. This idea of embedding a Boolean algebra in a ring
for computational purposes has been exploited to achieve a fast Boolean matrix
multiplication and transitive closure algorithm [1].
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One very convenient way to compute the polynomial product is to embed
the product in a single large integer multiplication, for which there are a variety
of well-known efficient algorithms. For the polynomial product of the {0, 1}
strings Xy, *°*,X,, and Y, ***,Y,, where m > n, the maximum possible
coefficient in the product is n + 1, If we choose r so that 2" >n + 1, com-
pute the integers

m n
X" = ;% X;+2" and Y@= Z}) Y; - 2
= =
and then multiply X(2") by Y(2"), the result will be the product polynomial
Z, evaluated at 2". Successive blocks of length r in the binary representation
of Z(2") will give the coefficients of Z, and by replacing nonzero coefficients
by 1 we obtain the elements of the Boolean product. This is illustrated below.

r>log,(n+1),m=>n

A

B...oxo|o...ox,| .. |o...ox,ﬂ
S i,
roduc
[o...orJo...or] . o...o0v,] P

“«—r —

IENEREEEEEE

where Z= X Y . [_';t, is polynomial product.

The operations required to construct X(2") and Y(2"), and to pick out
the coefficients of Z are very easy and efficient on a binary computer. On most
computers there is fast special-purpose hardware for multiplication of integers up
to a certain size, and efficient routines for multiplying larger integers. These may
be used to yield a good practical program for the Boolean product of strings of
moderate length, which however has a running time that is still proportional to
to mn.

For truly large integers, the Schonhage-Strassen algorithm [5] multiplies
M.-digit numbers by N-digit numbers in a time which is O(M - log N * log log N)
for M > N, using a muiti-tape Turing machine. For our application, M = mr =
O(mlogn) and N = nr = O(nlog n). Hence:

RESULT. For a finite alphabet, the “don’t care” product of strings of lengths
m and n (m >n) can be computed with a multi-tape Turing machine in time
O(m -+ (log n)? * log log n).

7. Large alphabets and numbers of comparisons. The algorithm for ¢-prod-
uct described so far has the disadvantage that the running time increases rapidly
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with the size of the alphabet Z. It is approximately proportional to 1Z12.

By coding the symbols of Z into a binary alphabet we can use just two Boolean
products for strings of length m ¢ log {Z| and n < logIZl Provided IZI is
bounded by a power of n, this introduces a factor of just log IZl into the
running time. ~

It is interesting to observe that the Morris-Knuth-Pratt algorithm works for
an infinite alphabet, provided we take the predicate “= as a basic operation.
Our algorithm for ¢-product is not of this form and we may ask whether there
is any algorithm, with access to the strings only through the predicate “=”,
which has a computation time better than the obvious O(m * n). Under such a
strict limitation the answer is “no”, and this is easily seen by considering the prod-
uct of the two strings X =¢™7! and Y =¢"7!. All =tests have the result
true, but suppose that during the execution of some algorithm there is some test
“X; = Y;?” which is never made. The computation and output would be in-
distinguishable from that for the pair of strings dop™~! and ¢r¢"/, where
0, TE E., and o# 7, and therefore the algorithm cannot correctly compute the
string product. Hence any ¢-product algorithm of this class must sometimes
make at least (m + 1)(n + 1) tests.

The above restriction is perhaps a little severe, even if we consider the case
of infinite X; so let us allow in addition an explicit test for the “don’t care”
symbol, that is “X; = ¢?” or “Y; = ¢?”. The lower bound on the number of
tests is now radically different, for we can show that O(m + n) are sufficient.
Unfortunately we still know of no algorithm with a fofal running time less than
that of the naive algorithm for the ¢-product over an infinite alphabet.

8. Algorithm for ¢-product using O(m + n) tests. We have to evaluate
the (m +n + 1) conjunctions

Z, = A X;=Y; for k=0,°**,m+n.
i+j=k

First we determine all occurrences of ¢ in X and Y, and replace by true

any equivalence involving ¢. Possibly some of the Z,’s may thus be determined.
So far as we know the remaining symbols in X and Y may be completely
distinct. At each stage of the algorithm we shall maintain an equivalence relation
on these symbols, such that we have determined that all symbols iu the same
equivalence class are identical. We can always choose “X; =Y,?” for our next
comparison, where X; and Y; are in distinct equivalence classes, and Z;,; has
yet to be determined. If X, = Yi’ then the equivalence classes of X; and Yi
can be united, whereas if X; #Y; then Z;,; can be determined as false. If
during the course of the algorithm the former case occurs (m +n + 1) times



124 MICHAEL J. FISCHER AND MICHAEL S, PATERSON

then only one equivalence class remains, and if the latter case occurs (m +n + 1)
times then all the Z,’s have been determined. Either way, no further compari-
sons are required. Hence at most 2(m + n + 1) equality testsand m +n + 2
¢-tests are needed, giving a total which is O(m + n).

9. Ondine palindromes. A computation is performed on-line if the ith
output symbol is produced before the (i + 1)st input symbol is read. Let Z;
=1 if Xy *°* X, isa palindrome (ie.if X, *** X;=X,*** X,), and

Z; =0 otherwise. Then
Z=X X;

so Z can be computed in time O(n), even on a Turing machine, as outlined
in §83 and 6 using the Morris-Knuth-Pratt algorithm

Fischer and Stockmeyer [2] present a general procedure for converting any
off-line multiplication algorithm which runs in time 7(n) to an on-line method
taking time O(7(n) log n) when T satisfies 7(2n) = 27{n). Their construction
applies to any generalised linear product; so, in particular, the time O(n) method
above for computing Z can be converted to an on-line Turing machine program
that runs in time O(n log n).!

10. Conclusions and open problems. We have considered string-matching
problems with and without a “don’t care” symbol. In both cases a naive pro-
cedure, based directly on the problem definition, takes time proportional to
m x n where m, n are the lengths of the two strings to be matched. The
Morris-Knuth-Pratt algorithm provides a practical and elegant way to compute the
former problem in O(m + n) time, but there seems to be no obvious extension
of their algorithm to the “don’t care” case. This is partially explained by our
lower bound result which shows that O(mn) is the best possible bound unless
more information is allowed than the mere results of comparisons between pairs
of symbols. With a further basic test which explicitly detects the “don’t care”
symbol, this lower bound collapses and there is at least the possiblity of a faster
algorithm. Provided that the symbol alphabet is finite, we have demonstrated an
algorithm with a running time which is O(m* log n « log log n). The method
is indirect and not of practical value except for very large m and n; however
it shows the feasibility of algorithms which are faster than the naive procedure
for “don’t care” matching.

We have not treated at all the superficially similar problem, where a “don’t

14dded in proof. Slisenko has announced a method for recognizing palindromes in real-
time on a multi-tape Turing machine [6].
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care” symbol can “match” an arbitrary string of symbols. A good algorithm for
this would have obvious practical applications.

We have only begun to compare and contrast the computational complexity
of generalised linear products for various ® and @. There are several more, in-
teresting, structures for which the linear product is a natural operation. A study
of algorithms for linear products, based on the axiomatic properties of ® and
®, may provide valuable insight into why some products are easier than others.
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The Evaluation of Determinants by Expansion by Minors and
the General Problem of Substitution*

W. M. Gentleman and S. C. Johnson

Motivation. One of the least understood aspects of symbolic formula mani-
pulation is the problem of substitution, particularly the merits of various strate-
gies. A specific example where substitution is complicated enough to be inter-
esting, and where theoretical results can be obtained, is the problem of evalua-
ting a determinant by substitution into the Laplace expansion.

Introduction. One obvious possibility for evaluating determinants is sub-
stitution into the Laplace expansion, regarded as a polynomial form of n! terms
in n? indeterminates. The obvious way to substitute into this form requires
(n — 1) multiplications per term, a total of (n — 1)n! multiplications. Many of
these multiplications are redundant, and no advantage is taken of any collection
of like terms. Some sort of parenthesizing and grouping of terms, as in Horner’s
rule, is clearly indicated.

Many such groupings are possible. For example, when n =4, the 4!
terms

X1 1%20%33% 00 — X11%22%34%23 — X11%23%32%aa T X11%53%34%42

= X1 X,4%33%05 T X, 1%04%35% 03 — %12%51%33%04 T X10%21%34%43

X, 0%23%31%08 — X12%23%34%a1 T X12%24%35%41 T *12%24%31% a3

X, 3%51%35%00 — %1 5%21%34%22 — ¥13%22%31%aa T ¥13%32% 3454,

X%, 0%31%42 — X13%24%32%a1 T ¥14%21%33%32 — *14%21%32% a3

+x .x,.x

14%22 — X14%22%

14%22 =X, 4%3%31%42 T X14%25%32%4,

31%43 33%41 14%23%31%42

AMS (MOS) subject classifications (1970). Primary 68A15, 68A20.
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can be written, among other ways, as

() 1%25 = *12%21) ®35% 45 — ¥34%43)
— 0ey1%p5 = X15%51)®35% 04 — ¥34%a2)
+ () %4 — X1 4%21) ®35%a3 — X33%42)
+ (6%, — ¥15%2) €31% s — *3a¥ar)
— (635054 = X14%25) ®31%43 ~ *¥33%4y)

+ (6 3%,4 = X14%53) O31% 45 — X35%41)

or again as
@x35 —ayxy, taxy, ),
= @,%34 — 305, Yagxy)x,,
+ @)%, — ayx35 tagry ),
— @23, —agxy; tagxy,)x,,
where

8y = 0613%5 = X35%01)s @ =@y %55 — X 5X0)),
83 =) Xy — X14%51)y @y = (0%, — X, 3%,,),

g = (12%54 = X14%22)s @6 = ;3% — X1 4%,3)-
When such groupings are tried, the productive ones simply turn out to be state-
ments or the well-kknown general combinatorial definition of determinants, ex-
panding by minors:

DeFINITION. The determinant of a square matrix of order 1 is the entry
in that matrix. The determinant of a matrix of order n can be found by choos-
ing m less than n, and selecting m columns from the original determinant,
Consider then each of the (3,) ways that m rows can be chosen from the ori-
ginal determinant. Each row choice defines two submatrices: one of order m
corresponding to the chosen rows and columns, and one of order n — m cor-
responding to the complementary sets. The original determinant is the sum (with
appropriate signs), over all row choices, of the product of these two smaller
determinants (minors).

Any direct implementation of this recursive definition is very inefficient, as
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it leads to the repeated recalculation of small minors. Nonrecursive implementa-
tions, however, can be obtained in the following manner: Consider any rooted
binary (bifurcating) tree with n leaves labelled 1 through n (for example,
Figures 1 and 2 below). With each node in the tree (including the leaves), we
associate a set of minors, as follows: If the subtree rooted at the given node
has m leaves, we associate with this node the set of (}},) minors obtained by
all possible choices of m rows, with the column indices givén by the m leaf
names.

WW

FiGURE 1 FIGURE 2
We note the following simple properties of these minor sets:

(1) The minor set for the root of the tree has a single element, the
determinant.

(2) The minor set of leaf k¥ has m elements, which are simply the
elements of column k of the matrix.

(3) Using the above combinatorial definition of determinants we can com-
pute the minor set of a given node from the minor sets of its two immediate
descendants. In this way, every tree corresponds to a (nonrecursive) algorithm
for computing the determinant by minor expansion.

As a specific example, consider the classical method of expansion by
column minors. In this method, one computes all the minors determined by
two particular columns, then uses these to obtain all the minors determined by
these columns plus one additional column, then uses these to obtain all the
minors determined by four columns, etc. This corresponds to a tree, such as
in Figure 2, where each node except leaves has one descendant which is a leaf.
In fact, the following theorem shows that expansion by column minors is one
of the best minor expansions.

THEOREM. The minimum cost (in multiplications) of expanding an n x n
determinant by minors (using any of the above trees) is n(2"~! — 1), which
is the cost of expanding by column minors.

PrOOF. Suppose that the subtree rooted at a specific node has m leaves,
and its two descendant subtrees have k and m — k leaves, respectively, where
k <m — k. There are (},) minors of order m in the minor set of this node;
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each is obtained by forming and summing (i') products of minors from the
minor sets of the two descendant nodes. The cost (in multiplications) of pro-
ducing all (,) minors is thus (7,) ('), plus the cost of obtaining the minors
defined by each subtree.

The minor set of this node could obviously be computed by expansion by
column minors. From the preceding remarks this would cost E,-'Qz(,”) (fl) (since
k=1 ateach of the m — 1 stages). For m =n, i.e., for computing the ori-
ginal determinant by expansion by column minors, this can be summed in

closed form:
n\ [i
=2 \J 1

n
Cost (column minors) = Z

_ (n—1)
Tl T-DIe -7

We will prove this is minimal over all binary trees by inductively showing
that to compute the minor set of a node covering m leaves, the minimal cost
is E]-'Z_z(,")j. This is clearly true if m =2 or even m = 3, since there only is
one possible tree. Assume it is true for 2, 3,---, m — 1. The minimum cost
to cover m columns is this, for some k:

(X502

Our theorem is proved if we show that this cost is minimized at k = 1.
The difference between the cost for k and the cost for k — 1 is

(E) - G- Gaerren

We will show that this is nonnegative for k¥ > 2, thus k=1 is minimal.
Rewriting the above expression, what we want to prove is

-] Ch- G-

ie.,
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n! m! m!
m! (n — m)! [k!(m—k)!—(k—1)!(m—k+l)!]
n! k nl(m-k+1)
Y-k m-k+D)(-m+k—1)

n!
T (n—m)! (k- 1)! (m — k)!

1 1  (-mim-k_ @-m!E-D
k m-k+1 (n - k) n-m+k-1)
and since the factor outside the square brackets is clearly positive, we need only
consider the quantity within, which can be written as

m-2k+1 + n-k - n-m+k-1 -
km-k+1) n-m n—-m ‘

It is convenient to rewrite this in terms of s=n —-m and t=m — 2k as

t+1 k+t+sN " fe+s-\'
Dk, s, ty=——— + -
kk+t+1) s s

which we must prove nonnegative for k= 2, s =20, ¢ = 0. We will do this by
considering five cases.
Casel. s=0,t20,k > 2.
t+1 t+1
Dk,sst)y=—"m— +1~1=—"—7
k(k+t+1) k(k+t+1)
which is clearly positive.
Casell. s=1,t20,k=>2.
t+1 + 1 1

L S

CaseIll. s=2,t20,k=> 2.

-1 -1
0 k+t+2) (k+l)
Dl s. D= gt + 1) 2 2
t+1 2 2

“kkri+ DT EF A NEFE+2) T KEFD

=D E =N+ E -+ D)
- k(e + Dk +t+ 1)K+t +2)
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and since this is a polynomial in ¢ which, for any k 2 2, has nonnegative
coefficients, it is nonnegative for ¢ = 0.
CaseIV. s23,t=0,k=2.

-1 -1
D(k,s,t)=l—+ k+s _ k+s-—1
k(k+1) s s

_ 1 + k! s! &k~ 1Ds!
kk+1) E+s) (E+s-—1)

- 1 +k!s.' 1 k+s _ 1 sk!s!
kk+1)  (k+s)! [" k| kEk+1) k@E+s)
52 [_1_ k+ 1) ¢s-1)

il & + 5)!
Thus it suffices to show (533) > s2. But this follows since

k+s 25 s + 2 , G+ +Ds—652 ss—1)(s —2)
k+1) " ° 3 )78 7 6 B 6

which is nonnegative for s = 2.
CaseV. s23,t21,k>2.

-1 -1
Dl s >t (k+s—l) 2 _(k+2)
k(k + 2) s kk +2) 3 :

But

2 (k+2)—1_ 2 6 __2 [_.3
Kk+2) \ 3 ‘k(k+2)'k(k+1)(k+2)‘k(k+2)[_ET]

which for k> 2 is nonnegative. Q. E.D.

Note. The above proof shows expanding By column minors to be opti-
mal, but it is not the only optimal scheme. The order in which the columns
are introduced is arbitrary, and, moreover, the role of columns and rows can
obviously be interchanged.

Conclusions. At first glance, the theorem above seems rather negative:
Everyone knows that expansion by column minors is too expensive to be a
practical algorithm, and we have shown no other form of minor expansion is
better. However, the well-known expense of minor expansion is an asymptotic
statement, and for small n (less than 6) minor expansion is actually cheaper
than Gaussian elimination. Moreover, the assertion about expense is based on
an operation count that assumes all multiplications are equally expensive: In
computations of symbolic algebra this is far from true, and determinant evalua-
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tion by minors is often the best way. Thus the study of minor expansion as a
practical algorithm is relevant, and in this context the result is pleasantly sur-
prising—surprising, because we usually expect algorithms associated with bal-
anced trees to be preferable to those associated with unbalanced ones, whereas
here the most unbalanced tree is best; and pleasant because expansion by column
minors is certainly the simplest minor expansion to implement. Moreover, we
get an extra benefit: The implication of the results on polynomial powering
[1] is that it is generally better, given the choice, to perform operations between
one derived quantity and one quantity from the original problem rather than to
perform operations between two derived quantities, and of course that is what
distinguishes expansion by column minors. (The advantages can be quantified
here too, by only slight changes in the proof above.)

What does all this have to do with the general problem of substitution
into an arbitrary form? In determinant evaluation we fortunately had a set of
groupings that we could study theoretically. In the case of an arbitrary form,
it is not clear what strategy to use in grouping terms. Horner’s rule is satis-
factory if the form is a univariate polynomial, but if the form is multivariate,
the obvious recursive generalization of Horner’s rule (regarding polynomials in
n — j variables as polynomials in 1 variable with coefficients that are poly-
nomials in n — j — 1 variables) is unsatisfactory since it can involve recomputing
common subexpressions. On the other hand, it is most unlikely that any prac-
tical stratégy can be more complicated than augmenting the obvious recursive
scheme with a pattern match to recognize common subexpressions. Such strategy
has the advantage for symbolic computation referred to above, i.e., that all op-
erations are performed between a derived quantity and one from the original
problem, but what other assurance have we that it is reasonable? One such is
that this strategy, applied to the Laplace expansion, leads to what is effectively
expansion by column minors.
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The Complexity of Linear Approximation Algorithms*

Martin H. Schultz

1. Introduction. The computation of simple approximations to general
functions or data is a very common activity at most computing centers. In this
paper, we discuss the complexity of such computations. We discuss questions
which are direct analogues of those currently being duscussed in “concrete”
complexity and computational combinatorics. Specifically we will concentrate
on four themes: (1) the general problem is computationally difficult; (2) adaptive
or artificial intelligence algorithms are computationally difficult; (3) subproblems
are computationally easy; and (4) computationally easy ‘4pproximate” algorithms
exist.

In this regard, the emphasis of this paper is somewhat different from that
of the recent paper of J. Rice [14] on a similar topic and the work of J. Traub
and others on “analytic computational complexity” (cf. [18]).

In §2, we show that for all reasonable mathematical models, linear approxi-
mation algorithms have infinite computational complexity (for the worst case
analysis). Moreover, we show that nonlinear, adaptive algorithms are of no
assistance in the worst case.

In §3, we derive lower and upper bounds for the error in approximating
an important class of smooth functions defined on the unit interval {0, 1]. For
the class of functions under consideration, we show that the subspace of contin-
uous, piecewise linear polynomials with n uniformly spaced knots is an
essentially optimal n-dimensional subspace. This demonstrates theme (3).

In §84 and 5, we concentrate on theme (4) and study computationally
easy, approximate mappings into subspaces of continuous, piecewise linear
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polynomials. In §4, we introduce and study the mapping which yields a discrete
Tchebycheff approximationand in §5 we consider the familiar interpolation and
least squares projection mappings. Finally, in §6, we consider the extension of
the material of §5 to the approximation of functions of two variables defined
on a square domain.

Most of the results of this paper can be extended to subspaces of piecewise
polynomials of arbitrary degree. What remains is a verification of many technical
details many of which have already been provided by deBoor (cf. {2] and [3]).
However, our goal in this paper is to present a point of view rather than mathe-
matical generality and virtuosity. Hence, we consider only the technically simple
case of piecewise linear polynomials.

2. A discouraging complexity result. The general mathematical framework
for our study of linear approximation algorithms will be infinite-dimensional real
Banach space B, i.e., an infinite-dimensional complete, normed, vector space
over the real field. Our prime example will be the space of all real-valued, con-
tinuous functions f defined on the unit interval {0, 1] with the maximum norm
Il = max {If(x)| | 0 < x < 1}.

If S isan index set, an algorithm for linear approximation in B consists
of a set of finite-dimensional subspaces of B, {B(s)l s € S}, and a set of associa-
ted mappings {M(s)| s €S} such that M(s): B - B(s). Our prime example of
S will be the set of all ordered n-tuples A: 0=x, <x, <+**<x,=1 and
our prime example of B(s) will be the n-dimensional space L(A) =
{I(x) € C[0, 1]| I{x) is a linear polynomial on each element [x;, x;,,], 1<
i<n-1}, where n>2.

We input as data to the algorithm the element s €S and the element
b € B. As output, we obtain M(s)b which we hope is a “good” approximation.
By “good” we mean that the error E(d, s) = |Ib — M(s)bll is sufficiently small.

Generally we are given a tolerance € > 0 and we must select s to guaran-
tee that

@.1) E®,s)<e.
For a worst case analysis, we wish to have (2.1) for all » € B. Hence, we want
(22) E(s)=sup{E®, s) | b EB, Ibll=1} <e.

Clearly we may view €~! as a fairly accurate parameterization of the computa-

tional difficulty of the approximation problem. If dim B(s) > dim B(t) for
5, t €8, we expect that E(s) < E(t) and cost M(s) > cost M(z).

Recent work in complexity theory leads us to investigate the dependence of
E(s) on the dimension of B(s). In particular, we would like to find a space
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B and a linear approximation algorithm such that E(s) = O((dim B(s))"?) as
dim B(s) - o, thus giving polynomial complexity. However, it may be that the
best we can do is E(s) =O((log dim B(s))"') as dim B(s) -> o, thus giving
exponential complexity.

Unfortunately this problem is a disaster; it has infinite complexity! We will
show that we always have E(s) = 1. This will show that no matter how clever
we are a priori and no matter how much computer time we invest, there will be
inputs for which our algorithm computes approximations which are no better
than the zero of the Banach space.

THEOREM 2.1. Forall B, {B(s)|s€S},and s €S,

E(s) = sup{llb — M(s)bll | b € B, Ibll = 1}=1.
ProoF. It suffices to show that for all s € S, there exists b €B such
that |bll=1 and E(s, b)=1. Since B(s) is a closed, proper subspace of B,
there exists a vector y & B(s). If z denotes a best approximation to y in
B(s), then the vector b =(y —z)/|lv — z|| has the necessary properties. Q.E.D.

There are a number of valuable lessons to be learned from this result. First,
we must take our input data from dense, nonclosed subspaces of Banach spaces.
Second, worst case analyses may be misleading — after all, people do successfully
use linear approximation algorithms in practical situations.

We might hope to rescued from our difficulties by resorting to nonlinear,
adaptive algorithms. However, we will show that these approaches will not help
as far as a worst case analysis goes.

We can model nonlinear, adaptive algorithms by assuming the algorithm
“chooses” both s €S and Mb € B(s). For example, we may consider L(A),
where A isa set of n knots, and allow our algorithm to vary the n —2
internal knots.

However, under reasonable conditions (which are satisfied in the above
example), we can prove an analogue of Theorem 2.1.

2.3)

THEOREM 2.2. [f the closure of B(S)= U,csB(s) is a proper subset of B
and M: B -> B(S), then

24) E(S) = sup{lb - Mbll | b €B, lbll=1}=1.

PROOF. It suffices to show that there exists b €B with Ibll=1 and
12.5) d®, B(S)) = inf{llb—yIl | y € B(s), s€ES}=1.

Assume (2.5) is false, i.e., there exists 8 <1 such that

2.6) d®, B(S) <8
for all » €B with |bll= 1. Since the closure of B(S), cI(B(S)), is a proper
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subset of B, there exists y & cl(B(S)). Let {¥,}yx=; C B(S) be such that
I =7l > v, BS)) as k> oo,

The sequence of vectors ¥, = — ¥, )/l =yl k = 1,has v ll=1
and, by (2.6),

2.7 dv,. B(S)) < 8.

Thus, d(y -y, B(S)) <8lly —y,ll. Hence, d(y, B(S)) =d(y —y;, B(S)) <
8lly — y; Il and taking the limit as k — o, we obtain d(y, B(S)) < 8d(y, B(S))
<d(y, B(S)), which is a contradiction. Q.E.D.

Thus, we have shown that, for a worst case analysis, nonlinear adaptive
algorithms do not help us. Of course, for particular classes of problems they
are very effective (cf. {13]).

3. Lower bounds. The results of §2 suggest that we should restrict our
inputs f to our approximation algorithm if we hope to achieve some reasonable
results. In 1936, the Russian mathematician Kolmogorov (cf. [8]) had the
brilliant idea of studying the quantities
3.1) d,(4) Eglnf iup binf i 5= b,l,
where A is the set of allowable inputs, n is a positive integer, and the infimum
is over all n-dimensional subspaces B, of B. Once we know the quantities
d,(A4), we have a hold on lower bounds on the complexity of linear approxima-
tion algorithms.

For the remainder of this paper we will restrict ourselves to the special
case of B=C[0, 1] with norm Ifll= max{Ifx)I|0<x <1} and A=
{flfewH =@©,1) and IIDfI<1},ie., 4 is the set of absolutely continuous
functions f with ||IDf]l € 1. Following a technique given in [9], we may prove
a lower bound due to Tihomirov [17].

THEOREM 3.1. d,(4) = 1/2n.

Proor. Let B, C C[0, 1] be any n-dimensional subspace spanned by
$,(x), ***, $,() and A, ,: 0=x, <x,<°+<x,,,=1 be the uniform
partition with uniformly spaced knots, x = (- 1)/n, 1 <i<n+1. If 4 is
the n X (n + 1) matrix given by 4 = [a,,] = [¢,(xj)] , the linear system

(32) Ac=0

has a nontrivial solution ¢ such that Zn¥!j¥|=1.
If \,=signe;, 1<i<n+1,choose I(x) EL(A,,,) such that
sign I(;)=N, 1<i<n+1,and |i(x)|=1/2n. Clearly I(x) €A.
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Moreover, for all a € R, we have

n n+1 n
ul =X > T8 10D - X apdulx)
k=1 i=1 k=1
n+1 ~n n n+1 ~n n+l’\l
213 )2 g 2 )= | X dxy)
i=1 k=1 i=1 i=1
> 1 n+1 1
27 igl lali _ﬁo Q.E.D.

A particular n-dimensional subspace is L(4,) and as a corollary of the
Peano kernel theorem (cf. [16]), we have the following upper bound.

Since %(n—1)"! = %n~! + %(m(n - 1))}, we have that L(4,) is essen-
tially an optimal n-dimensional subspace of C[0, 1] with respect to A.

4. Discrete Tchebycheff approximation. In view of the results of §3, we
will concentrate on finding “good” mappings M(A): C[0, 1] - L(A) for all
sets of knots A: 0=x, <x, <-- <x, =1. By “good” we mean that
(a) there exists a positive constant K such that

@.1) If = M(A)I| < Kd(f, L(A)), for all fEC[O,1] and all A,

and (b) M(A)f is inexpensive to complete,i.e., the number of function evalua-
tions and arithmetic operations needed to compute M(A)f is O(nP), p a posi-
tive integer, for all f€ CJ[0, 1].

In this section, we describe and analyze an algorithm, which in the context
of polynomial subspaces is due to de la Vallée Poussin (1919) (cf. [4]). If
Q is any subset of [0, 1] and f€ C[0, 1], we will use the notation [ifllg =
max{If(x)| |x €Q}. In particular,if Y= {y, |0<k<m}C[0,1] isa
discrete point set, then we may consider the discrete Tchebycheff problem by
finding Iy € L(A) which minimizes |if - Illy = max,cy (%) =) over all
1€L(A) and we define My(A)f=1y. The problem of constructing Iy is
equivalent to a standard linear programming problem (cf. [15]), which may be
solved by the simplex algorithm.

We now analyze this algorithm.

THEOREM 4.1. If

Y ,=YN[x,x,,,]#0, |Y;|= max min |x - y|,
! b ! x€[x; xi41] yEY;
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Y <%@xpp,—x) 1<i<n-1,

then
If = MyA)fI < [2(1 = 20x,y = %,V MY, )71+ 11d(f, L(A)Y)
for all fECY0,1].

To prove this result we use a basic inequality of A. A. Markov (1889) (cf.
[11]) for polynomials. We state and prove Markov’s inequality for the decep-
tively simple case of linear polynomials.

“2)

LemMA . If I(x) is a linear polynomial on {a, b], then
“3) DI, 5y < 2(b —a)"lllllla, bl
ProoF. We clearly have
DIx)l = (b —a)~ B ) -~ @) < (¢ - a) ' (HO)] + V@)))
<20 -ay W, ,;- QED.

PROOF OF THEOREM 4.1. Let ¢ € [x;, x,,,] besuchthat () - Iy ()=

- Iyll where I is a best approximation to f in L(A). By the mean value
theorem,

\y s
s ~N
S W -lyly, + 1Y WDQ = Iy, x7411"
Using Markov’s inequality (4.3) to bound the right-hand side of (4.4), we have

@“4)

~n ~ 1 ~
(4-5) - IY"[xi, xi+1] <W _IY“Yi + 2(xi+l_xi) IYiI - IY"[x;, *i+11
and hence

7 1y n-1p”
4.6) [ _IY"[xi, xi41] SO =204 ,—x) 1Y, D7 W _Iy“yi-

Since M~ flly, < =11l and Wy—fly, < I~ flly < I~ £1l, we have, from
inequality (4.6),

~N Y]
W=yl =W =Tyl %000

< (U =205 1= 2 YD (0 Flly, + I = Iylly)
< (1= 205, 1= %) Y, LU = £+ 1F - Iy D
<201 - 2xp - %)Y, ) AL

Combining (4.7) and the triangle inequality, we have

@.7)



LINEAR APPROXIMATION ALGORITHMS 141

~, [AY]
W=t <=1 1+ W - Iyl
<1+ 200 =20, ,~ %Y, We-11,

which yields (4.2). Q.E.D.

Unfortunately we can show that the simplex algorithm for constructing Iy
will require O(n?) arithmetic operations (not counting function evaluations).

As for function evaluations, there are two regimes to investigate. The first is
where we can compute f at arbitrary points and we wish to economize, i.e.,

we want to minimize the number of functions evaluations. The second is where
we are a priori given large quantities (relative to 7) of data or approximate func-
tion evaluations— a situation typically arising in the analysis of experimental data
which we wish to smooth and compress.

We will discuss the first regime in the remainder of this section. The second
regime will be discussed in §5.

By Theorem 4.1, we need [Y;| <%(x;, ,~x;) forall 1<i<n- 1which
implies that we need at least two function evaluations in the interior of each
element [x;, x,,,]. By symmetry, we minimize the coefficient of the right-
hand side of (4.2) by evaluating the function f at the points %(3x; +x;,,)
and %(x; + 3x,,,). With this choice of evaluation points for each element,
(;41= %) '1Y;1 =% and using (4.2) we obtain the following result:

COROLLARY. If Y= {yp,}3%, where y,, , =%(x; +x,.,) and

4.8) If — My{B)fll., < 5d(f, L(A))-

This algorithm requires 2n evaluations of f.

It might be rather surprising that we can obtain a better result with essen-
tially half of the function evaluations and no arithmetic operations! Suppose we
evaluate f only at the knots {x;}}L,, i.e., Y= A. Then the preceding analysis
does not quite hold since |Y;| = %(x,, ,~ x;). However, in this case, the discrete
Tchebycheff problem is trivial to solve. In fact, its solution is the piecewise
linear interpolate I, (o)f of f Thatis, if x € [x; x;4,1,

MA(A)f(x) = IL(A)f(x) =@ ! [f(xi) 41 =) +f(x1+1) - xi)] .

Fortunately, by a different technique, we can prove a version of (4.2) for
this set of data.

Tueorem 4.2. If fE€C[0, 1],
(4.9) W = Icayfll < 2d(f, L(A))-
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ProOF. If f€ L(A), the result is trivial. Otherwise, let x € B, %4041
be such that |f(x) = I (o)) = If = Ip,a)f Il
If e(x) =f(x) = I (a)f ), then clearly e(x)) = e(x;,,)=0 and
ianEL(A)IIf- l= inf,eL(A)lle = I|l. Thus, it suffices to show that, for all
1€ L(Q),
lle =211 = lle = Tlgy,, x;y 1 = %llelx,, ;0 1 = %lell

If le(x) = I > Y%llell,, «,,,1 forall I €L(A), we are done.
Otherwise, e(x) and /(x) have the same sign and [I(x)| > %llell;, p xip1l’
This implies that 1)l = %llell,,, «,, ) for k=either i or i +1.
Since e(x;) = e(x,;, ;) =0, this implies that either
Ie(xi) - I(xi)l = %"e“[xi' xi41] or Ie(xi_,_l) - I(xi+l)| 2 %“e“[xi, xi+1l
QED.
This is the ideal situation for those problems in which we can evaluate a func-
tion arbitrarily. This interpolation algorithm has additional desirable features,
such as linearity, which will be considered in detail in the next section.

S. Least squares algorithms. The problems in which we have a large
quantity of data which we wish to smooth and compress have not been satisfac-
torily resolved as yet. Moreover, it is of further interest to have a projection
algorithm, that is, one based on projection mappings. To be precise, a linear
approximation algorithm is said to be a linear projection algorithm if and only
if the associated mappings M(s) are linear and are such that M(s)y =y for all
¥ € B(s), i.e., the mappings M(s) are linear projectors.

Following ideas of Kantorovich, Lax, and deBoor (cf. {7]), we have the
following equivalence result for linear projection algorithms:

THEOREM 5.1. Let the sequence of subspaces {B,|l <n <o} be such
that lim,,_,,,‘,inf,,"e By b =b,1=0 forall b €B and the sequence of mappings
{M,| 1 <n <o} be linear projectors which are consistent, i.e., there exists a
dense subspace D of B such that lim,_,.IM,b —bll=0 forall b €D. The
Jollowing conditions are equivalent:

(a) There exists € >0 such that |M,ll<e forall n

(b) b -MblI<(1+€)d, B,),forall n and b EB.

) b-MpblIl->0 as n—>o forall b EB.

ProoF. (a) = (b) Forall g €B,,
b —M,bll < IIb -gll + lig - M,bll = lIb - gll + M, - I < +e)lb - gl

(b) = (c) is obvious.
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(c)=(a) If b €B, then {IM,bll |n>1} is bounded. For otherwise
there exists a sequence of elements M, lb, ***, M, b whose norms tend to
infinity with contradicts convergence. Condition (a) follows from the uniform
boundedness principle of functional analysis. Q.E.D.

This equivalence theorem is quite general. Let us consider some elementary
applications.

ExampLes. (1) B=C[0,1], B, =L(A), and M(A)=1I; (. Then
W1ca)ll =1 and hence WIf = 1Ip(a)fll <2d(f, L(A)), which is the result of
Theorem 4.2.

(2 Let B=EC),p=4, X A, be the product grid on the unit square
U. and consider the tensor product space B, = L(p) = L(A,) ®L(A,). If
Iy (o) denotes the two-dimensional interpolation mapping into L(p) (cf.
[16]), then W, ,)ll =1 and hence |If — 1} (,)fll < 2d(f, L(p)).

(3) Let T be a triangulated polygon, L(T) be the space of continuous,
piecewise linear polynomials with respect to T, and 7 L(T) be the obvious
mapping of B= C(T) into By =L(T). Then, once again Wrerll=1 and
Wf = I, (ryfll < 24(f, L(T)).

We now consider least squares algorithms. Given f € C[0, 1], we determine
I € L(A) which minimizes f§ f5(fC) —1(x))* dx = If - 1I3 over 1€ L(A);
ie, M= P(A)f is the orthogonal projection of f onto L(A). Expressing
M)y = zL lB’ 4i00), where 1,(x) is the unique element in L(A) defined by

L) =8 E{

the minimization problem is equivalent to solving

1 if i=j,
0 otherwise,

(.1) AR =k,
where A is the n X n matrix given by
[x,/3 B
. . . . . o
(52) A= G =x;_ W6 Cigp1— X1/ 3 4y —x)/6
0 * ¢ ) (1 _xn—])/3
and

53) k= [f;f(x)z,(x)dx].
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For the case of a uniform mesh with A =x,, —x,, 1<i<n-1,

0

2
1.

LI -y

A=

1}

[« W]
ey

0

Using the elementary fact that IIZ7, 8,1l = IBll., = max, ¢;<, I8, for all €
R", we can obtain the following result for the mappings P, :

THEOREM 5.2. For all f€ C[0, 1], [f — PofIl < 4d(f, L(A)).

PROOF. If D=[d,] is the diagonal matrix with d;, =3x;',d,, =
30> ', 2<i<n-1,and d,, =3(1-x,_,)"',ie, D! isthe
diagonal of A, then AR’ =k implies

(5.4) DAR = Dk,

where DA=1+M, Ml = max, ¢;c,Zy=y Imy| =%, and IDKll,, <3IIfIV2.

It follows that (DAY ll.. = I + M)y~ ||, <2 (cf. [1]), and hence that
I@' ll.. < 3lifll. The result now follows from Theorem 5.1. Q.E.D.

What about computing (5.4) and its solution? If we can compute the integrals
needed to evaluate k, then we need only O(n) arithmetic operations to compute
the linear system (5.4). Moreover, we can solve the tridiagonal linear system in
O(n) arithmetic operations by means of Gaussian elimination for tridiagonal
matrices (cf. [1]).

From the viewpoint of round-off error analysis, it is important to know about
the conditioning of DA. In this case, it turns out that the condition number of
DA, ie.. (DAY, |IDAll,, is uniformly bounded (independent of A) by 2:3 =
6. Thus, we have an ideal situation.

To handle discrete data, we suggest an algorithm of Patent (cf. [12]). We
note that the data occurs only in the right-hand side of the linear system (5.1).
Thus, if the data is at Y, we choose A CY, interpolate f at Y by IL(y)f,
replace f in the right-hand side of (5.1), and compute the resulting integrals whose
integrands are piecewise quadratics by either symbolic methods or Gaussian quad-
rature with two nodes in each element defined by Y. That is, we solve the linear

system R
4§ =k= [f;IL(Y)f(x)li(x) dx],

and let M Q)= 2;'=11§ 4;(x). We can prove the following error bound for
this procedure.

THEOREM 5.3. If A CY, then, forall fE€CJ0,1],




LINEAR APPROXIMATION ALGORITHMS 145

(5.5 If - M) < 4d(f, L(D)).

PROOF. By Thoerem 5.1, it suffices to show that [I#, Il < 3; since
ACY,L@A)CL(Y) and @) =Pyl yy.

Hence, IM(A)Il < IPAll Wy (y)ll <31 =3. QED.

6. A two-dimensional extension. In this section, we consider the problem
of approximating a function f(x, ¥) of two variables on the unit sphere square
U by means of bilinear functions in L(p), where p =4, X A, is a product
rectangular mesh. Our least squares algorithm seeks P,f= M, Y)E L(p)
which minimizes

6.1) [oJolf G ) ~ix, y)Y dx dy

over I €L(p). If M, y)= 2;'=12;'=IB' ,ﬂ,(x)ll(y), then it is easy to show that
B’ = B'"(,_l).,_l = B’,,, 1 €1, j < n, is the unique solution of the linear system

(6.2) A, ®48 =k,

where 4, and A, are the one-dimensional least squares matrices with respect
to L(A,) and L(A,) respectively and A, ®4, is the Kronecker product, i.e.,

ayy byl « - ay,[byl

eyl ® b1 =\ . E L
an] [bi]] e ann [bi]]

Note that we have used the “natural ordering along vertical lines of p” for the
solution vector B The matrix A, ®A, issparse. In fact, it has only nine

nonzero diagonals and a band width of n + 2. For the special case of n =2,
its associated graph is

Of course, we would like to prove an error bound which is a two-dimensional
analogue of Theorem 5.2. We may do this with the aid of some elementary
results about Kronecker products.

THEOREM 6.1. For all f€ (D),
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(6.3) If = P,fIl < 10d(f, L(0))-

PROOF. If D, and D, are the diagonal matrices defined in the proof of
Theorem 5.2, then

0,4, ®D 4 ) =D, ®D,) (A, ®4,) = (D, ®D,k,

where we have used the fact that the product of tensor products is the tensor
product of the products (cf. [10]). As in the proof of Theorem 5.2, D, 4, =
I+M, and DA, =1+M, where Ml =5/4. Hence, D, A, ®D,A, is
not diagonally dominant. However, the inverse of a tensor product is the tensor
product of the inverses and the eo-norm of a tensor product is less than or equal
to the product of the °c-norms. Thus

IDA, ® DyA, ) e < MDA, IliDy A, oy < 2:2 =4

Moreover, Ikll., <9IIfll/4. Hence, IP,fIl = lIfll, <491fI/4=9IIfll, and the
result follows from Theorem 5.1. Q.E.D.

If the data is given as a discrete function on a rectangular grid Y including
p as a subset, we may prove a two-dimensional analogue of Theorem 5.3. The
details are left to the reader.

An interesting and important issue is the choice of algorithms for solving
linear systems of the form (6.2). If we use band or profile Gaussian elimination,
we need O(n3) storage locations and O(n*) arithmetic operations (cf. [6]). If
we use sparse matrix techniques, then the best we can do is O(n?ln n) storage
locations.and O(n3) arithmetic operations (cf. [S] and [6]). These latter results
hold for J. A. George’s “nested ordering” of the unknowns.

However, using the special structure of the equations, we can achieve an
“alternating direction” direct method which requires O(n?) storage locations and
O(n?) arithmetic operations. To start we observe that it suffices to solve the
coupled systems

(64) (®4,)w=k,

©.5) A, ® DF =w.
In fact, if w and B satisfy (6.4) and (6.5), then (I ® 4,) (4,® P =
(I ®4,)w=k. But

y 0

194,=| °,

0 4,
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is an n X n block diagonal matrix with n X n blocks. If we partition w and
k into the corresponding n-block vectors, we have

(6.6) Aw, =k, 1<I<n.

Moreover, each system in (6.6) can be solved with O(n) storage locations and
O(n) arithmetic operations. Since there are n such systems, we need a total
of O(n?) storage locations and O(n?) arithmetic operations to compute w.

To solve (6.5) efficiently, we define E and w by reordering the
components of 3‘ and w to correspond to the “natural ordering along
horizontal lines of p,” eg., ﬁn(j__l)_,_, = 3; , 1 €1, 7 <n Then, (6.5) may be
rewritten as

6.7 I®A4)8 =w.

This system may be solved the same way we solved (6.6) with O(n?) storage
locations and O(n?) arithmetic operations, and B} ,1 < i,j<n, maybe
reconstructed from ﬁ .

A moral of this analysis is that a sparse linear system with a special structure
may often be solved more efficiently by means of a special algorithm than by
general sparse matrix algorithms.

Acknowledgement. The author is grateful to Professor S. C. Eisenstat for
many helpful discussions regarding the content of this paper.
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Computational Complexity of
One-Point and Multi-Point Iteration*

H. T. Kung and J. F. Traub

Abstract. Let ¢ be an iteration for approximating the solution of a
problem f. We define a new efficiency measure e(yp, f). For a given problem
f, we define the optimal efficiency E(f) and establish lower and upper bounds
for E(f) with respect to different families of iterations. We conjecture an
upper bound on E(f) for any iteration without memory.

1. Introduction. Let ¢ be an iteration for approximating the solution of
a problem f. We define a new efficiency measure e(yp, f). The efficiency mea-
sure gives us a methodology for comparing iterations as well as permitting us to
derive theoretical limits on iteration efficiency.

For a given problem f, we define the optimal efficiency E(f) over all ¢
belonging to a family ®. We establish lower and upper bounds for E(f) with
respect to different families of iterations. We conjecture an upper bound on E(f)
for any iteration without memory.

We summarize the results of this paper. Basic concepts are given in §2 and
our efficiency measure is defined in §3. In the next two sections we establish
lower and upper bounds on the optimal efficiency for solving a problem with re-
spect to important families of algorithms. A conjecture on optimal efficiency is
stated in §6 and a small numerical example is given in the last section.

2. Basic concepts. We work over the field of real numbers. Let o(x) be
a function and A, be a procedure which computes the value of o(x) for any
given x. (We write A\ for A, if there is no ambiguity.) Let a be any number.
We say Z = (0, \) is an algorithm for approximating a if the sequence {x,},
generated by x;., = o(x;), converges to a whenever x, is chosen near a,
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and if o(x;) is computed by the procedure A for all i Z = (0, A) hasorder
of convergence p(o) if

lim 22

i e ) g

exists and is nonzero. We measure the goodness of the algorithm Z = (g, \) by
p(0) and define the efficiency of the algorithm Z = (o, A) to be

@) «z) = EED),

where c()) is the cost of performing the procedure A. In this paper we con-
sider only superlinear convergent algorithms, that is, p(¢) > 1. All logarithms
are to base 2.

For any fixed positive integer n, consider the algorithm Z, = (0, A,,)
where 0, =00 00 ' 00 (¢ occurs n timesand 0o o denotes composi-
tion) and N, is the procedure which computes o,(x) by

Yo =X,
Yigr =00, i=0,---,n—1,

0,(x) =y,

with o(y;) being computed by A for all i. One can easily check that p(o,) =
p"(0) and c(),) = nc()). Note that

log p(0) _ log p"(0)
N ned) -

Therefore, e(Z)=e(Z,) for any n This invariance is clearly desirable for any
useful efficiency measure, since Z, is just the algorithm which repeats Z n
times and hence T and Z, must have the same efficiency. Gentleman [1]
shows that if any efficiency measure satisfies this invariance property then it must
be of the form (2.1) or a strictly increasing function of that form. Hence (2.1)

is essentially the unique way to define an efficiency measure. Furthermore, Traub
[8, Equation C-11] shows that if the efficiency measure has the form (2.1) then
efficiency is inversely proportional to the total cost of approximating @ by the
algorithm. More specifically, let X!, =2 be two algorithms for approximating

a and let k(Z!), k(Z?) be the total costs for generating two sequences which
start with the same initial approximation and terminate when some fixed number
of correct digits of a have been calculated. Then

(22 K(Z1)/K(Z?) ~ e(Z)/e(Z").
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Therefore, it is desirable to have algorithms with high efficiency. An|algorithm is
called optimal in a certain class of algorithms if it has the highest efficiency among
all algorithms in that class.

We now consider how to define the cost c(A). Paterson [7] defines e(d)
as the number of multiplications or divisions, except by constants, needed to per-
form the procedure X. We call the associated efficiency the multiplicative effic-
iency. Kung [3] shows that unity is the sharp upper bound on the multiplicative
efficiency, and Kung [4] uses the multiplicative efficiency to investigate the com-
putational complexity of algebraic numbers. In this paper, we define c(\) to be
the number of arithmetic operations needed to perform the procedure \.

3. Efficiency measure for iteration. In the previous section we have defined
the efficiency of an algorithm for approximating a number a. More specifically,
we now study the efficiency of an algorithm for approximating a simple zero o
of a function f€ D, where D is the set of analytic functions f which have
simple zeros @, We consider algorithms Z = (0, \) where 0 =9(f), ¢ isa
one-point or multi-point iteration and f€ D. (See Kung and Traub [5].) If ¢
is a k-point iteration, k=1, 2,+ -, then y has the following property:

There exist nonnegative integers d,, - - -, d;_, and functions

Ui 1005007 ’ygo“;’ REFUPREL ’J’{iiu)
of 1+ Z|_,(d;+ 1) variablesfor j=—1,-+, k—1 such that, for all fED, if
( zo(x) =x, x belongs to the domain of ¢(f),

@3.1) | Y 100) = FO(z(x)),

2410 = Uy 052300+ YO 3PAED e Y @),

\ forj=0,---,k—l,i=0,---,di,
then
(3.2) ANx) = 2,).

In this paper we assume that

(3.3) all u; are rational functions;

(4 if f is transcendental, we use a rational subroutine
" to approximate f @ i> 0, whenever @ s transcendental;

(3.5) all fO@(x)) are algebraically independent.
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Assumption (3.5) means that we are not allowed to use any special property
of f. In other words, we consider “general” f.

Recall that N (= A,(;)) is a procedure which computes the value of
o(fXx) for any x. Because of (3.5), A must compute o(f)}x) according to
(3.1) and (3.2). Let afd),j=1,- -, k, denote the number of arithmetic
operations needed to compute u(¥o; ¥y, "+, y{,‘__‘ +1) for given

_ 7 i=1 o
0o: Y%+, ¥ Y +1) by the procedure A. Moreover, if f@ is rational, let
¢(f®) denote the number of arithmetic operations for one evaluation of f®;
otherwise let c(f¥) denote the number of arithmetic operations used in the
rational subroutine which approximates f(). Then the total number of arithmetic

operations needed to perform the procedure A is

Kk
M =Y vl + 3 a)
i>0 i=1

where v(y) is the number of evaluations of f®) required by .

If p(y) is the order of convergence of the iteration ¢, then by definition
(2.1) the efficiency of the algorithm (o(f), ) is

log p(p) log p(y)
L) = =5 = .
CON=T0)  ~ Zmou@rt ™) + Z 100

We define ey, f), the efficiency of the iteration ¢ with respect to the problem
5, by

ey, ) = sgp e(e(f), V.

Let
k
a(p) =min 3. 2 ).
i=1
Then
36 . 1) = 5Bl
’ ’ Zis ovi(‘p)c(f(')) +a(p)”

This is the basic efficiency measure used in this paper.

Define Z;, gvi(w)e(f @) to be the etaluation cost of ¢ with respect to f
and define a(y) to be the combinatory cost of . The total cost, which appears
in the denominator of (3.6), is the sum of these two costs.

Let

a7 ¢, = min c(f ).
>0
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In this paper, we refer to c, as the problem complexity. Let

X o) = 3 v

>0
Then, by (3.6),

log p(v)
¢ D < s + o)
This gives an upper bound on e(yp, f).

The efficiency measure defined by (3.6) is the first one to include both
evaluation and combinatory costs. Ostrowski [6, Chapter 3] defines efficiency as
p(@)1®) where (y) is defined by (3.8). This amounts to neglecting a(yp) and
taking ¢(f¥) to be unity for all 7 in (3.6). Our efficiency measure, defined by
(3.6), does not take into account rounding errors or truncation errors caused by
rational approximations for transcendental f@, i3 0.

The following two examples illustrate the definitions.

ExXAMPLE 3,1 (NEWTON-RAPHSON ITERATION).

W) = x = fx)f ().

This is a one-point iteration with p(p) = 2, vy(w) = v,(¥) = 1, and a(y) = 2.
Hence

1 1
e(‘p’f)=c(f)+c(f’)+2’ e(‘p’f)<§-cf—+3'
EXAMPLE 3.2,
Zy =X,
21 =29 _f(zo)/f’(zo),
_ R ) o)
) =241 " ey - Fe )l Feo)

This is a two-point iteration with p(v) = 4, v4(w) = 2, v,(9) =1 and
a(p) = 8. (See Kung and Traub [5, §5].) Hence

2 2
€ =R tar) + 8 e(w,f)<3cf+8,

It is natural to ask for a given problem f what is the optimal value of
e(p, f) for all ¢ belonging to some family &®. Define

E (2, )= sup {ep, /)l uy) = n}.

pEP
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Thus E, (®, f) is the optimal efficiency over all ¢ € & which use n evalua-
tions, Define

E(@®,f) = sup {En((p’f)l n=12--1L

Thus E(®, ) is the optimal efficiency for all ¢ € ®. We will establish lower
and upper bounds for E (®, f) and E(®, f) with respect to different families
of iterations. When there is no ambiguity, we write E,(®, f) and E(®, f) as
E,(f) and E(f), respectively. Since in practice we are more concerned with
efficiency for problems f with higher complexity, we are particularly interested
in the asymptotic behavior of these bounds as ¢, —> o,

4. Theorems on efficiency of one-point iteration. We consider first the
family of one-point iterations {7,}. (See Kung and Traub [S, §3].) The impor-
tant properties of {7v,} from our point of view are summarized in the following
theorem proven by Traub [8, §5.1].°

THEOREM 4.1. 1, vf(y,)=1,i=0," -, n—1Lu(y,)=0,i>n—-1.
Hence u(v,)=n.

2. p(y,) =n

We now turn to an upper bound for a(y,). Suppose that we have already
obtained f@(x),i=0,--,n—1, and we want to use them to form 7,(f)x).
This amounts to calculating the first #n — 1 derivatives of f~! (the inverse func-
tion) at f{x). This can be done in O(n®) arithmetic operations by the power
series reversion technique reported in Knuth [2, §4.7]. However if one uses the
fast Fourier transform for polynomial multiplication then the power series rever-
sion can be done in O(n? log n) arithmetic operations, and this implies that

@.n a(y,) < pn® log n
for some positive constant p. Then, by (4.1) and Theorem 4.1,

log n
“2) &Yy, ) 2 TGP + on? logn

For n small, a(y,) can be calculated by inspection. For instance, since
) I ﬂ&l[&).]’
1O =576 " o) L)

one can easily observe that a(y,;) = 7. Hence

log 3
43) s N = T T
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Let ¢ be any one-point iteration, with v(p) = n, which satisfies a mild
smoothness condition Then, by Traub [8, §5.4], Kung and Traub [5, Theorem

6. l] vp=1,i= -, p(¢) — 1, and hence p(y) < n. Clearly, a(y) >
= 1. Therefore, from (3.9),
log n
(4.4) (0. 1) S g == HO.
It is straightforward to verify that
log 3
4.5) h(n) < 22— for ¢, >4,
3¢, +2 !

From (4.2), (4.3), (4.4) and (4.5) we have

THEOREM 4.2. For the family ® of one-point iterations,

log n _logn
Zte(f) + pn* log n SE) S i a= 1
(4.6) for a constant p > 0, Vn,
“.7 log 3 <Ef) <3 dog3  sr o>
o) +ef) +efHF7 3o +2°

REMARK 4.1, 1. In (4.6) both lower and upper bounds for E,(f) are
tight for f such that c(f?) ~ ¢pi<n, and c, is large, since lower bound/
upper bound — 1 as ¢, —> .

2. For f such that c(f) ~c(f') ~c(f") ~ ¢ and ¢, is large, both
lower and upper bounds for E(f) in (4.7) are tight, since lower bound/upper
bound — 1 as Cp—> o, In this case,"by (4.3), 7v; is close to optimal among
all one-point iterations.

S. Theorems on efficiency of multi-point iteration. We consider first the
family of iterations {¥,} defined by Kung and Traub [5, §4]. The important
properties of {¥,} from our point of view are summarized in

THEOREM 5.1. 1. vy(¥,) =n. v(¥,)=0,i>0. Hence u(¥,)=n.
2. p(¥,)=2""1,

Kung and Traub [5, Appendix] give a procedure A for computing
W, (f)x). It can be shown that Z}.,a(\) = 3n%/2 + 3n/2— 7. Hence a(¥,)<
3n2/2 + 3n/2 — 7. More generally, we assume that

G.1) a(¥,) <rn),

where r(n) =r,n® +rin+ry,r, >0.
Then, by (5.1) and Theorem 5.1,
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n—1
(5-2) ¥ )2 i

We choose 7 so as to maximize the right-hand side of (5.2). The maximum is
achieved when n =1t where

t=1+(c(lr, +8)%, =@ +r, +r)ir,.
Let
(5.3) M = round (2).
Then from (5.2) we can easily prove
THEOREM 5.2. There exists a constant ¢ <O such that if M = M(f) is
chosen by (5.3) then
e(¥y, 1) >6Fl)<l + @%y;), for c(f) large.

From (5.2) and Theorem 5.2, we have

COROLLARY 5.1. For the family ® of one-point or multi-point iterations,

-1
E)> iy T oy where rm)=ryn +ron+rg,ry >0; and
E() >Wl)[l +(?(-;—)37;], for a constant ¢ <0, for c(f) large.

We turn to the family of iterations {w,} defined in Kung and Traub [§,
§5]. The important properties of {w,} from our point of view are summarized
in

THEOREM 53. 1. vy(w,) =n-1, v(w,) =1, v (w,) =0,i> 1. Hence
Wwy,) =n

2. p(w,) =2""1,

Kung and Traub [5, Appendix] give a procedure A for computing
wp,(fXx). It can be shown that

< 3,.3
Elai(X)=§n +§n—4.
Hence a(w,) < 3n%/2 + 3n/2 — 4. More generally, we assume that
(5.4 a(w,) <s(n)

where s(n) = s,n? + s;n + 54, s, > 0. Then, by (5.4) and Theorem 5.3,
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n—1

D)2 @ =T0lf) + <) + o) °

We choose n so as to maximize the right-hand side of (5.5). Then the maximum

is achieved when n =u, where

u=1+<01s£l+e), e=2>—1 2
2

r

(5.5)

Let
(5.6) N = round (u).
Then from (5.5) we can easily prove

THEOREM 5.4. There exists a constant 1> 0 such that if N = N(f) is
chosen by (5.6) then

1 '
e(wN,f)>c(f)+n(c(f:)) , for c(f’) large.

From (5.5) and Theorem 5.4, we have

COROLLARY 5.2. For the family ® of one-point or multi-point iterations,

E, ()= n- l)c(f')l _T_ :'(f’).+ ) where s(n) =s,n® +s,n+ sy, 5, > 0; and

E(f)>c(f) +ln((f') 5 for a constant 1> 0, for o(f") large.

We turn to more general families of multi-point iterations, Let ¢ be a
Hermite interpolatory iteration with v(p) =n. Then p(p) < 2"~! (Kung and
Traub [5, Corollary 7.1]). Clearly, a(y) = n— 1. Hence, by (3.9),

n=—1 ]

6.7 e(‘p’f)gncf+n-l<0f+l

Since ¥, and w, are Hermite interpolatory iterations, from (5.7) and
Corollaries 5.1, 5.2, we have

THEOREM 5.5. For the family ® of Hermite interpolatory iterations,

n—1 n—1 n—1
mex( e o =T T o) < S T
]

<E(f)<chl,

v,

cHL ~ N* I ef) + n(e(r)
for c; large, where r(n) =r,n* +rin +ry,r, >0,5(n) = s,n* + s,n +s,,
§2>0,¢(<0 and n>0.
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REMARK 5.1. The lower and upper bounds for E,(f) and E(f) stated in
Theorem 5.5 are tight for f such that ¢(f) ~ ¢, and ¢, is large, since lower
bound/upper bound — 1 as ¢ —> . In this case, by Theorem 5.2, ¥,, is
close to optimal among all Hermite interpolatory iterations.

Now, let ¢ be any multi-point iteration which uses evaluations of f only.

Let Wy) =n Then p(y) <2" (Kung and Traub [5, Theorem 7.2]). Clearly,
a(p)  n—1. Hence

n 1
53 e(w,f)<m<g(f-)-

Since ¥, is a multi-point iteration which uses evaluations of f only,
from (5.8) and Corollary 5.1, we have

THEOREM 5.6, For the family ® of multi-point iterations using values of
f only,

n—1 n
m<En(f')<m, Vn,

1 1
EF)[I * (c(f»"] <EN<p-

for c(f) large, where r(ny=r,n® +rn+ry,r,>0, and ¢ <0,

REMARK 5.2. The lower and upper bounds for E,(f) and E(f) stated in
Theorem 5.6 are tight for f such that ¢(f) is large, since lower bound/upper
bound — 1 as c¢(f) — o, In this case, by Theorem 5.2, ¥,, is close to
optimal among all multi-point iterations using values of f only.

REMARK 5.3, For a given problem f let E'(f), E"(f) be the optimal
efficiency achievable by one-point iteration and multi-point iteration, respectively.
By Theorem 4.2 and Corollary 5.1,

" 1r ks
E (f)>c(f)l_l + O ], <0, for ¢(f) large.

Hence
" 3c,+2 c
B¢y, 32l ¢ W] ~ 3.
E(f) = (log 3)(f) () log 3 ¢(f)
In particular, if f is a problem such that ¢, =c(f) and c, is large, then the

ratio between optimal efficiencies achievable by multi-point iteration and one-point
iteration is at least 3/log 3 ~ 1.89.

for c(f) large.
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6. A conjecture. Kung and Traub [5] conjecture that if ¢ is any multi-
point iteration with w(y) =n then p(p) < 2" !. Suppose that this conjecture
is true. Then, by (3.9), for any multi-point iteration ¢ with v(y) = n,

ey, 1) < (n — Df(ncy + a(p)).
Clearly, a(¢) > n— 1. Hence

(¢, £) < (n = Diac, + n — 1) = k().
Observe that

k(n) <1/(c, +1), Vn, Ve,
Therefore we propose the following conjecture. It states, essentially, that the
optimal efficiency for solving the problem f with respect to all one-point and
multi-point iterations is bounded by the reciprocal of the problem complexity.

CONJECTURE 6.1. For the family ® of one-point or multi-point iterations,

E,f)<(m-Dlnc, +n—1), EF)<1(c,+1).

7. Numerical example. Let f(x) = ;0 ix' — 25. We calculate its simple
zero o =— 1. Calculations were done in double precision arithmetic on a DEC
PDP-10 computer. About 16 digits are available in double precision. Numerical
results show the following: Starting with x4 =—1.01, to bring the error to
about 107!6, five Newton-Raphson iterations are required while one w, iter-
ation is required. (See Table 7.1.) We assume that we do not take advantage of
the algebraic dependence of f and f' (see the assumption of (3.5)) and that we
use Horner’s rule for the evaluation of f and f’, treating each as an independent
polynomial. Suppose that we use the procedure given by Kung and Traub {5,
Appendix] to compute w¢(f)(x).

Let ' and 22 be algorithms associated to Newton-Raphson iteration
and w, respectively. Then the total costs are

KZ')=5[2-50+2- 49 + 2] = 103,

MZ)=5-2-50+2-49+3. 6 -4=657,

and the efficiencies are
e(Z)=1/[2-50 + 2- 49 + 2] = 5/10%,

8(22)=5/[5.2.50+2.49+%-62 +%'6—4] = 5/657.

Then
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KEH 100 =) 103
k(Z?) "~ 6577 eZ') " 657
as predicted by (2.2). (In general, approximate equality holds from (2.2).)

Let x;,, = ¢(x;). The errors when ¢ is Newton-Raphson and ¢ = W
are shown in Table 7.1.

Newton-Raphson We
Xg — @ -1.0x 102 -1.0x 102
X, —a -2.1x10~3 -22x 10716
X, —a -1.0x 1074
X3 - -2.7x10"7
X4 - -1.8 x 1012
X5 — @ - 1.1 x 10~16

TABLE 7.1
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